monoidal-functors-0.2.3.0: Monoidal Functors Library
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Trifunctor.Monoidal

Synopsis

Semigroupal

class (Associative cat t1, Associative cat t2, Associative cat t3, Associative cat to) => Semigroupal cat t1 t2 t3 to f where Source #

Given monoidal categories \((\mathcal{C}, \otimes, I_{\mathcal{C}})\) and \((\mathcal{D}, \bullet, I_{\mathcal{D}})\). A bifunctor \(F : \mathcal{C_1} \times \mathcal{C_2} \times \mathcal{C_3} \to \mathcal{D}\) is Semigroupal if it supports a natural transformation \(\phi_{ABC,XYZ} : F\ A\ B\ C \bullet F\ X\ Y\ Z \to F\ (A \otimes X)\ (B \otimes Y)\ (C \otimes Z)\), which we call combine.

Laws

Associativity:

\[ \require{AMScd} \begin{CD} (F A B C \bullet F X Y Z) \bullet F P Q R @>>{\alpha_{\mathcal{D}}}> F A B C \bullet (F X Y Z \bullet F P Q R) \\ @VV{\phi_{ABC,XYZ} \bullet 1}V @VV{1 \bullet \phi_{XYZ,PQR}}V \\ F (A \otimes X) (B \otimes Y) (C \otimes Z) \bullet F P Q R @. F A B C \bullet (F (X \otimes P) (Y \otimes Q) (Z \otimes R) \\ @VV{\phi_{(A \otimes X)(B \otimes Y)(C \otimes Z),PQR}}V @VV{\phi_{ABC,(X \otimes P)(Y \otimes Q)(Z \otimes R)}}V \\ F ((A \otimes X) \otimes P) ((B \otimes Y) \otimes Q) ((C \otimes Z) \otimes R) @>>{F \alpha_{\mathcal{C_1}}} \alpha_{\mathcal{C_2}}\alpha_{\mathcal{C_3}}> F (A \otimes (X \otimes P)) (B \otimes (Y \otimes Q)) (C \otimes (Z \otimes R)) \\ \end{CD} \]

combine . grmap combine . bwd assocfmap (bwd assoc) . combine . glmap combine

Methods

combine :: to (f x y z) (f x' y' z') `cat` f (t1 x x') (t2 y y') (t3 z z') Source #

A natural transformation \(\phi_{ABC,XYZ} : F\ A\ B\ C \bullet F\ X\ Y\ Z \to F\ (A \otimes X)\ (B \otimes Y) (C \otimes Z)\).

Unital

class Unital cat i1 i2 i3 o f where Source #

Given monoidal categories \((\mathcal{C}, \otimes, I_{\mathcal{C}})\) and \((\mathcal{D}, \bullet, I_{\mathcal{D}})\). A bifunctor \(F : \mathcal{C_1} \times \mathcal{C_2} \times \mathcal{C_3} \to \mathcal{D}\) is Unital if it supports a morphism \(\phi : I_{\mathcal{D}} \to F\ I_{\mathcal{C_1}}\ I_{\mathcal{C_2}}\ I_{\mathcal{C_3}}\), which we call introduce.

Methods

introduce :: o `cat` f i1 i2 i3 Source #

introduce maps from the identity in \(\mathcal{C_1} \times \mathcal{C_2} \times \mathcal{C_3}\) to the identity in \(\mathcal{D}\).

Monoidal

class (Tensor cat t1 i1, Tensor cat t2 i2, Tensor cat t3 i3, Tensor cat to io, Semigroupal cat t1 t2 t3 to f, Unital cat i1 i2 i3 io f) => Monoidal cat t1 i1 t2 i2 t3 i3 to io f Source #

Given monoidal categories \((\mathcal{C}, \otimes, I_{\mathcal{C}})\) and \((\mathcal{D}, \bullet, I_{\mathcal{D}})\). A bifunctor \(F : \mathcal{C_1} \times \mathcal{C_2} \times \mathcal{C_3} \to \mathcal{D}\) is Monoidal if it maps between \(\mathcal{C_1} \times \mathcal{C_2}\ \times \mathcal{C_3}\) and \(\mathcal{D}\) while preserving their monoidal structure. Eg., a homomorphism of monoidal categories.

See NCatlab for more details.

Laws

Right Unitality:

\[ \require{AMScd} \begin{CD} F A B C \bullet I_{\mathcal{D}} @>{1 \bullet \phi}>> F A B \bullet F I_{\mathcal{C_{1}}} I_{\mathcal{C_{2}}} I_{\mathcal{C_{3}}}\\ @VV{\rho_{\mathcal{D}}}V @VV{\phi ABC,I_{\mathcal{C_{1}}}I_{\mathcal{C_{2}}}I_{\mathcal{C_{3}}}}V \\ F A B C @<<{F \rho_{\mathcal{C_{1}}} \rho_{\mathcal{C_{2}}} \rho_{\mathcal{C_{3}}}}< F (A \otimes I_{\mathcal{C_{1}}}) (B \otimes I_{\mathcal{C_{2}}}) (C \otimes I_{\mathcal{C_{3}}}) \end{CD} \]

combine . grmap introducebwd unitr . fwd unitr

Left Unitality:

\[ \begin{CD} I_{\mathcal{D}} \bullet F A B C @>{\phi \bullet 1}>> F I_{\mathcal{C_{1}}} I_{\mathcal{C_{2}}} \bullet F A B C\\ @VV{\lambda_{\mathcal{D}}}V @VV{I_{\mathcal{C_{1}}}I_{\mathcal{C_{2}}}I_{\mathcal{C_{3}}},\phi ABC}V \\ F A B C @<<{F \lambda_{\mathcal{C_{1}}} \lambda_{\mathcal{C_{2}}} \lambda_{\mathcal{C_{3}}}}< F (I_{\mathcal{C_{1}}} \otimes A) (I_{\mathcal{C_{2}}} \otimes B) (I_{\mathcal{C_{3}}} \otimes C) \end{CD} \]

combine . glmap introducefmap (bwd unitl) . fwd unitl