numeric-prelude-0.4.3: An experimental alternative hierarchy of numeric type classes

Safe HaskellSafe
LanguageHaskell98

NumericPrelude.Base

Description

The only point of this module is to reexport items that we want from the standard Prelude.

Synopsis

Documentation

(!!) :: [a] -> Int -> a infixl 9 #

List index (subscript) operator, starting from 0. It is an instance of the more general genericIndex, which takes an index of any integral type.

($) :: (a -> b) -> a -> b infixr 0 #

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

    f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

($!) :: (a -> b) -> a -> b infixr 0 #

Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.

(&&) :: Bool -> Bool -> Bool infixr 3 #

Boolean "and"

(++) :: [a] -> [a] -> [a] infixr 5 #

Append two lists, i.e.,

[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
[x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]

If the first list is not finite, the result is the first list.

(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9 #

Function composition.

(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #

Same as >>=, but with the arguments interchanged.

data Bool :: * #

Constructors

False 
True 

Instances

Bounded Bool

Since: 2.1

Enum Bool

Since: 2.1

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Eq Bool 

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Ord Bool 

Methods

compare :: Bool -> Bool -> Ordering #

(<) :: Bool -> Bool -> Bool #

(<=) :: Bool -> Bool -> Bool #

(>) :: Bool -> Bool -> Bool #

(>=) :: Bool -> Bool -> Bool #

max :: Bool -> Bool -> Bool #

min :: Bool -> Bool -> Bool #

Read Bool

Since: 2.1

Show Bool 

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Ix Bool

Since: 2.1

Methods

range :: (Bool, Bool) -> [Bool] #

index :: (Bool, Bool) -> Bool -> Int #

unsafeIndex :: (Bool, Bool) -> Bool -> Int

inRange :: (Bool, Bool) -> Bool -> Bool #

rangeSize :: (Bool, Bool) -> Int #

unsafeRangeSize :: (Bool, Bool) -> Int

Generic Bool 

Associated Types

type Rep Bool :: * -> * #

Methods

from :: Bool -> Rep Bool x #

to :: Rep Bool x -> Bool #

Lift Bool 

Methods

lift :: Bool -> Q Exp #

Testable Bool 

Methods

property :: Bool -> Property #

Arbitrary Bool 

Methods

arbitrary :: Gen Bool #

shrink :: Bool -> [Bool] #

CoArbitrary Bool 

Methods

coarbitrary :: Bool -> Gen b -> Gen b #

SingKind Bool

Since: 4.9.0.0

Associated Types

type DemoteRep Bool :: *

Methods

fromSing :: Sing Bool a -> DemoteRep Bool

Storable Bool

Since: 2.1

Methods

sizeOf :: Bool -> Int #

alignment :: Bool -> Int #

peekElemOff :: Ptr Bool -> Int -> IO Bool #

pokeElemOff :: Ptr Bool -> Int -> Bool -> IO () #

peekByteOff :: Ptr b -> Int -> IO Bool #

pokeByteOff :: Ptr b -> Int -> Bool -> IO () #

peek :: Ptr Bool -> IO Bool #

poke :: Ptr Bool -> Bool -> IO () #

NFData Bool 

Methods

rnf :: Bool -> () #

Random Bool 

Methods

randomR :: RandomGen g => (Bool, Bool) -> g -> (Bool, g) #

random :: RandomGen g => g -> (Bool, g) #

randomRs :: RandomGen g => (Bool, Bool) -> g -> [Bool] #

randoms :: RandomGen g => g -> [Bool] #

randomRIO :: (Bool, Bool) -> IO Bool #

randomIO :: IO Bool #

C Bool Source # 

Methods

up :: Bool -> Bool -> Bool Source #

dn :: Bool -> Bool -> Bool Source #

SingI Bool False

Since: 4.9.0.0

Methods

sing :: Sing False a

SingI Bool True

Since: 4.9.0.0

Methods

sing :: Sing True a

type Rep Bool 
type Rep Bool = D1 * (MetaData "Bool" "GHC.Types" "ghc-prim" False) ((:+:) * (C1 * (MetaCons "False" PrefixI False) (U1 *)) (C1 * (MetaCons "True" PrefixI False) (U1 *)))
data Sing Bool 
data Sing Bool where
type DemoteRep Bool 
type DemoteRep Bool = Bool
type (==) Bool a b 
type (==) Bool a b = EqBool a b

class Bounded a where #

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.

Minimal complete definition

minBound, maxBound

Methods

minBound :: a #

maxBound :: a #

Instances

Bounded Bool

Since: 2.1

Bounded Char

Since: 2.1

Bounded Int

Since: 2.1

Methods

minBound :: Int #

maxBound :: Int #

Bounded Int8

Since: 2.1

Bounded Int16

Since: 2.1

Bounded Int32

Since: 2.1

Bounded Int64

Since: 2.1

Bounded Ordering

Since: 2.1

Bounded Word

Since: 2.1

Bounded Word8

Since: 2.1

Bounded Word16

Since: 2.1

Bounded Word32

Since: 2.1

Bounded Word64

Since: 2.1

Bounded VecCount

Since: 4.10.0.0

Bounded VecElem

Since: 4.10.0.0

Bounded ()

Since: 2.1

Methods

minBound :: () #

maxBound :: () #

Bounded All 

Methods

minBound :: All #

maxBound :: All #

Bounded Any 

Methods

minBound :: Any #

maxBound :: Any #

Bounded Associativity 
Bounded SourceUnpackedness 
Bounded SourceStrictness 
Bounded DecidedStrictness 
Bounded CChar 
Bounded CSChar 
Bounded CUChar 
Bounded CShort 
Bounded CUShort 
Bounded CInt 
Bounded CUInt 
Bounded CLong 
Bounded CULong 
Bounded CLLong 
Bounded CULLong 
Bounded CBool 
Bounded CPtrdiff 
Bounded CSize 
Bounded CWchar 
Bounded CSigAtomic 
Bounded CIntPtr 
Bounded CUIntPtr 
Bounded CIntMax 
Bounded CUIntMax 
Bounded GeneralCategory 
Bounded T # 

Methods

minBound :: T #

maxBound :: T #

(Ord a, Num a) => Bounded (Bounds a) 

Methods

minBound :: Bounds a #

maxBound :: Bounds a #

Bounded a => Bounded (Min a) 

Methods

minBound :: Min a #

maxBound :: Min a #

Bounded a => Bounded (Max a) 

Methods

minBound :: Max a #

maxBound :: Max a #

Bounded a => Bounded (First a) 

Methods

minBound :: First a #

maxBound :: First a #

Bounded a => Bounded (Last a) 

Methods

minBound :: Last a #

maxBound :: Last a #

Bounded m => Bounded (WrappedMonoid m) 
Bounded a => Bounded (Identity a) 
Bounded a => Bounded (Dual a) 

Methods

minBound :: Dual a #

maxBound :: Dual a #

Bounded a => Bounded (Sum a) 

Methods

minBound :: Sum a #

maxBound :: Sum a #

Bounded a => Bounded (Product a) 
(Ord a, Num a, Bounded a) => Bounded (T a) 

Methods

minBound :: T a #

maxBound :: T a #

Bounded a => Bounded (T a) # 

Methods

minBound :: T a #

maxBound :: T a #

Bounded a => Bounded (T a) # 

Methods

minBound :: T a #

maxBound :: T a #

(Bounded a, Bounded b) => Bounded (a, b)

Since: 2.1

Methods

minBound :: (a, b) #

maxBound :: (a, b) #

Bounded (Proxy k t) 

Methods

minBound :: Proxy k t #

maxBound :: Proxy k t #

(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c)

Since: 2.1

Methods

minBound :: (a, b, c) #

maxBound :: (a, b, c) #

Bounded a => Bounded (Const k a b) 

Methods

minBound :: Const k a b #

maxBound :: Const k a b #

(~) k a b => Bounded ((:~:) k a b)

Since: 4.7.0.0

Methods

minBound :: (k :~: a) b #

maxBound :: (k :~: a) b #

(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d)

Since: 2.1

Methods

minBound :: (a, b, c, d) #

maxBound :: (a, b, c, d) #

(~~) k1 k2 a b => Bounded ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

minBound :: (k1 :~~: k2) a b #

maxBound :: (k1 :~~: k2) a b #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e)

Since: 2.1

Methods

minBound :: (a, b, c, d, e) #

maxBound :: (a, b, c, d, e) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f) #

maxBound :: (a, b, c, d, e, f) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g) #

maxBound :: (a, b, c, d, e, f, g) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h) #

maxBound :: (a, b, c, d, e, f, g, h) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i) #

maxBound :: (a, b, c, d, e, f, g, h, i) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j) #

maxBound :: (a, b, c, d, e, f, g, h, i, j) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

data Char :: * #

The character type Char is an enumeration whose values represent Unicode (or equivalently ISO/IEC 10646) characters (see http://www.unicode.org/ for details). This set extends the ISO 8859-1 (Latin-1) character set (the first 256 characters), which is itself an extension of the ASCII character set (the first 128 characters). A character literal in Haskell has type Char.

To convert a Char to or from the corresponding Int value defined by Unicode, use toEnum and fromEnum from the Enum class respectively (or equivalently ord and chr).

Instances

Bounded Char

Since: 2.1

Enum Char

Since: 2.1

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Eq Char 

Methods

(==) :: Char -> Char -> Bool #

(/=) :: Char -> Char -> Bool #

Ord Char 

Methods

compare :: Char -> Char -> Ordering #

(<) :: Char -> Char -> Bool #

(<=) :: Char -> Char -> Bool #

(>) :: Char -> Char -> Bool #

(>=) :: Char -> Char -> Bool #

max :: Char -> Char -> Char #

min :: Char -> Char -> Char #

Read Char

Since: 2.1

Show Char

Since: 2.1

Methods

showsPrec :: Int -> Char -> ShowS #

show :: Char -> String #

showList :: [Char] -> ShowS #

Ix Char

Since: 2.1

Methods

range :: (Char, Char) -> [Char] #

index :: (Char, Char) -> Char -> Int #

unsafeIndex :: (Char, Char) -> Char -> Int

inRange :: (Char, Char) -> Char -> Bool #

rangeSize :: (Char, Char) -> Int #

unsafeRangeSize :: (Char, Char) -> Int

Lift Char 

Methods

lift :: Char -> Q Exp #

Arbitrary Char 

Methods

arbitrary :: Gen Char #

shrink :: Char -> [Char] #

CoArbitrary Char 

Methods

coarbitrary :: Char -> Gen b -> Gen b #

Storable Char

Since: 2.1

Methods

sizeOf :: Char -> Int #

alignment :: Char -> Int #

peekElemOff :: Ptr Char -> Int -> IO Char #

pokeElemOff :: Ptr Char -> Int -> Char -> IO () #

peekByteOff :: Ptr b -> Int -> IO Char #

pokeByteOff :: Ptr b -> Int -> Char -> IO () #

peek :: Ptr Char -> IO Char #

poke :: Ptr Char -> Char -> IO () #

NFData Char 

Methods

rnf :: Char -> () #

Random Char 

Methods

randomR :: RandomGen g => (Char, Char) -> g -> (Char, g) #

random :: RandomGen g => g -> (Char, g) #

randomRs :: RandomGen g => (Char, Char) -> g -> [Char] #

randoms :: RandomGen g => g -> [Char] #

randomRIO :: (Char, Char) -> IO Char #

randomIO :: IO Char #

ErrorList Char 

Methods

listMsg :: String -> [Char] #

Monad m => Stream ByteString m Char 

Methods

uncons :: ByteString -> m (Maybe (Char, ByteString)) #

Monad m => Stream ByteString m Char 

Methods

uncons :: ByteString -> m (Maybe (Char, ByteString)) #

Monad m => Stream Text m Char 

Methods

uncons :: Text -> m (Maybe (Char, Text)) #

Monad m => Stream Text m Char 

Methods

uncons :: Text -> m (Maybe (Char, Text)) #

Generic1 k (URec k Char) 

Associated Types

type Rep1 (URec k Char) (f :: URec k Char -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 (URec k Char) f a #

to1 :: Rep1 (URec k Char) f a -> f a #

IsString (Seq Char) 

Methods

fromString :: String -> Seq Char #

Functor (URec * Char) 

Methods

fmap :: (a -> b) -> URec * Char a -> URec * Char b #

(<$) :: a -> URec * Char b -> URec * Char a #

Foldable (URec * Char) 

Methods

fold :: Monoid m => URec * Char m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Char a -> m #

foldr :: (a -> b -> b) -> b -> URec * Char a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Char a -> b #

foldl :: (b -> a -> b) -> b -> URec * Char a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Char a -> b #

foldr1 :: (a -> a -> a) -> URec * Char a -> a #

foldl1 :: (a -> a -> a) -> URec * Char a -> a #

toList :: URec * Char a -> [a] #

null :: URec * Char a -> Bool #

length :: URec * Char a -> Int #

elem :: Eq a => a -> URec * Char a -> Bool #

maximum :: Ord a => URec * Char a -> a #

minimum :: Ord a => URec * Char a -> a #

sum :: Num a => URec * Char a -> a #

product :: Num a => URec * Char a -> a #

Traversable (URec * Char) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Char a -> f (URec * Char b) #

sequenceA :: Applicative f => URec * Char (f a) -> f (URec * Char a) #

mapM :: Monad m => (a -> m b) -> URec * Char a -> m (URec * Char b) #

sequence :: Monad m => URec * Char (m a) -> m (URec * Char a) #

Eq (URec k Char p) 

Methods

(==) :: URec k Char p -> URec k Char p -> Bool #

(/=) :: URec k Char p -> URec k Char p -> Bool #

Ord (URec k Char p) 

Methods

compare :: URec k Char p -> URec k Char p -> Ordering #

(<) :: URec k Char p -> URec k Char p -> Bool #

(<=) :: URec k Char p -> URec k Char p -> Bool #

(>) :: URec k Char p -> URec k Char p -> Bool #

(>=) :: URec k Char p -> URec k Char p -> Bool #

max :: URec k Char p -> URec k Char p -> URec k Char p #

min :: URec k Char p -> URec k Char p -> URec k Char p #

Show (URec k Char p) 

Methods

showsPrec :: Int -> URec k Char p -> ShowS #

show :: URec k Char p -> String #

showList :: [URec k Char p] -> ShowS #

Generic (URec k Char p) 

Associated Types

type Rep (URec k Char p) :: * -> * #

Methods

from :: URec k Char p -> Rep (URec k Char p) x #

to :: Rep (URec k Char p) x -> URec k Char p #

data URec k Char

Used for marking occurrences of Char#

Since: 4.9.0.0

data URec k Char = UChar {}
type Rep1 k (URec k Char) 
type Rep1 k (URec k Char) = D1 k (MetaData "URec" "GHC.Generics" "base" False) (C1 k (MetaCons "UChar" PrefixI True) (S1 k (MetaSel (Just Symbol "uChar#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UChar k)))
type Rep (URec k Char p) 
type Rep (URec k Char p) = D1 * (MetaData "URec" "GHC.Generics" "base" False) (C1 * (MetaCons "UChar" PrefixI True) (S1 * (MetaSel (Just Symbol "uChar#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UChar *)))

data Either a b :: * -> * -> * #

The Either type represents values with two possibilities: a value of type Either a b is either Left a or Right b.

The Either type is sometimes used to represent a value which is either correct or an error; by convention, the Left constructor is used to hold an error value and the Right constructor is used to hold a correct value (mnemonic: "right" also means "correct").

Examples

The type Either String Int is the type of values which can be either a String or an Int. The Left constructor can be used only on Strings, and the Right constructor can be used only on Ints:

>>> let s = Left "foo" :: Either String Int
>>> s
Left "foo"
>>> let n = Right 3 :: Either String Int
>>> n
Right 3
>>> :type s
s :: Either String Int
>>> :type n
n :: Either String Int

The fmap from our Functor instance will ignore Left values, but will apply the supplied function to values contained in a Right:

>>> let s = Left "foo" :: Either String Int
>>> let n = Right 3 :: Either String Int
>>> fmap (*2) s
Left "foo"
>>> fmap (*2) n
Right 6

The Monad instance for Either allows us to chain together multiple actions which may fail, and fail overall if any of the individual steps failed. First we'll write a function that can either parse an Int from a Char, or fail.

>>> import Data.Char ( digitToInt, isDigit )
>>> :{
    let parseEither :: Char -> Either String Int
        parseEither c
          | isDigit c = Right (digitToInt c)
          | otherwise = Left "parse error"
>>> :}

The following should work, since both '1' and '2' can be parsed as Ints.

>>> :{
    let parseMultiple :: Either String Int
        parseMultiple = do
          x <- parseEither '1'
          y <- parseEither '2'
          return (x + y)
>>> :}
>>> parseMultiple
Right 3

But the following should fail overall, since the first operation where we attempt to parse 'm' as an Int will fail:

>>> :{
    let parseMultiple :: Either String Int
        parseMultiple = do
          x <- parseEither 'm'
          y <- parseEither '2'
          return (x + y)
>>> :}
>>> parseMultiple
Left "parse error"

Constructors

Left a 
Right b 

Instances

Arbitrary2 Either 

Methods

liftArbitrary2 :: Gen a -> Gen b -> Gen (Either a b) #

liftShrink2 :: (a -> [a]) -> (b -> [b]) -> Either a b -> [Either a b] #

Eq2 Either

Since: 4.9.0.0

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Either a c -> Either b d -> Bool #

Ord2 Either

Since: 4.9.0.0

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Either a c -> Either b d -> Ordering #

Read2 Either

Since: 4.9.0.0

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) #

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] #

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) #

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] #

Show2 Either

Since: 4.9.0.0

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Either a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Either a b] -> ShowS #

NFData2 Either

Since: 1.4.3.0

Methods

liftRnf2 :: (a -> ()) -> (b -> ()) -> Either a b -> () #

Monad (Either e)

Since: 4.4.0.0

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b #

(>>) :: Either e a -> Either e b -> Either e b #

return :: a -> Either e a #

fail :: String -> Either e a #

Functor (Either a)

Since: 3.0

Methods

fmap :: (a -> b) -> Either a a -> Either a b #

(<$) :: a -> Either a b -> Either a a #

Applicative (Either e)

Since: 3.0

Methods

pure :: a -> Either e a #

(<*>) :: Either e (a -> b) -> Either e a -> Either e b #

liftA2 :: (a -> b -> c) -> Either e a -> Either e b -> Either e c #

(*>) :: Either e a -> Either e b -> Either e b #

(<*) :: Either e a -> Either e b -> Either e a #

Foldable (Either a)

Since: 4.7.0.0

Methods

fold :: Monoid m => Either a m -> m #

foldMap :: Monoid m => (a -> m) -> Either a a -> m #

foldr :: (a -> b -> b) -> b -> Either a a -> b #

foldr' :: (a -> b -> b) -> b -> Either a a -> b #

foldl :: (b -> a -> b) -> b -> Either a a -> b #

foldl' :: (b -> a -> b) -> b -> Either a a -> b #

foldr1 :: (a -> a -> a) -> Either a a -> a #

foldl1 :: (a -> a -> a) -> Either a a -> a #

toList :: Either a a -> [a] #

null :: Either a a -> Bool #

length :: Either a a -> Int #

elem :: Eq a => a -> Either a a -> Bool #

maximum :: Ord a => Either a a -> a #

minimum :: Ord a => Either a a -> a #

sum :: Num a => Either a a -> a #

product :: Num a => Either a a -> a #

Traversable (Either a)

Since: 4.7.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Either a a -> f (Either a b) #

sequenceA :: Applicative f => Either a (f a) -> f (Either a a) #

mapM :: Monad m => (a -> m b) -> Either a a -> m (Either a b) #

sequence :: Monad m => Either a (m a) -> m (Either a a) #

Arbitrary a => Arbitrary1 (Either a) 

Methods

liftArbitrary :: Gen a -> Gen (Either a a) #

liftShrink :: (a -> [a]) -> Either a a -> [Either a a] #

Eq a => Eq1 (Either a)

Since: 4.9.0.0

Methods

liftEq :: (a -> b -> Bool) -> Either a a -> Either a b -> Bool #

Ord a => Ord1 (Either a)

Since: 4.9.0.0

Methods

liftCompare :: (a -> b -> Ordering) -> Either a a -> Either a b -> Ordering #

Read a => Read1 (Either a)

Since: 4.9.0.0

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Either a a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Either a a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Either a a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Either a a] #

Show a => Show1 (Either a)

Since: 4.9.0.0

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Either a a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Either a a] -> ShowS #

NFData a => NFData1 (Either a)

Since: 1.4.3.0

Methods

liftRnf :: (a -> ()) -> Either a a -> () #

Generic1 * (Either a) 

Associated Types

type Rep1 (Either a) (f :: Either a -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 (Either a) f a #

to1 :: Rep1 (Either a) f a -> f a #

(Eq b, Eq a) => Eq (Either a b) 

Methods

(==) :: Either a b -> Either a b -> Bool #

(/=) :: Either a b -> Either a b -> Bool #

(Ord b, Ord a) => Ord (Either a b) 

Methods

compare :: Either a b -> Either a b -> Ordering #

(<) :: Either a b -> Either a b -> Bool #

(<=) :: Either a b -> Either a b -> Bool #

(>) :: Either a b -> Either a b -> Bool #

(>=) :: Either a b -> Either a b -> Bool #

max :: Either a b -> Either a b -> Either a b #

min :: Either a b -> Either a b -> Either a b #

(Read b, Read a) => Read (Either a b) 
(Show b, Show a) => Show (Either a b) 

Methods

showsPrec :: Int -> Either a b -> ShowS #

show :: Either a b -> String #

showList :: [Either a b] -> ShowS #

Generic (Either a b) 

Associated Types

type Rep (Either a b) :: * -> * #

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Semigroup (Either a b)

Since: 4.9.0.0

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b => b -> Either a b -> Either a b #

(Lift a, Lift b) => Lift (Either a b) 

Methods

lift :: Either a b -> Q Exp #

(Arbitrary a, Arbitrary b) => Arbitrary (Either a b) 

Methods

arbitrary :: Gen (Either a b) #

shrink :: Either a b -> [Either a b] #

(CoArbitrary a, CoArbitrary b) => CoArbitrary (Either a b) 

Methods

coarbitrary :: Either a b -> Gen b -> Gen b #

(NFData a, NFData b) => NFData (Either a b) 

Methods

rnf :: Either a b -> () #

type Rep1 * (Either a) 
type Rep (Either a b) 
type (==) (Either k1 k2) a b 
type (==) (Either k1 k2) a b = EqEither k1 k2 a b

class Enum a where #

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

   enumFrom     x   = enumFromTo     x maxBound
   enumFromThen x y = enumFromThenTo x y bound
     where
       bound | fromEnum y >= fromEnum x = maxBound
             | otherwise                = minBound

Minimal complete definition

toEnum, fromEnum

Methods

succ :: a -> a #

the successor of a value. For numeric types, succ adds 1.

pred :: a -> a #

the predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> a #

Convert from an Int.

fromEnum :: a -> Int #

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

enumFrom :: a -> [a] #

Used in Haskell's translation of [n..].

enumFromThen :: a -> a -> [a] #

Used in Haskell's translation of [n,n'..].

enumFromTo :: a -> a -> [a] #

Used in Haskell's translation of [n..m].

enumFromThenTo :: a -> a -> a -> [a] #

Used in Haskell's translation of [n,n'..m].

Instances

Enum Bool

Since: 2.1

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Enum Char

Since: 2.1

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Enum Int

Since: 2.1

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Enum Int8

Since: 2.1

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Enum Int16

Since: 2.1

Enum Int32

Since: 2.1

Enum Int64

Since: 2.1

Enum Integer

Since: 2.1

Enum Natural

Since: 4.8.0.0

Enum Ordering

Since: 2.1

Enum Word

Since: 2.1

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Enum Word8

Since: 2.1

Enum Word16

Since: 2.1

Enum Word32

Since: 2.1

Enum Word64

Since: 2.1

Enum VecCount

Since: 4.10.0.0

Enum VecElem

Since: 4.10.0.0

Enum ()

Since: 2.1

Methods

succ :: () -> () #

pred :: () -> () #

toEnum :: Int -> () #

fromEnum :: () -> Int #

enumFrom :: () -> [()] #

enumFromThen :: () -> () -> [()] #

enumFromTo :: () -> () -> [()] #

enumFromThenTo :: () -> () -> () -> [()] #

Enum Associativity 
Enum SourceUnpackedness 
Enum SourceStrictness 
Enum DecidedStrictness 
Enum CChar 
Enum CSChar 
Enum CUChar 
Enum CShort 
Enum CUShort 
Enum CInt 

Methods

succ :: CInt -> CInt #

pred :: CInt -> CInt #

toEnum :: Int -> CInt #

fromEnum :: CInt -> Int #

enumFrom :: CInt -> [CInt] #

enumFromThen :: CInt -> CInt -> [CInt] #

enumFromTo :: CInt -> CInt -> [CInt] #

enumFromThenTo :: CInt -> CInt -> CInt -> [CInt] #

Enum CUInt 
Enum CLong 
Enum CULong 
Enum CLLong 
Enum CULLong 
Enum CBool 
Enum CFloat 
Enum CDouble 
Enum CPtrdiff 
Enum CSize 
Enum CWchar 
Enum CSigAtomic 
Enum CClock 
Enum CTime 
Enum CUSeconds 
Enum CSUSeconds 
Enum CIntPtr 
Enum CUIntPtr 
Enum CIntMax 
Enum CUIntMax 
Enum GeneralCategory 
Enum Extension 
Enum Message 
Enum Day 

Methods

succ :: Day -> Day #

pred :: Day -> Day #

toEnum :: Int -> Day #

fromEnum :: Day -> Int #

enumFrom :: Day -> [Day] #

enumFromThen :: Day -> Day -> [Day] #

enumFromTo :: Day -> Day -> [Day] #

enumFromThenTo :: Day -> Day -> Day -> [Day] #

Enum T # 

Methods

succ :: T -> T #

pred :: T -> T #

toEnum :: Int -> T #

fromEnum :: T -> Int #

enumFrom :: T -> [T] #

enumFromThen :: T -> T -> [T] #

enumFromTo :: T -> T -> [T] #

enumFromThenTo :: T -> T -> T -> [T] #

Enum Dimension # 
Integral a => Enum (Ratio a)

Since: 2.0.1

Methods

succ :: Ratio a -> Ratio a #

pred :: Ratio a -> Ratio a #

toEnum :: Int -> Ratio a #

fromEnum :: Ratio a -> Int #

enumFrom :: Ratio a -> [Ratio a] #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] #

Enum a => Enum (Bounds a) 

Methods

succ :: Bounds a -> Bounds a #

pred :: Bounds a -> Bounds a #

toEnum :: Int -> Bounds a #

fromEnum :: Bounds a -> Int #

enumFrom :: Bounds a -> [Bounds a] #

enumFromThen :: Bounds a -> Bounds a -> [Bounds a] #

enumFromTo :: Bounds a -> Bounds a -> [Bounds a] #

enumFromThenTo :: Bounds a -> Bounds a -> Bounds a -> [Bounds a] #

Enum (Fixed a)

Since: 2.1

Methods

succ :: Fixed a -> Fixed a #

pred :: Fixed a -> Fixed a #

toEnum :: Int -> Fixed a #

fromEnum :: Fixed a -> Int #

enumFrom :: Fixed a -> [Fixed a] #

enumFromThen :: Fixed a -> Fixed a -> [Fixed a] #

enumFromTo :: Fixed a -> Fixed a -> [Fixed a] #

enumFromThenTo :: Fixed a -> Fixed a -> Fixed a -> [Fixed a] #

Enum a => Enum (Min a)

Since: 4.9.0.0

Methods

succ :: Min a -> Min a #

pred :: Min a -> Min a #

toEnum :: Int -> Min a #

fromEnum :: Min a -> Int #

enumFrom :: Min a -> [Min a] #

enumFromThen :: Min a -> Min a -> [Min a] #

enumFromTo :: Min a -> Min a -> [Min a] #

enumFromThenTo :: Min a -> Min a -> Min a -> [Min a] #

Enum a => Enum (Max a)

Since: 4.9.0.0

Methods

succ :: Max a -> Max a #

pred :: Max a -> Max a #

toEnum :: Int -> Max a #

fromEnum :: Max a -> Int #

enumFrom :: Max a -> [Max a] #

enumFromThen :: Max a -> Max a -> [Max a] #

enumFromTo :: Max a -> Max a -> [Max a] #

enumFromThenTo :: Max a -> Max a -> Max a -> [Max a] #

Enum a => Enum (First a)

Since: 4.9.0.0

Methods

succ :: First a -> First a #

pred :: First a -> First a #

toEnum :: Int -> First a #

fromEnum :: First a -> Int #

enumFrom :: First a -> [First a] #

enumFromThen :: First a -> First a -> [First a] #

enumFromTo :: First a -> First a -> [First a] #

enumFromThenTo :: First a -> First a -> First a -> [First a] #

Enum a => Enum (Last a)

Since: 4.9.0.0

Methods

succ :: Last a -> Last a #

pred :: Last a -> Last a #

toEnum :: Int -> Last a #

fromEnum :: Last a -> Int #

enumFrom :: Last a -> [Last a] #

enumFromThen :: Last a -> Last a -> [Last a] #

enumFromTo :: Last a -> Last a -> [Last a] #

enumFromThenTo :: Last a -> Last a -> Last a -> [Last a] #

Enum a => Enum (WrappedMonoid a)

Since: 4.9.0.0

Enum a => Enum (Identity a) 
(Ord a, Num a, Enum a) => Enum (T a) 

Methods

succ :: T a -> T a #

pred :: T a -> T a #

toEnum :: Int -> T a #

fromEnum :: T a -> Int #

enumFrom :: T a -> [T a] #

enumFromThen :: T a -> T a -> [T a] #

enumFromTo :: T a -> T a -> [T a] #

enumFromThenTo :: T a -> T a -> T a -> [T a] #

(Enum a, C a) => Enum (T a) 

Methods

succ :: T a -> T a #

pred :: T a -> T a #

toEnum :: Int -> T a #

fromEnum :: T a -> Int #

enumFrom :: T a -> [T a] #

enumFromThen :: T a -> T a -> [T a] #

enumFromTo :: T a -> T a -> [T a] #

enumFromThenTo :: T a -> T a -> T a -> [T a] #

Enum a => Enum (T a) # 

Methods

succ :: T a -> T a #

pred :: T a -> T a #

toEnum :: Int -> T a #

fromEnum :: T a -> Int #

enumFrom :: T a -> [T a] #

enumFromThen :: T a -> T a -> [T a] #

enumFromTo :: T a -> T a -> [T a] #

enumFromThenTo :: T a -> T a -> T a -> [T a] #

Enum a => Enum (T a) # 

Methods

succ :: T a -> T a #

pred :: T a -> T a #

toEnum :: Int -> T a #

fromEnum :: T a -> Int #

enumFrom :: T a -> [T a] #

enumFromThen :: T a -> T a -> [T a] #

enumFromTo :: T a -> T a -> [T a] #

enumFromThenTo :: T a -> T a -> T a -> [T a] #

Enum (Proxy k s)

Since: 4.7.0.0

Methods

succ :: Proxy k s -> Proxy k s #

pred :: Proxy k s -> Proxy k s #

toEnum :: Int -> Proxy k s #

fromEnum :: Proxy k s -> Int #

enumFrom :: Proxy k s -> [Proxy k s] #

enumFromThen :: Proxy k s -> Proxy k s -> [Proxy k s] #

enumFromTo :: Proxy k s -> Proxy k s -> [Proxy k s] #

enumFromThenTo :: Proxy k s -> Proxy k s -> Proxy k s -> [Proxy k s] #

Enum a => Enum (Const k a b) 

Methods

succ :: Const k a b -> Const k a b #

pred :: Const k a b -> Const k a b #

toEnum :: Int -> Const k a b #

fromEnum :: Const k a b -> Int #

enumFrom :: Const k a b -> [Const k a b] #

enumFromThen :: Const k a b -> Const k a b -> [Const k a b] #

enumFromTo :: Const k a b -> Const k a b -> [Const k a b] #

enumFromThenTo :: Const k a b -> Const k a b -> Const k a b -> [Const k a b] #

Enum (f a) => Enum (Alt k f a) 

Methods

succ :: Alt k f a -> Alt k f a #

pred :: Alt k f a -> Alt k f a #

toEnum :: Int -> Alt k f a #

fromEnum :: Alt k f a -> Int #

enumFrom :: Alt k f a -> [Alt k f a] #

enumFromThen :: Alt k f a -> Alt k f a -> [Alt k f a] #

enumFromTo :: Alt k f a -> Alt k f a -> [Alt k f a] #

enumFromThenTo :: Alt k f a -> Alt k f a -> Alt k f a -> [Alt k f a] #

(~) k a b => Enum ((:~:) k a b)

Since: 4.7.0.0

Methods

succ :: (k :~: a) b -> (k :~: a) b #

pred :: (k :~: a) b -> (k :~: a) b #

toEnum :: Int -> (k :~: a) b #

fromEnum :: (k :~: a) b -> Int #

enumFrom :: (k :~: a) b -> [(k :~: a) b] #

enumFromThen :: (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

enumFromTo :: (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

enumFromThenTo :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

(~~) k1 k2 a b => Enum ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

succ :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b #

pred :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b #

toEnum :: Int -> (k1 :~~: k2) a b #

fromEnum :: (k1 :~~: k2) a b -> Int #

enumFrom :: (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

enumFromThen :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

enumFromTo :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

enumFromThenTo :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

class Eq a where #

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.

Minimal complete definition: either == or /=.

Minimal complete definition

(==) | (/=)

Methods

(==) :: a -> a -> Bool infix 4 #

(/=) :: a -> a -> Bool infix 4 #

Instances

Eq Bool 

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Eq Char 

Methods

(==) :: Char -> Char -> Bool #

(/=) :: Char -> Char -> Bool #

Eq Double 

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Eq Float 

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Eq Int 

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Eq Int8

Since: 2.1

Methods

(==) :: Int8 -> Int8 -> Bool #

(/=) :: Int8 -> Int8 -> Bool #

Eq Int16

Since: 2.1

Methods

(==) :: Int16 -> Int16 -> Bool #

(/=) :: Int16 -> Int16 -> Bool #

Eq Int32

Since: 2.1

Methods

(==) :: Int32 -> Int32 -> Bool #

(/=) :: Int32 -> Int32 -> Bool #

Eq Int64

Since: 2.1

Methods

(==) :: Int64 -> Int64 -> Bool #

(/=) :: Int64 -> Int64 -> Bool #

Eq Integer 

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Eq Natural 

Methods

(==) :: Natural -> Natural -> Bool #

(/=) :: Natural -> Natural -> Bool #

Eq Ordering 
Eq Word 

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Eq Word8

Since: 2.1

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Eq Word16

Since: 2.1

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Eq Word32

Since: 2.1

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Eq Word64

Since: 2.1

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Eq SomeTypeRep 
Eq Exp 

Methods

(==) :: Exp -> Exp -> Bool #

(/=) :: Exp -> Exp -> Bool #

Eq Match 

Methods

(==) :: Match -> Match -> Bool #

(/=) :: Match -> Match -> Bool #

Eq Clause 

Methods

(==) :: Clause -> Clause -> Bool #

(/=) :: Clause -> Clause -> Bool #

Eq Pat 

Methods

(==) :: Pat -> Pat -> Bool #

(/=) :: Pat -> Pat -> Bool #

Eq Type 

Methods

(==) :: Type -> Type -> Bool #

(/=) :: Type -> Type -> Bool #

Eq Dec 

Methods

(==) :: Dec -> Dec -> Bool #

(/=) :: Dec -> Dec -> Bool #

Eq Name 

Methods

(==) :: Name -> Name -> Bool #

(/=) :: Name -> Name -> Bool #

Eq FunDep 

Methods

(==) :: FunDep -> FunDep -> Bool #

(/=) :: FunDep -> FunDep -> Bool #

Eq TyVarBndr 
Eq InjectivityAnn 
Eq Overlap 

Methods

(==) :: Overlap -> Overlap -> Bool #

(/=) :: Overlap -> Overlap -> Bool #

Eq DerivStrategy 
Eq () 

Methods

(==) :: () -> () -> Bool #

(/=) :: () -> () -> Bool #

Eq TyCon 

Methods

(==) :: TyCon -> TyCon -> Bool #

(/=) :: TyCon -> TyCon -> Bool #

Eq Module 

Methods

(==) :: Module -> Module -> Bool #

(/=) :: Module -> Module -> Bool #

Eq TrName 

Methods

(==) :: TrName -> TrName -> Bool #

(/=) :: TrName -> TrName -> Bool #

Eq Version

Since: 2.1

Methods

(==) :: Version -> Version -> Bool #

(/=) :: Version -> Version -> Bool #

Eq BigNat 

Methods

(==) :: BigNat -> BigNat -> Bool #

(/=) :: BigNat -> BigNat -> Bool #

Eq Void

Since: 4.8.0.0

Methods

(==) :: Void -> Void -> Bool #

(/=) :: Void -> Void -> Bool #

Eq SpecConstrAnnotation 
Eq Unique 

Methods

(==) :: Unique -> Unique -> Bool #

(/=) :: Unique -> Unique -> Bool #

Eq ThreadId

Since: 4.2.0.0

Eq BlockReason 
Eq ThreadStatus 
Eq AsyncException 
Eq ArrayException 
Eq ExitCode 
Eq IOErrorType

Since: 4.1.0.0

Eq MaskingState 
Eq IOException

Since: 4.1.0.0

Eq All 

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Eq Any 

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Eq Fixity 

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq Associativity 
Eq SourceUnpackedness 
Eq SourceStrictness 
Eq DecidedStrictness 
Eq CChar 

Methods

(==) :: CChar -> CChar -> Bool #

(/=) :: CChar -> CChar -> Bool #

Eq CSChar 

Methods

(==) :: CSChar -> CSChar -> Bool #

(/=) :: CSChar -> CSChar -> Bool #

Eq CUChar 

Methods

(==) :: CUChar -> CUChar -> Bool #

(/=) :: CUChar -> CUChar -> Bool #

Eq CShort 

Methods

(==) :: CShort -> CShort -> Bool #

(/=) :: CShort -> CShort -> Bool #

Eq CUShort 

Methods

(==) :: CUShort -> CUShort -> Bool #

(/=) :: CUShort -> CUShort -> Bool #

Eq CInt 

Methods

(==) :: CInt -> CInt -> Bool #

(/=) :: CInt -> CInt -> Bool #

Eq CUInt 

Methods

(==) :: CUInt -> CUInt -> Bool #

(/=) :: CUInt -> CUInt -> Bool #

Eq CLong 

Methods

(==) :: CLong -> CLong -> Bool #

(/=) :: CLong -> CLong -> Bool #

Eq CULong 

Methods

(==) :: CULong -> CULong -> Bool #

(/=) :: CULong -> CULong -> Bool #

Eq CLLong 

Methods

(==) :: CLLong -> CLLong -> Bool #

(/=) :: CLLong -> CLLong -> Bool #

Eq CULLong 

Methods

(==) :: CULLong -> CULLong -> Bool #

(/=) :: CULLong -> CULLong -> Bool #

Eq CBool 

Methods

(==) :: CBool -> CBool -> Bool #

(/=) :: CBool -> CBool -> Bool #

Eq CFloat 

Methods

(==) :: CFloat -> CFloat -> Bool #

(/=) :: CFloat -> CFloat -> Bool #

Eq CDouble 

Methods

(==) :: CDouble -> CDouble -> Bool #

(/=) :: CDouble -> CDouble -> Bool #

Eq CPtrdiff 
Eq CSize 

Methods

(==) :: CSize -> CSize -> Bool #

(/=) :: CSize -> CSize -> Bool #

Eq CWchar 

Methods

(==) :: CWchar -> CWchar -> Bool #

(/=) :: CWchar -> CWchar -> Bool #

Eq CSigAtomic 
Eq CClock 

Methods

(==) :: CClock -> CClock -> Bool #

(/=) :: CClock -> CClock -> Bool #

Eq CTime 

Methods

(==) :: CTime -> CTime -> Bool #

(/=) :: CTime -> CTime -> Bool #

Eq CUSeconds 
Eq CSUSeconds 
Eq CIntPtr 

Methods

(==) :: CIntPtr -> CIntPtr -> Bool #

(/=) :: CIntPtr -> CIntPtr -> Bool #

Eq CUIntPtr 
Eq CIntMax 

Methods

(==) :: CIntMax -> CIntMax -> Bool #

(/=) :: CIntMax -> CIntMax -> Bool #

Eq CUIntMax 
Eq Fingerprint 
Eq Lexeme 

Methods

(==) :: Lexeme -> Lexeme -> Bool #

(/=) :: Lexeme -> Lexeme -> Bool #

Eq Number 

Methods

(==) :: Number -> Number -> Bool #

(/=) :: Number -> Number -> Bool #

Eq GeneralCategory 
Eq SrcLoc 

Methods

(==) :: SrcLoc -> SrcLoc -> Bool #

(/=) :: SrcLoc -> SrcLoc -> Bool #

Eq IntSet 

Methods

(==) :: IntSet -> IntSet -> Bool #

(/=) :: IntSet -> IntSet -> Bool #

Eq Extension 
Eq ForeignSrcLang 
Eq Message 

Methods

(==) :: Message -> Message -> Bool #

(/=) :: Message -> Message -> Bool #

Eq ParseError 
Eq SourcePos 
Eq Doc 

Methods

(==) :: Doc -> Doc -> Bool #

(/=) :: Doc -> Doc -> Bool #

Eq TextDetails 
Eq Style 

Methods

(==) :: Style -> Style -> Bool #

(/=) :: Style -> Style -> Bool #

Eq Mode 

Methods

(==) :: Mode -> Mode -> Bool #

(/=) :: Mode -> Mode -> Bool #

Eq ModName 

Methods

(==) :: ModName -> ModName -> Bool #

(/=) :: ModName -> ModName -> Bool #

Eq PkgName 

Methods

(==) :: PkgName -> PkgName -> Bool #

(/=) :: PkgName -> PkgName -> Bool #

Eq Module 

Methods

(==) :: Module -> Module -> Bool #

(/=) :: Module -> Module -> Bool #

Eq OccName 

Methods

(==) :: OccName -> OccName -> Bool #

(/=) :: OccName -> OccName -> Bool #

Eq NameFlavour 
Eq NameSpace 
Eq Loc 

Methods

(==) :: Loc -> Loc -> Bool #

(/=) :: Loc -> Loc -> Bool #

Eq Info 

Methods

(==) :: Info -> Info -> Bool #

(/=) :: Info -> Info -> Bool #

Eq ModuleInfo 
Eq Fixity 

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq FixityDirection 
Eq Lit 

Methods

(==) :: Lit -> Lit -> Bool #

(/=) :: Lit -> Lit -> Bool #

Eq Body 

Methods

(==) :: Body -> Body -> Bool #

(/=) :: Body -> Body -> Bool #

Eq Guard 

Methods

(==) :: Guard -> Guard -> Bool #

(/=) :: Guard -> Guard -> Bool #

Eq Stmt 

Methods

(==) :: Stmt -> Stmt -> Bool #

(/=) :: Stmt -> Stmt -> Bool #

Eq Range 

Methods

(==) :: Range -> Range -> Bool #

(/=) :: Range -> Range -> Bool #

Eq DerivClause 
Eq TypeFamilyHead 
Eq TySynEqn 
Eq FamFlavour 
Eq Foreign 

Methods

(==) :: Foreign -> Foreign -> Bool #

(/=) :: Foreign -> Foreign -> Bool #

Eq Callconv 
Eq Safety 

Methods

(==) :: Safety -> Safety -> Bool #

(/=) :: Safety -> Safety -> Bool #

Eq Pragma 

Methods

(==) :: Pragma -> Pragma -> Bool #

(/=) :: Pragma -> Pragma -> Bool #

Eq Inline 

Methods

(==) :: Inline -> Inline -> Bool #

(/=) :: Inline -> Inline -> Bool #

Eq RuleMatch 
Eq Phases 

Methods

(==) :: Phases -> Phases -> Bool #

(/=) :: Phases -> Phases -> Bool #

Eq RuleBndr 
Eq AnnTarget 
Eq SourceUnpackedness 
Eq SourceStrictness 
Eq DecidedStrictness 
Eq Con 

Methods

(==) :: Con -> Con -> Bool #

(/=) :: Con -> Con -> Bool #

Eq Bang 

Methods

(==) :: Bang -> Bang -> Bool #

(/=) :: Bang -> Bang -> Bool #

Eq PatSynDir 
Eq PatSynArgs 
Eq FamilyResultSig 
Eq TyLit 

Methods

(==) :: TyLit -> TyLit -> Bool #

(/=) :: TyLit -> TyLit -> Bool #

Eq Role 

Methods

(==) :: Role -> Role -> Bool #

(/=) :: Role -> Role -> Bool #

Eq AnnLookup 
Eq LocalTime 
Eq TimeOfDay 
Eq TimeZone 
Eq UniversalTime 
Eq UTCTime 

Methods

(==) :: UTCTime -> UTCTime -> Bool #

(/=) :: UTCTime -> UTCTime -> Bool #

Eq Day 

Methods

(==) :: Day -> Day -> Bool #

(/=) :: Day -> Day -> Bool #

Eq T # 

Methods

(==) :: T -> T -> Bool #

(/=) :: T -> T -> Bool #

Eq T # 

Methods

(==) :: T -> T -> Bool #

(/=) :: T -> T -> Bool #

Eq T # 

Methods

(==) :: T -> T -> Bool #

(/=) :: T -> T -> Bool #

Eq T # 

Methods

(==) :: T -> T -> Bool #

(/=) :: T -> T -> Bool #

Eq Dimension # 
Eq a => Eq [a] 

Methods

(==) :: [a] -> [a] -> Bool #

(/=) :: [a] -> [a] -> Bool #

Eq a => Eq (Maybe a) 

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Eq a => Eq (Ratio a) 

Methods

(==) :: Ratio a -> Ratio a -> Bool #

(/=) :: Ratio a -> Ratio a -> Bool #

Eq (StablePtr a)

Since: 2.1

Methods

(==) :: StablePtr a -> StablePtr a -> Bool #

(/=) :: StablePtr a -> StablePtr a -> Bool #

Eq (Ptr a) 

Methods

(==) :: Ptr a -> Ptr a -> Bool #

(/=) :: Ptr a -> Ptr a -> Bool #

Eq (FunPtr a) 

Methods

(==) :: FunPtr a -> FunPtr a -> Bool #

(/=) :: FunPtr a -> FunPtr a -> Bool #

Eq p => Eq (Par1 p) 

Methods

(==) :: Par1 p -> Par1 p -> Bool #

(/=) :: Par1 p -> Par1 p -> Bool #

Eq a => Eq (Bounds a) 

Methods

(==) :: Bounds a -> Bounds a -> Bool #

(/=) :: Bounds a -> Bounds a -> Bool #

Eq a => Eq (Complex a) 

Methods

(==) :: Complex a -> Complex a -> Bool #

(/=) :: Complex a -> Complex a -> Bool #

Eq (Fixed a) 

Methods

(==) :: Fixed a -> Fixed a -> Bool #

(/=) :: Fixed a -> Fixed a -> Bool #

Eq a => Eq (Min a) 

Methods

(==) :: Min a -> Min a -> Bool #

(/=) :: Min a -> Min a -> Bool #

Eq a => Eq (Max a) 

Methods

(==) :: Max a -> Max a -> Bool #

(/=) :: Max a -> Max a -> Bool #

Eq a => Eq (First a) 

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a) 

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq m => Eq (WrappedMonoid m) 
Eq a => Eq (Option a) 

Methods

(==) :: Option a -> Option a -> Bool #

(/=) :: Option a -> Option a -> Bool #

Eq a => Eq (NonEmpty a) 

Methods

(==) :: NonEmpty a -> NonEmpty a -> Bool #

(/=) :: NonEmpty a -> NonEmpty a -> Bool #

Eq (StableName a)

Since: 2.1

Methods

(==) :: StableName a -> StableName a -> Bool #

(/=) :: StableName a -> StableName a -> Bool #

Eq a => Eq (ZipList a) 

Methods

(==) :: ZipList a -> ZipList a -> Bool #

(/=) :: ZipList a -> ZipList a -> Bool #

Eq a => Eq (Identity a) 

Methods

(==) :: Identity a -> Identity a -> Bool #

(/=) :: Identity a -> Identity a -> Bool #

Eq (TVar a)

Since: 4.8.0.0

Methods

(==) :: TVar a -> TVar a -> Bool #

(/=) :: TVar a -> TVar a -> Bool #

Eq (IORef a)

Since: 4.1.0.0

Methods

(==) :: IORef a -> IORef a -> Bool #

(/=) :: IORef a -> IORef a -> Bool #

Eq a => Eq (Dual a) 

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Eq a => Eq (Sum a) 

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Eq a => Eq (Product a) 

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Eq a => Eq (First a) 

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a) 

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq a => Eq (Down a) 

Methods

(==) :: Down a -> Down a -> Bool #

(/=) :: Down a -> Down a -> Bool #

Eq (MVar a)

Since: 4.1.0.0

Methods

(==) :: MVar a -> MVar a -> Bool #

(/=) :: MVar a -> MVar a -> Bool #

Eq a => Eq (IntMap a) 

Methods

(==) :: IntMap a -> IntMap a -> Bool #

(/=) :: IntMap a -> IntMap a -> Bool #

Eq a => Eq (Tree a) 

Methods

(==) :: Tree a -> Tree a -> Bool #

(/=) :: Tree a -> Tree a -> Bool #

Eq a => Eq (Seq a) 

Methods

(==) :: Seq a -> Seq a -> Bool #

(/=) :: Seq a -> Seq a -> Bool #

Eq a => Eq (ViewL a) 

Methods

(==) :: ViewL a -> ViewL a -> Bool #

(/=) :: ViewL a -> ViewL a -> Bool #

Eq a => Eq (ViewR a) 

Methods

(==) :: ViewR a -> ViewR a -> Bool #

(/=) :: ViewR a -> ViewR a -> Bool #

Eq a => Eq (Set a) 

Methods

(==) :: Set a -> Set a -> Bool #

(/=) :: Set a -> Set a -> Bool #

Eq a => Eq (T a) 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

C a => Eq (T a) 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Eq (Doc a) 

Methods

(==) :: Doc a -> Doc a -> Bool #

(/=) :: Doc a -> Doc a -> Bool #

Eq a => Eq (AnnotDetails a) 
Eq a => Eq (Span a) 

Methods

(==) :: Span a -> Span a -> Bool #

(/=) :: Span a -> Span a -> Bool #

Eq a => Eq (ToOrd a) # 

Methods

(==) :: ToOrd a -> ToOrd a -> Bool #

(/=) :: ToOrd a -> ToOrd a -> Bool #

Eq a => Eq (Max a) # 

Methods

(==) :: Max a -> Max a -> Bool #

(/=) :: Max a -> Max a -> Bool #

Eq a => Eq (Min a) # 

Methods

(==) :: Min a -> Min a -> Bool #

(/=) :: Min a -> Min a -> Bool #

Eq a => Eq (LCM a) # 

Methods

(==) :: LCM a -> LCM a -> Bool #

(/=) :: LCM a -> LCM a -> Bool #

Eq a => Eq (GCD a) # 

Methods

(==) :: GCD a -> GCD a -> Bool #

(/=) :: GCD a -> GCD a -> Bool #

Eq a => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Eq a => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

(Eq a, C a, C a) => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Eq a => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Eq a => Eq (Valuable a) # 

Methods

(==) :: Valuable a -> Valuable a -> Bool #

(/=) :: Valuable a -> Valuable a -> Bool #

Eq a => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

C a => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

(Eq a, C a) => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

(Eq a, C a) => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

(Eq a, C a) => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

(Eq a, C a) => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Ix i => Eq (T i) #

These instances may need more work They involve converting a permutation to a table.

Methods

(==) :: T i -> T i -> Bool #

(/=) :: T i -> T i -> Bool #

Eq i => Eq (Cycle i) # 

Methods

(==) :: Cycle i -> Cycle i -> Bool #

(/=) :: Cycle i -> Cycle i -> Bool #

Eq a => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Eq a => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Eq a => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Eq a => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

(Eq a, C a) => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Eq a => Eq (T a) # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

(Eq b, Eq a) => Eq (Either a b) 

Methods

(==) :: Either a b -> Either a b -> Bool #

(/=) :: Either a b -> Either a b -> Bool #

Eq (V1 k p) 

Methods

(==) :: V1 k p -> V1 k p -> Bool #

(/=) :: V1 k p -> V1 k p -> Bool #

Eq (U1 k p)

Since: 4.9.0.0

Methods

(==) :: U1 k p -> U1 k p -> Bool #

(/=) :: U1 k p -> U1 k p -> Bool #

Eq (TypeRep k a)

Since: 2.1

Methods

(==) :: TypeRep k a -> TypeRep k a -> Bool #

(/=) :: TypeRep k a -> TypeRep k a -> Bool #

(Eq a, Eq b) => Eq (a, b) 

Methods

(==) :: (a, b) -> (a, b) -> Bool #

(/=) :: (a, b) -> (a, b) -> Bool #

(Ix i, Eq e) => Eq (Array i e)

Since: 2.1

Methods

(==) :: Array i e -> Array i e -> Bool #

(/=) :: Array i e -> Array i e -> Bool #

Eq a => Eq (Arg a b)

Since: 4.9.0.0

Methods

(==) :: Arg a b -> Arg a b -> Bool #

(/=) :: Arg a b -> Arg a b -> Bool #

Eq (Proxy k s)

Since: 4.7.0.0

Methods

(==) :: Proxy k s -> Proxy k s -> Bool #

(/=) :: Proxy k s -> Proxy k s -> Bool #

Eq (STRef s a)

Since: 2.1

Methods

(==) :: STRef s a -> STRef s a -> Bool #

(/=) :: STRef s a -> STRef s a -> Bool #

(Eq k, Eq a) => Eq (Map k a) 

Methods

(==) :: Map k a -> Map k a -> Bool #

(/=) :: Map k a -> Map k a -> Bool #

(Eq b, Eq a) => Eq (T a b) # 

Methods

(==) :: T a b -> T a b -> Bool #

(/=) :: T a b -> T a b -> Bool #

Eq v => Eq (T a v) # 

Methods

(==) :: T a v -> T a v -> Bool #

(/=) :: T a v -> T a v -> Bool #

Eq a => Eq (T u a) # 

Methods

(==) :: T u a -> T u a -> Bool #

(/=) :: T u a -> T u a -> Bool #

(Eq i, Eq a) => Eq (T i a) # 

Methods

(==) :: T i a -> T i a -> Bool #

(/=) :: T i a -> T i a -> Bool #

Eq v => Eq (T a v) # 

Methods

(==) :: T a v -> T a v -> Bool #

(/=) :: T a v -> T a v -> Bool #

Eq (f p) => Eq (Rec1 k f p) 

Methods

(==) :: Rec1 k f p -> Rec1 k f p -> Bool #

(/=) :: Rec1 k f p -> Rec1 k f p -> Bool #

Eq (URec k (Ptr ()) p) 

Methods

(==) :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> Bool #

(/=) :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> Bool #

Eq (URec k Char p) 

Methods

(==) :: URec k Char p -> URec k Char p -> Bool #

(/=) :: URec k Char p -> URec k Char p -> Bool #

Eq (URec k Double p) 

Methods

(==) :: URec k Double p -> URec k Double p -> Bool #

(/=) :: URec k Double p -> URec k Double p -> Bool #

Eq (URec k Float p) 

Methods

(==) :: URec k Float p -> URec k Float p -> Bool #

(/=) :: URec k Float p -> URec k Float p -> Bool #

Eq (URec k Int p) 

Methods

(==) :: URec k Int p -> URec k Int p -> Bool #

(/=) :: URec k Int p -> URec k Int p -> Bool #

Eq (URec k Word p) 

Methods

(==) :: URec k Word p -> URec k Word p -> Bool #

(/=) :: URec k Word p -> URec k Word p -> Bool #

(Eq a, Eq b, Eq c) => Eq (a, b, c) 

Methods

(==) :: (a, b, c) -> (a, b, c) -> Bool #

(/=) :: (a, b, c) -> (a, b, c) -> Bool #

Eq (STArray s i e)

Since: 2.1

Methods

(==) :: STArray s i e -> STArray s i e -> Bool #

(/=) :: STArray s i e -> STArray s i e -> Bool #

Eq a => Eq (Const k a b) 

Methods

(==) :: Const k a b -> Const k a b -> Bool #

(/=) :: Const k a b -> Const k a b -> Bool #

Eq (f a) => Eq (Alt k f a) 

Methods

(==) :: Alt k f a -> Alt k f a -> Bool #

(/=) :: Alt k f a -> Alt k f a -> Bool #

Eq ((:~:) k a b) 

Methods

(==) :: (k :~: a) b -> (k :~: a) b -> Bool #

(/=) :: (k :~: a) b -> (k :~: a) b -> Bool #

(Eq e, Eq1 m, Eq a) => Eq (ErrorT e m a) 

Methods

(==) :: ErrorT e m a -> ErrorT e m a -> Bool #

(/=) :: ErrorT e m a -> ErrorT e m a -> Bool #

Eq a => Eq (Constant k a b) 

Methods

(==) :: Constant k a b -> Constant k a b -> Bool #

(/=) :: Constant k a b -> Constant k a b -> Bool #

Eq c => Eq (K1 k i c p) 

Methods

(==) :: K1 k i c p -> K1 k i c p -> Bool #

(/=) :: K1 k i c p -> K1 k i c p -> Bool #

(Eq (g p), Eq (f p)) => Eq ((:+:) k f g p) 

Methods

(==) :: (k :+: f) g p -> (k :+: f) g p -> Bool #

(/=) :: (k :+: f) g p -> (k :+: f) g p -> Bool #

(Eq (g p), Eq (f p)) => Eq ((:*:) k f g p) 

Methods

(==) :: (k :*: f) g p -> (k :*: f) g p -> Bool #

(/=) :: (k :*: f) g p -> (k :*: f) g p -> Bool #

(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 

Methods

(==) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(/=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(Eq1 f, Eq1 g, Eq a) => Eq (Product * f g a)

Since: 4.9.0.0

Methods

(==) :: Product * f g a -> Product * f g a -> Bool #

(/=) :: Product * f g a -> Product * f g a -> Bool #

(Eq1 f, Eq1 g, Eq a) => Eq (Sum * f g a)

Since: 4.9.0.0

Methods

(==) :: Sum * f g a -> Sum * f g a -> Bool #

(/=) :: Sum * f g a -> Sum * f g a -> Bool #

Eq ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

(==) :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Bool #

(/=) :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Bool #

Eq (f p) => Eq (M1 k i c f p) 

Methods

(==) :: M1 k i c f p -> M1 k i c f p -> Bool #

(/=) :: M1 k i c f p -> M1 k i c f p -> Bool #

Eq (f (g p)) => Eq ((:.:) k2 k1 f g p) 

Methods

(==) :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> Bool #

(/=) :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 

Methods

(==) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(/=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(Eq1 f, Eq1 g, Eq a) => Eq (Compose * * f g a)

Since: 4.9.0.0

Methods

(==) :: Compose * * f g a -> Compose * * f g a -> Bool #

(/=) :: Compose * * f g a -> Compose * * f g a -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) 

Methods

(==) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(/=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) 

Methods

(==) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(/=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) 

Methods

(==) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

type FilePath = String #

File and directory names are values of type String, whose precise meaning is operating system dependent. Files can be opened, yielding a handle which can then be used to operate on the contents of that file.

class Functor (f :: * -> *) where #

The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the following laws:

fmap id  ==  id
fmap (f . g)  ==  fmap f . fmap g

The instances of Functor for lists, Maybe and IO satisfy these laws.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b #

(<$) :: a -> f b -> f a infixl 4 #

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Instances

Functor []

Since: 2.1

Methods

fmap :: (a -> b) -> [a] -> [b] #

(<$) :: a -> [b] -> [a] #

Functor Maybe

Since: 2.1

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Functor IO

Since: 2.1

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Functor Par1 

Methods

fmap :: (a -> b) -> Par1 a -> Par1 b #

(<$) :: a -> Par1 b -> Par1 a #

Functor Q 

Methods

fmap :: (a -> b) -> Q a -> Q b #

(<$) :: a -> Q b -> Q a #

Functor Rose 

Methods

fmap :: (a -> b) -> Rose a -> Rose b #

(<$) :: a -> Rose b -> Rose a #

Functor Gen 

Methods

fmap :: (a -> b) -> Gen a -> Gen b #

(<$) :: a -> Gen b -> Gen a #

Functor P 

Methods

fmap :: (a -> b) -> P a -> P b #

(<$) :: a -> P b -> P a #

Functor Complex 

Methods

fmap :: (a -> b) -> Complex a -> Complex b #

(<$) :: a -> Complex b -> Complex a #

Functor Min

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Min a -> Min b #

(<$) :: a -> Min b -> Min a #

Functor Max

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Max a -> Max b #

(<$) :: a -> Max b -> Max a #

Functor First

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor Option

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Option a -> Option b #

(<$) :: a -> Option b -> Option a #

Functor NonEmpty

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

Functor ZipList 

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b #

(<$) :: a -> ZipList b -> ZipList a #

Functor Identity

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Identity a -> Identity b #

(<$) :: a -> Identity b -> Identity a #

Functor Handler

Since: 4.6.0.0

Methods

fmap :: (a -> b) -> Handler a -> Handler b #

(<$) :: a -> Handler b -> Handler a #

Functor STM

Since: 4.3.0.0

Methods

fmap :: (a -> b) -> STM a -> STM b #

(<$) :: a -> STM b -> STM a #

Functor Dual

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Functor Sum

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Functor Product

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Functor First 

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last 

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor ReadPrec

Since: 2.1

Methods

fmap :: (a -> b) -> ReadPrec a -> ReadPrec b #

(<$) :: a -> ReadPrec b -> ReadPrec a #

Functor ReadP

Since: 2.1

Methods

fmap :: (a -> b) -> ReadP a -> ReadP b #

(<$) :: a -> ReadP b -> ReadP a #

Functor IntMap 

Methods

fmap :: (a -> b) -> IntMap a -> IntMap b #

(<$) :: a -> IntMap b -> IntMap a #

Functor Tree 

Methods

fmap :: (a -> b) -> Tree a -> Tree b #

(<$) :: a -> Tree b -> Tree a #

Functor Seq 

Methods

fmap :: (a -> b) -> Seq a -> Seq b #

(<$) :: a -> Seq b -> Seq a #

Functor FingerTree 

Methods

fmap :: (a -> b) -> FingerTree a -> FingerTree b #

(<$) :: a -> FingerTree b -> FingerTree a #

Functor Digit 

Methods

fmap :: (a -> b) -> Digit a -> Digit b #

(<$) :: a -> Digit b -> Digit a #

Functor Node 

Methods

fmap :: (a -> b) -> Node a -> Node b #

(<$) :: a -> Node b -> Node a #

Functor Elem 

Methods

fmap :: (a -> b) -> Elem a -> Elem b #

(<$) :: a -> Elem b -> Elem a #

Functor ViewL 

Methods

fmap :: (a -> b) -> ViewL a -> ViewL b #

(<$) :: a -> ViewL b -> ViewL a #

Functor ViewR 

Methods

fmap :: (a -> b) -> ViewR a -> ViewR b #

(<$) :: a -> ViewR b -> ViewR a #

Functor Consumed 

Methods

fmap :: (a -> b) -> Consumed a -> Consumed b #

(<$) :: a -> Consumed b -> Consumed a #

Functor Doc 

Methods

fmap :: (a -> b) -> Doc a -> Doc b #

(<$) :: a -> Doc b -> Doc a #

Functor AnnotDetails 

Methods

fmap :: (a -> b) -> AnnotDetails a -> AnnotDetails b #

(<$) :: a -> AnnotDetails b -> AnnotDetails a #

Functor Span 

Methods

fmap :: (a -> b) -> Span a -> Span b #

(<$) :: a -> Span b -> Span a #

Functor T # 

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

Functor T # 

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

Functor T # 

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

Functor T # 

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

Functor T # 

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

Functor T #

When you use fmap you must assert that forall n. fmap f (Cons d x) == fmap f (Cons (n*d) (x^n))

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

Functor T # 

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

Functor T # 

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

Functor T # 

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

Functor T # 

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

Functor (Either a)

Since: 3.0

Methods

fmap :: (a -> b) -> Either a a -> Either a b #

(<$) :: a -> Either a b -> Either a a #

Functor (V1 *) 

Methods

fmap :: (a -> b) -> V1 * a -> V1 * b #

(<$) :: a -> V1 * b -> V1 * a #

Functor (U1 *)

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> U1 * a -> U1 * b #

(<$) :: a -> U1 * b -> U1 * a #

Functor ((,) a)

Since: 2.1

Methods

fmap :: (a -> b) -> (a, a) -> (a, b) #

(<$) :: a -> (a, b) -> (a, a) #

Functor (Array i)

Since: 2.1

Methods

fmap :: (a -> b) -> Array i a -> Array i b #

(<$) :: a -> Array i b -> Array i a #

Functor (Arg a)

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Arg a a -> Arg a b #

(<$) :: a -> Arg a b -> Arg a a #

Monad m => Functor (WrappedMonad m)

Since: 2.1

Methods

fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

(<$) :: a -> WrappedMonad m b -> WrappedMonad m a #

Arrow a => Functor (ArrowMonad a)

Since: 4.6.0.0

Methods

fmap :: (a -> b) -> ArrowMonad a a -> ArrowMonad a b #

(<$) :: a -> ArrowMonad a b -> ArrowMonad a a #

Functor (Proxy *)

Since: 4.7.0.0

Methods

fmap :: (a -> b) -> Proxy * a -> Proxy * b #

(<$) :: a -> Proxy * b -> Proxy * a #

Functor (State s) 

Methods

fmap :: (a -> b) -> State s a -> State s b #

(<$) :: a -> State s b -> State s a #

Functor (Map k) 

Methods

fmap :: (a -> b) -> Map k a -> Map k b #

(<$) :: a -> Map k b -> Map k a #

Functor (Box r) 

Methods

fmap :: (a -> b) -> Box r a -> Box r b #

(<$) :: a -> Box r b -> Box r a #

Functor (Access r) 

Methods

fmap :: (a -> b) -> Access r a -> Access r b #

(<$) :: a -> Access r b -> Access r a #

Functor (T v) # 

Methods

fmap :: (a -> b) -> T v a -> T v b #

(<$) :: a -> T v b -> T v a #

Functor (T a) # 

Methods

fmap :: (a -> b) -> T a a -> T a b #

(<$) :: a -> T a b -> T a a #

Functor (T a) # 

Methods

fmap :: (a -> b) -> T a a -> T a b #

(<$) :: a -> T a b -> T a a #

Functor (T i) # 

Methods

fmap :: (a -> b) -> T i a -> T i b #

(<$) :: a -> T i b -> T i a #

Functor (T a) # 

Methods

fmap :: (a -> b) -> T a a -> T a b #

(<$) :: a -> T a b -> T a a #

Functor f => Functor (Rec1 * f) 

Methods

fmap :: (a -> b) -> Rec1 * f a -> Rec1 * f b #

(<$) :: a -> Rec1 * f b -> Rec1 * f a #

Functor (URec * Char) 

Methods

fmap :: (a -> b) -> URec * Char a -> URec * Char b #

(<$) :: a -> URec * Char b -> URec * Char a #

Functor (URec * Double) 

Methods

fmap :: (a -> b) -> URec * Double a -> URec * Double b #

(<$) :: a -> URec * Double b -> URec * Double a #

Functor (URec * Float) 

Methods

fmap :: (a -> b) -> URec * Float a -> URec * Float b #

(<$) :: a -> URec * Float b -> URec * Float a #

Functor (URec * Int) 

Methods

fmap :: (a -> b) -> URec * Int a -> URec * Int b #

(<$) :: a -> URec * Int b -> URec * Int a #

Functor (URec * Word) 

Methods

fmap :: (a -> b) -> URec * Word a -> URec * Word b #

(<$) :: a -> URec * Word b -> URec * Word a #

Functor (URec * (Ptr ())) 

Methods

fmap :: (a -> b) -> URec * (Ptr ()) a -> URec * (Ptr ()) b #

(<$) :: a -> URec * (Ptr ()) b -> URec * (Ptr ()) a #

Arrow a => Functor (WrappedArrow a b)

Since: 2.1

Methods

fmap :: (a -> b) -> WrappedArrow a b a -> WrappedArrow a b b #

(<$) :: a -> WrappedArrow a b b -> WrappedArrow a b a #

Functor (Const * m)

Since: 2.1

Methods

fmap :: (a -> b) -> Const * m a -> Const * m b #

(<$) :: a -> Const * m b -> Const * m a #

Functor f => Functor (Alt * f) 

Methods

fmap :: (a -> b) -> Alt * f a -> Alt * f b #

(<$) :: a -> Alt * f b -> Alt * f a #

(Applicative f, Monad f) => Functor (WhenMissing f x) 

Methods

fmap :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b #

(<$) :: a -> WhenMissing f x b -> WhenMissing f x a #

Functor m => Functor (ErrorT e m) 

Methods

fmap :: (a -> b) -> ErrorT e m a -> ErrorT e m b #

(<$) :: a -> ErrorT e m b -> ErrorT e m a #

Functor (Reply s u) 

Methods

fmap :: (a -> b) -> Reply s u a -> Reply s u b #

(<$) :: a -> Reply s u b -> Reply s u a #

Functor (Constant * a) 

Methods

fmap :: (a -> b) -> Constant * a a -> Constant * a b #

(<$) :: a -> Constant * a b -> Constant * a a #

Functor ((->) LiftedRep LiftedRep r)

Since: 2.1

Methods

fmap :: (a -> b) -> (LiftedRep -> LiftedRep) r a -> (LiftedRep -> LiftedRep) r b #

(<$) :: a -> (LiftedRep -> LiftedRep) r b -> (LiftedRep -> LiftedRep) r a #

Functor (K1 * i c) 

Methods

fmap :: (a -> b) -> K1 * i c a -> K1 * i c b #

(<$) :: a -> K1 * i c b -> K1 * i c a #

(Functor g, Functor f) => Functor ((:+:) * f g) 

Methods

fmap :: (a -> b) -> (* :+: f) g a -> (* :+: f) g b #

(<$) :: a -> (* :+: f) g b -> (* :+: f) g a #

(Functor g, Functor f) => Functor ((:*:) * f g) 

Methods

fmap :: (a -> b) -> (* :*: f) g a -> (* :*: f) g b #

(<$) :: a -> (* :*: f) g b -> (* :*: f) g a #

(Functor f, Functor g) => Functor (Product * f g)

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Product * f g a -> Product * f g b #

(<$) :: a -> Product * f g b -> Product * f g a #

(Functor f, Functor g) => Functor (Sum * f g)

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Sum * f g a -> Sum * f g b #

(<$) :: a -> Sum * f g b -> Sum * f g a #

Functor f => Functor (WhenMatched f x y) 

Methods

fmap :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b #

(<$) :: a -> WhenMatched f x y b -> WhenMatched f x y a #

(Applicative f, Monad f) => Functor (WhenMissing f k x) 

Methods

fmap :: (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b #

(<$) :: a -> WhenMissing f k x b -> WhenMissing f k x a #

Functor (ParsecT s u m) 

Methods

fmap :: (a -> b) -> ParsecT s u m a -> ParsecT s u m b #

(<$) :: a -> ParsecT s u m b -> ParsecT s u m a #

Functor f => Functor (M1 * i c f) 

Methods

fmap :: (a -> b) -> M1 * i c f a -> M1 * i c f b #

(<$) :: a -> M1 * i c f b -> M1 * i c f a #

(Functor g, Functor f) => Functor ((:.:) * * f g) 

Methods

fmap :: (a -> b) -> (* :.: *) f g a -> (* :.: *) f g b #

(<$) :: a -> (* :.: *) f g b -> (* :.: *) f g a #

(Functor f, Functor g) => Functor (Compose * * f g)

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Compose * * f g a -> Compose * * f g b #

(<$) :: a -> Compose * * f g b -> Compose * * f g a #

Functor f => Functor (WhenMatched f k x y) 

Methods

fmap :: (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b #

(<$) :: a -> WhenMatched f k x y b -> WhenMatched f k x y a #

data IO a :: * -> * #

A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a.

There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main.

IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.

Instances

Monad IO

Since: 2.1

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

fail :: String -> IO a #

Functor IO

Since: 2.1

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Applicative IO

Since: 2.1

Methods

pure :: a -> IO a #

(<*>) :: IO (a -> b) -> IO a -> IO b #

liftA2 :: (a -> b -> c) -> IO a -> IO b -> IO c #

(*>) :: IO a -> IO b -> IO b #

(<*) :: IO a -> IO b -> IO a #

Alternative IO

Since: 4.9.0.0

Methods

empty :: IO a #

(<|>) :: IO a -> IO a -> IO a #

some :: IO a -> IO [a] #

many :: IO a -> IO [a] #

MonadPlus IO

Since: 4.9.0.0

Methods

mzero :: IO a #

mplus :: IO a -> IO a -> IO a #

PrimMonad IO 

Associated Types

type PrimState (IO :: * -> *) :: * #

PrimBase IO 
Quasi IO 
Semigroup a => Semigroup (IO a)

Since: 4.10.0.0

Methods

(<>) :: IO a -> IO a -> IO a #

sconcat :: NonEmpty (IO a) -> IO a #

stimes :: Integral b => b -> IO a -> IO a #

Monoid a => Monoid (IO a)

Since: 4.9.0.0

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

type PrimState IO 

type IOError = IOException #

The Haskell 2010 type for exceptions in the IO monad. Any I/O operation may raise an IOError instead of returning a result. For a more general type of exception, including also those that arise in pure code, see Exception.

In Haskell 2010, this is an opaque type.

data Maybe a :: * -> * #

The Maybe type encapsulates an optional value. A value of type Maybe a either contains a value of type a (represented as Just a), or it is empty (represented as Nothing). Using Maybe is a good way to deal with errors or exceptional cases without resorting to drastic measures such as error.

The Maybe type is also a monad. It is a simple kind of error monad, where all errors are represented by Nothing. A richer error monad can be built using the Either type.

Constructors

Nothing 
Just a 

Instances

Monad Maybe

Since: 2.1

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Functor Maybe

Since: 2.1

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Applicative Maybe

Since: 2.1

Methods

pure :: a -> Maybe a #

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b #

liftA2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c #

(*>) :: Maybe a -> Maybe b -> Maybe b #

(<*) :: Maybe a -> Maybe b -> Maybe a #

Foldable Maybe

Since: 2.1

Methods

fold :: Monoid m => Maybe m -> m #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m #

foldr :: (a -> b -> b) -> b -> Maybe a -> b #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b #

foldl :: (b -> a -> b) -> b -> Maybe a -> b #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b #

foldr1 :: (a -> a -> a) -> Maybe a -> a #

foldl1 :: (a -> a -> a) -> Maybe a -> a #

toList :: Maybe a -> [a] #

null :: Maybe a -> Bool #

length :: Maybe a -> Int #

elem :: Eq a => a -> Maybe a -> Bool #

maximum :: Ord a => Maybe a -> a #

minimum :: Ord a => Maybe a -> a #

sum :: Num a => Maybe a -> a #

product :: Num a => Maybe a -> a #

Traversable Maybe

Since: 2.1

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Arbitrary1 Maybe 

Methods

liftArbitrary :: Gen a -> Gen (Maybe a) #

liftShrink :: (a -> [a]) -> Maybe a -> [Maybe a] #

Eq1 Maybe

Since: 4.9.0.0

Methods

liftEq :: (a -> b -> Bool) -> Maybe a -> Maybe b -> Bool #

Ord1 Maybe

Since: 4.9.0.0

Methods

liftCompare :: (a -> b -> Ordering) -> Maybe a -> Maybe b -> Ordering #

Read1 Maybe

Since: 4.9.0.0

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Maybe a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Maybe a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Maybe a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Maybe a] #

Show1 Maybe

Since: 4.9.0.0

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Maybe a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Maybe a] -> ShowS #

Alternative Maybe

Since: 2.1

Methods

empty :: Maybe a #

(<|>) :: Maybe a -> Maybe a -> Maybe a #

some :: Maybe a -> Maybe [a] #

many :: Maybe a -> Maybe [a] #

MonadPlus Maybe

Since: 2.1

Methods

mzero :: Maybe a #

mplus :: Maybe a -> Maybe a -> Maybe a #

NFData1 Maybe

Since: 1.4.3.0

Methods

liftRnf :: (a -> ()) -> Maybe a -> () #

Eq a => Eq (Maybe a) 

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Ord a => Ord (Maybe a) 

Methods

compare :: Maybe a -> Maybe a -> Ordering #

(<) :: Maybe a -> Maybe a -> Bool #

(<=) :: Maybe a -> Maybe a -> Bool #

(>) :: Maybe a -> Maybe a -> Bool #

(>=) :: Maybe a -> Maybe a -> Bool #

max :: Maybe a -> Maybe a -> Maybe a #

min :: Maybe a -> Maybe a -> Maybe a #

Read a => Read (Maybe a)

Since: 2.1

Show a => Show (Maybe a) 

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Generic (Maybe a) 

Associated Types

type Rep (Maybe a) :: * -> * #

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Semigroup a => Semigroup (Maybe a)

Since: 4.9.0.0

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there used to be no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Since: 2.1

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Lift a => Lift (Maybe a) 

Methods

lift :: Maybe a -> Q Exp #

Arbitrary a => Arbitrary (Maybe a) 

Methods

arbitrary :: Gen (Maybe a) #

shrink :: Maybe a -> [Maybe a] #

CoArbitrary a => CoArbitrary (Maybe a) 

Methods

coarbitrary :: Maybe a -> Gen b -> Gen b #

SingKind a => SingKind (Maybe a)

Since: 4.9.0.0

Associated Types

type DemoteRep (Maybe a) :: *

Methods

fromSing :: Sing (Maybe a) a -> DemoteRep (Maybe a)

NFData a => NFData (Maybe a) 

Methods

rnf :: Maybe a -> () #

Generic1 * Maybe 

Associated Types

type Rep1 Maybe (f :: Maybe -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 Maybe f a #

to1 :: Rep1 Maybe f a -> f a #

SingI (Maybe a) (Nothing a)

Since: 4.9.0.0

Methods

sing :: Sing (Nothing a) a

SingI a1 a2 => SingI (Maybe a1) (Just a1 a2)

Since: 4.9.0.0

Methods

sing :: Sing (Just a1 a2) a

type Rep (Maybe a) 
type Rep (Maybe a) = D1 * (MetaData "Maybe" "GHC.Base" "base" False) ((:+:) * (C1 * (MetaCons "Nothing" PrefixI False) (U1 *)) (C1 * (MetaCons "Just" PrefixI False) (S1 * (MetaSel (Nothing Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 * a))))
data Sing (Maybe a) 
data Sing (Maybe a) where
type DemoteRep (Maybe a) 
type DemoteRep (Maybe a) = Maybe (DemoteRep a)
type Rep1 * Maybe 
type (==) (Maybe k) a b 
type (==) (Maybe k) a b = EqMaybe k a b

class Applicative m => Monad (m :: * -> *) where #

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Instances of Monad should satisfy the following laws:

Furthermore, the Monad and Applicative operations should relate as follows:

The above laws imply:

and that pure and (<*>) satisfy the applicative functor laws.

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=)

Methods

(>>=) :: m a -> (a -> m b) -> m b infixl 1 #

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

(>>) :: m a -> m b -> m b infixl 1 #

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

return :: a -> m a #

Inject a value into the monadic type.

fail :: String -> m a #

Fail with a message. This operation is not part of the mathematical definition of a monad, but is invoked on pattern-match failure in a do expression.

As part of the MonadFail proposal (MFP), this function is moved to its own class MonadFail (see Control.Monad.Fail for more details). The definition here will be removed in a future release.

Instances

Monad []

Since: 2.1

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] #

(>>) :: [a] -> [b] -> [b] #

return :: a -> [a] #

fail :: String -> [a] #

Monad Maybe

Since: 2.1

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Monad IO

Since: 2.1

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

fail :: String -> IO a #

Monad Par1

Since: 4.9.0.0

Methods

(>>=) :: Par1 a -> (a -> Par1 b) -> Par1 b #

(>>) :: Par1 a -> Par1 b -> Par1 b #

return :: a -> Par1 a #

fail :: String -> Par1 a #

Monad Q 

Methods

(>>=) :: Q a -> (a -> Q b) -> Q b #

(>>) :: Q a -> Q b -> Q b #

return :: a -> Q a #

fail :: String -> Q a #

Monad Rose 

Methods

(>>=) :: Rose a -> (a -> Rose b) -> Rose b #

(>>) :: Rose a -> Rose b -> Rose b #

return :: a -> Rose a #

fail :: String -> Rose a #

Monad Gen 

Methods

(>>=) :: Gen a -> (a -> Gen b) -> Gen b #

(>>) :: Gen a -> Gen b -> Gen b #

return :: a -> Gen a #

fail :: String -> Gen a #

Monad P

Since: 2.1

Methods

(>>=) :: P a -> (a -> P b) -> P b #

(>>) :: P a -> P b -> P b #

return :: a -> P a #

fail :: String -> P a #

Monad Complex

Since: 4.9.0.0

Methods

(>>=) :: Complex a -> (a -> Complex b) -> Complex b #

(>>) :: Complex a -> Complex b -> Complex b #

return :: a -> Complex a #

fail :: String -> Complex a #

Monad Min

Since: 4.9.0.0

Methods

(>>=) :: Min a -> (a -> Min b) -> Min b #

(>>) :: Min a -> Min b -> Min b #

return :: a -> Min a #

fail :: String -> Min a #

Monad Max

Since: 4.9.0.0

Methods

(>>=) :: Max a -> (a -> Max b) -> Max b #

(>>) :: Max a -> Max b -> Max b #

return :: a -> Max a #

fail :: String -> Max a #

Monad First

Since: 4.9.0.0

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

fail :: String -> First a #

Monad Last

Since: 4.9.0.0

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

fail :: String -> Last a #

Monad Option

Since: 4.9.0.0

Methods

(>>=) :: Option a -> (a -> Option b) -> Option b #

(>>) :: Option a -> Option b -> Option b #

return :: a -> Option a #

fail :: String -> Option a #

Monad NonEmpty

Since: 4.9.0.0

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

return :: a -> NonEmpty a #

fail :: String -> NonEmpty a #

Monad Identity

Since: 4.8.0.0

Methods

(>>=) :: Identity a -> (a -> Identity b) -> Identity b #

(>>) :: Identity a -> Identity b -> Identity b #

return :: a -> Identity a #

fail :: String -> Identity a #

Monad STM

Since: 4.3.0.0

Methods

(>>=) :: STM a -> (a -> STM b) -> STM b #

(>>) :: STM a -> STM b -> STM b #

return :: a -> STM a #

fail :: String -> STM a #

Monad Dual

Since: 4.8.0.0

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

fail :: String -> Dual a #

Monad Sum

Since: 4.8.0.0

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

fail :: String -> Sum a #

Monad Product

Since: 4.8.0.0

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

fail :: String -> Product a #

Monad First 

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

fail :: String -> First a #

Monad Last 

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

fail :: String -> Last a #

Monad ReadPrec

Since: 2.1

Methods

(>>=) :: ReadPrec a -> (a -> ReadPrec b) -> ReadPrec b #

(>>) :: ReadPrec a -> ReadPrec b -> ReadPrec b #

return :: a -> ReadPrec a #

fail :: String -> ReadPrec a #

Monad ReadP

Since: 2.1

Methods

(>>=) :: ReadP a -> (a -> ReadP b) -> ReadP b #

(>>) :: ReadP a -> ReadP b -> ReadP b #

return :: a -> ReadP a #

fail :: String -> ReadP a #

Monad Tree 

Methods

(>>=) :: Tree a -> (a -> Tree b) -> Tree b #

(>>) :: Tree a -> Tree b -> Tree b #

return :: a -> Tree a #

fail :: String -> Tree a #

Monad Seq 

Methods

(>>=) :: Seq a -> (a -> Seq b) -> Seq b #

(>>) :: Seq a -> Seq b -> Seq b #

return :: a -> Seq a #

fail :: String -> Seq a #

Monad (Either e)

Since: 4.4.0.0

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b #

(>>) :: Either e a -> Either e b -> Either e b #

return :: a -> Either e a #

fail :: String -> Either e a #

Monad (U1 *)

Since: 4.9.0.0

Methods

(>>=) :: U1 * a -> (a -> U1 * b) -> U1 * b #

(>>) :: U1 * a -> U1 * b -> U1 * b #

return :: a -> U1 * a #

fail :: String -> U1 * a #

Monoid a => Monad ((,) a)

Since: 4.9.0.0

Methods

(>>=) :: (a, a) -> (a -> (a, b)) -> (a, b) #

(>>) :: (a, a) -> (a, b) -> (a, b) #

return :: a -> (a, a) #

fail :: String -> (a, a) #

Monad m => Monad (WrappedMonad m) 

Methods

(>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b #

(>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

return :: a -> WrappedMonad m a #

fail :: String -> WrappedMonad m a #

ArrowApply a => Monad (ArrowMonad a)

Since: 2.1

Methods

(>>=) :: ArrowMonad a a -> (a -> ArrowMonad a b) -> ArrowMonad a b #

(>>) :: ArrowMonad a a -> ArrowMonad a b -> ArrowMonad a b #

return :: a -> ArrowMonad a a #

fail :: String -> ArrowMonad a a #

Monad (Proxy *)

Since: 4.7.0.0

Methods

(>>=) :: Proxy * a -> (a -> Proxy * b) -> Proxy * b #

(>>) :: Proxy * a -> Proxy * b -> Proxy * b #

return :: a -> Proxy * a #

fail :: String -> Proxy * a #

Monad (State s) 

Methods

(>>=) :: State s a -> (a -> State s b) -> State s b #

(>>) :: State s a -> State s b -> State s b #

return :: a -> State s a #

fail :: String -> State s a #

Monad (T a) # 

Methods

(>>=) :: T a a -> (a -> T a b) -> T a b #

(>>) :: T a a -> T a b -> T a b #

return :: a -> T a a #

fail :: String -> T a a #

Monad (T i) # 

Methods

(>>=) :: T i a -> (a -> T i b) -> T i b #

(>>) :: T i a -> T i b -> T i b #

return :: a -> T i a #

fail :: String -> T i a #

Monad f => Monad (Rec1 * f)

Since: 4.9.0.0

Methods

(>>=) :: Rec1 * f a -> (a -> Rec1 * f b) -> Rec1 * f b #

(>>) :: Rec1 * f a -> Rec1 * f b -> Rec1 * f b #

return :: a -> Rec1 * f a #

fail :: String -> Rec1 * f a #

Monad f => Monad (Alt * f) 

Methods

(>>=) :: Alt * f a -> (a -> Alt * f b) -> Alt * f b #

(>>) :: Alt * f a -> Alt * f b -> Alt * f b #

return :: a -> Alt * f a #

fail :: String -> Alt * f a #

(Applicative f, Monad f) => Monad (WhenMissing f x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)).

Methods

(>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b #

(>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b #

return :: a -> WhenMissing f x a #

fail :: String -> WhenMissing f x a #

(Monad m, Error e) => Monad (ErrorT e m) 

Methods

(>>=) :: ErrorT e m a -> (a -> ErrorT e m b) -> ErrorT e m b #

(>>) :: ErrorT e m a -> ErrorT e m b -> ErrorT e m b #

return :: a -> ErrorT e m a #

fail :: String -> ErrorT e m a #

Monad ((->) LiftedRep LiftedRep r)

Since: 2.1

Methods

(>>=) :: (LiftedRep -> LiftedRep) r a -> (a -> (LiftedRep -> LiftedRep) r b) -> (LiftedRep -> LiftedRep) r b #

(>>) :: (LiftedRep -> LiftedRep) r a -> (LiftedRep -> LiftedRep) r b -> (LiftedRep -> LiftedRep) r b #

return :: a -> (LiftedRep -> LiftedRep) r a #

fail :: String -> (LiftedRep -> LiftedRep) r a #

(Monad f, Monad g) => Monad ((:*:) * f g)

Since: 4.9.0.0

Methods

(>>=) :: (* :*: f) g a -> (a -> (* :*: f) g b) -> (* :*: f) g b #

(>>) :: (* :*: f) g a -> (* :*: f) g b -> (* :*: f) g b #

return :: a -> (* :*: f) g a #

fail :: String -> (* :*: f) g a #

(Monad f, Monad g) => Monad (Product * f g)

Since: 4.9.0.0

Methods

(>>=) :: Product * f g a -> (a -> Product * f g b) -> Product * f g b #

(>>) :: Product * f g a -> Product * f g b -> Product * f g b #

return :: a -> Product * f g a #

fail :: String -> Product * f g a #

(Monad f, Applicative f) => Monad (WhenMatched f x y)

Equivalent to ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))

Methods

(>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b #

(>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b #

return :: a -> WhenMatched f x y a #

fail :: String -> WhenMatched f x y a #

(Applicative f, Monad f) => Monad (WhenMissing f k x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)) .

Methods

(>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b #

(>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b #

return :: a -> WhenMissing f k x a #

fail :: String -> WhenMissing f k x a #

Monad (ParsecT s u m) 

Methods

(>>=) :: ParsecT s u m a -> (a -> ParsecT s u m b) -> ParsecT s u m b #

(>>) :: ParsecT s u m a -> ParsecT s u m b -> ParsecT s u m b #

return :: a -> ParsecT s u m a #

fail :: String -> ParsecT s u m a #

Monad f => Monad (M1 * i c f)

Since: 4.9.0.0

Methods

(>>=) :: M1 * i c f a -> (a -> M1 * i c f b) -> M1 * i c f b #

(>>) :: M1 * i c f a -> M1 * i c f b -> M1 * i c f b #

return :: a -> M1 * i c f a #

fail :: String -> M1 * i c f a #

(Monad f, Applicative f) => Monad (WhenMatched f k x y)

Equivalent to ReaderT k (ReaderT x (ReaderT y (MaybeT f)))

Methods

(>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b #

(>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b #

return :: a -> WhenMatched f k x y a #

fail :: String -> WhenMatched f k x y a #

class Eq a => Ord a where #

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types are in Ord. The declared order of the constructors in the data declaration determines the ordering in derived Ord instances. The Ordering datatype allows a single comparison to determine the precise ordering of two objects.

Minimal complete definition: either compare or <=. Using compare can be more efficient for complex types.

Minimal complete definition

compare | (<=)

Methods

compare :: a -> a -> Ordering #

(<) :: a -> a -> Bool infix 4 #

(<=) :: a -> a -> Bool infix 4 #

(>) :: a -> a -> Bool infix 4 #

(>=) :: a -> a -> Bool infix 4 #

max :: a -> a -> a #

min :: a -> a -> a #

Instances

Ord Bool 

Methods

compare :: Bool -> Bool -> Ordering #

(<) :: Bool -> Bool -> Bool #

(<=) :: Bool -> Bool -> Bool #

(>) :: Bool -> Bool -> Bool #

(>=) :: Bool -> Bool -> Bool #

max :: Bool -> Bool -> Bool #

min :: Bool -> Bool -> Bool #

Ord Char 

Methods

compare :: Char -> Char -> Ordering #

(<) :: Char -> Char -> Bool #

(<=) :: Char -> Char -> Bool #

(>) :: Char -> Char -> Bool #

(>=) :: Char -> Char -> Bool #

max :: Char -> Char -> Char #

min :: Char -> Char -> Char #

Ord Double