numhask-prelude-0.0.4.1: A numeric prelude

Safe HaskellNone
LanguageHaskell2010

NumHask.Prelude

Contents

Description

A prelude for NumHask

Synopsis

Backend

NumHask imports Protolude as the prelude and replaces much of the Num heirarchy in base. Usage of Semigroup and Monoid has been avoided to retain basic compatability.

module Protolude

(<>) :: Semigroup a => a -> a -> a infixr 6 #

An associative operation.

(a <> b) <> c = a <> (b <> c)

If a is also a Monoid we further require

(<>) = mappend

class Semigroup a where #

The class of semigroups (types with an associative binary operation).

Since: 4.9.0.0

Methods

(<>) :: a -> a -> a infixr 6 #

An associative operation.

(a <> b) <> c = a <> (b <> c)

If a is also a Monoid we further require

(<>) = mappend

sconcat :: NonEmpty a -> a #

Reduce a non-empty list with <>

The default definition should be sufficient, but this can be overridden for efficiency.

stimes :: Integral b => b -> a -> a #

Repeat a value n times.

Given that this works on a Semigroup it is allowed to fail if you request 0 or fewer repetitions, and the default definition will do so.

By making this a member of the class, idempotent semigroups and monoids can upgrade this to execute in O(1) by picking stimes = stimesIdempotent or stimes = stimesIdempotentMonoid respectively.

Instances

Semigroup Ordering

Since: 4.9.0.0

Semigroup ()

Since: 4.9.0.0

Methods

(<>) :: () -> () -> () #

sconcat :: NonEmpty () -> () #

stimes :: Integral b => b -> () -> () #

Semigroup Void

Since: 4.9.0.0

Methods

(<>) :: Void -> Void -> Void #

sconcat :: NonEmpty Void -> Void #

stimes :: Integral b => b -> Void -> Void #

Semigroup Event

Since: 4.10.0.0

Methods

(<>) :: Event -> Event -> Event #

sconcat :: NonEmpty Event -> Event #

stimes :: Integral b => b -> Event -> Event #

Semigroup Lifetime

Since: 4.10.0.0

Semigroup All

Since: 4.9.0.0

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Semigroup Any

Since: 4.9.0.0

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Semigroup IntSet 
Semigroup Doc 

Methods

(<>) :: Doc -> Doc -> Doc #

sconcat :: NonEmpty Doc -> Doc #

stimes :: Integral b => b -> Doc -> Doc #

Semigroup [a]

Since: 4.9.0.0

Methods

(<>) :: [a] -> [a] -> [a] #

sconcat :: NonEmpty [a] -> [a] #

stimes :: Integral b => b -> [a] -> [a] #

Semigroup a => Semigroup (Maybe a)

Since: 4.9.0.0

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup a => Semigroup (IO a)

Since: 4.10.0.0

Methods

(<>) :: IO a -> IO a -> IO a #

sconcat :: NonEmpty (IO a) -> IO a #

stimes :: Integral b => b -> IO a -> IO a #

Ord a => Semigroup (Min a)

Since: 4.9.0.0

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Ord a => Semigroup (Max a)

Since: 4.9.0.0

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Semigroup (First a)

Since: 4.9.0.0

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: 4.9.0.0

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Monoid m => Semigroup (WrappedMonoid m)

Since: 4.9.0.0

Semigroup a => Semigroup (Option a)

Since: 4.9.0.0

Methods

(<>) :: Option a -> Option a -> Option a #

sconcat :: NonEmpty (Option a) -> Option a #

stimes :: Integral b => b -> Option a -> Option a #

Semigroup (NonEmpty a)

Since: 4.9.0.0

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Semigroup a => Semigroup (Identity a)

Since: 4.9.0.0

Methods

(<>) :: Identity a -> Identity a -> Identity a #

sconcat :: NonEmpty (Identity a) -> Identity a #

stimes :: Integral b => b -> Identity a -> Identity a #

Semigroup a => Semigroup (Dual a)

Since: 4.9.0.0

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Semigroup (Endo a)

Since: 4.9.0.0

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Num a => Semigroup (Sum a)

Since: 4.9.0.0

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Num a => Semigroup (Product a)

Since: 4.9.0.0

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Semigroup (First a)

Since: 4.9.0.0

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: 4.9.0.0

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Num a => Semigroup (Colour a) 

Methods

(<>) :: Colour a -> Colour a -> Colour a #

sconcat :: NonEmpty (Colour a) -> Colour a #

stimes :: Integral b => b -> Colour a -> Colour a #

Num a => Semigroup (AlphaColour a)

AlphaColour forms a monoid with over and transparent.

Semigroup (IntMap a) 

Methods

(<>) :: IntMap a -> IntMap a -> IntMap a #

sconcat :: NonEmpty (IntMap a) -> IntMap a #

stimes :: Integral b => b -> IntMap a -> IntMap a #

Semigroup (Seq a) 

Methods

(<>) :: Seq a -> Seq a -> Seq a #

sconcat :: NonEmpty (Seq a) -> Seq a #

stimes :: Integral b => b -> Seq a -> Seq a #

Ord a => Semigroup (Set a) 

Methods

(<>) :: Set a -> Set a -> Set a #

sconcat :: NonEmpty (Set a) -> Set a #

stimes :: Integral b => b -> Set a -> Set a #

Semigroup (Doc a) 

Methods

(<>) :: Doc a -> Doc a -> Doc a #

sconcat :: NonEmpty (Doc a) -> Doc a #

stimes :: Integral b => b -> Doc a -> Doc a #

Semigroup b => Semigroup (a -> b)

Since: 4.9.0.0

Methods

(<>) :: (a -> b) -> (a -> b) -> a -> b #

sconcat :: NonEmpty (a -> b) -> a -> b #

stimes :: Integral b => b -> (a -> b) -> a -> b #

Semigroup (Either a b)

Since: 4.9.0.0

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b => b -> Either a b -> Either a b #

(Semigroup a, Semigroup b) => Semigroup (a, b)

Since: 4.9.0.0

Methods

(<>) :: (a, b) -> (a, b) -> (a, b) #

sconcat :: NonEmpty (a, b) -> (a, b) #

stimes :: Integral b => b -> (a, b) -> (a, b) #

Semigroup (Proxy k s)

Since: 4.9.0.0

Methods

(<>) :: Proxy k s -> Proxy k s -> Proxy k s #

sconcat :: NonEmpty (Proxy k s) -> Proxy k s #

stimes :: Integral b => b -> Proxy k s -> Proxy k s #

Ord k => Semigroup (Map k v) 

Methods

(<>) :: Map k v -> Map k v -> Map k v #

sconcat :: NonEmpty (Map k v) -> Map k v #

stimes :: Integral b => b -> Map k v -> Map k v #

(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c)

Since: 4.9.0.0

Methods

(<>) :: (a, b, c) -> (a, b, c) -> (a, b, c) #

sconcat :: NonEmpty (a, b, c) -> (a, b, c) #

stimes :: Integral b => b -> (a, b, c) -> (a, b, c) #

Semigroup a => Semigroup (Const k a b)

Since: 4.9.0.0

Methods

(<>) :: Const k a b -> Const k a b -> Const k a b #

sconcat :: NonEmpty (Const k a b) -> Const k a b #

stimes :: Integral b => b -> Const k a b -> Const k a b #

Alternative f => Semigroup (Alt * f a)

Since: 4.9.0.0

Methods

(<>) :: Alt * f a -> Alt * f a -> Alt * f a #

sconcat :: NonEmpty (Alt * f a) -> Alt * f a #

stimes :: Integral b => b -> Alt * f a -> Alt * f a #

Semigroup a => Semigroup (Tagged k s a) 

Methods

(<>) :: Tagged k s a -> Tagged k s a -> Tagged k s a #

sconcat :: NonEmpty (Tagged k s a) -> Tagged k s a #

stimes :: Integral b => b -> Tagged k s a -> Tagged k s a #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d)

Since: 4.9.0.0

Methods

(<>) :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

sconcat :: NonEmpty (a, b, c, d) -> (a, b, c, d) #

stimes :: Integral b => b -> (a, b, c, d) -> (a, b, c, d) #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e)

Since: 4.9.0.0

Methods

(<>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

sconcat :: NonEmpty (a, b, c, d, e) -> (a, b, c, d, e) #

stimes :: Integral b => b -> (a, b, c, d, e) -> (a, b, c, d, e) #

data Complex a :: * -> * #

Complex numbers are an algebraic type.

For a complex number z, abs z is a number with the magnitude of z, but oriented in the positive real direction, whereas signum z has the phase of z, but unit magnitude.

The Foldable and Traversable instances traverse the real part first.

Constructors

!a :+ !a infix 6

forms a complex number from its real and imaginary rectangular components.

Instances

Monad Complex

Since: 4.9.0.0

Methods

(>>=) :: Complex a -> (a -> Complex b) -> Complex b #

(>>) :: Complex a -> Complex b -> Complex b #

return :: a -> Complex a #

fail :: String -> Complex a #

Functor Complex 

Methods

fmap :: (a -> b) -> Complex a -> Complex b #

(<$) :: a -> Complex b -> Complex a #

Applicative Complex

Since: 4.9.0.0

Methods

pure :: a -> Complex a #

(<*>) :: Complex (a -> b) -> Complex a -> Complex b #

liftA2 :: (a -> b -> c) -> Complex a -> Complex b -> Complex c #

(*>) :: Complex a -> Complex b -> Complex b #

(<*) :: Complex a -> Complex b -> Complex a #

Foldable Complex 

Methods

fold :: Monoid m => Complex m -> m #

foldMap :: Monoid m => (a -> m) -> Complex a -> m #

foldr :: (a -> b -> b) -> b -> Complex a -> b #

foldr' :: (a -> b -> b) -> b -> Complex a -> b #

foldl :: (b -> a -> b) -> b -> Complex a -> b #

foldl' :: (b -> a -> b) -> b -> Complex a -> b #

foldr1 :: (a -> a -> a) -> Complex a -> a #

foldl1 :: (a -> a -> a) -> Complex a -> a #

toList :: Complex a -> [a] #

null :: Complex a -> Bool #

length :: Complex a -> Int #

elem :: Eq a => a -> Complex a -> Bool #

maximum :: Ord a => Complex a -> a #

minimum :: Ord a => Complex a -> a #

sum :: Num a => Complex a -> a #

product :: Num a => Complex a -> a #

Traversable Complex 

Methods

traverse :: Applicative f => (a -> f b) -> Complex a -> f (Complex b) #

sequenceA :: Applicative f => Complex (f a) -> f (Complex a) #

mapM :: Monad m => (a -> m b) -> Complex a -> m (Complex b) #

sequence :: Monad m => Complex (m a) -> m (Complex a) #

Eq a => Eq (Complex a) 

Methods

(==) :: Complex a -> Complex a -> Bool #

(/=) :: Complex a -> Complex a -> Bool #

RealFloat a => Floating (Complex a)

Since: 2.1

Methods

pi :: Complex a #

exp :: Complex a -> Complex a #

log :: Complex a -> Complex a #

sqrt :: Complex a -> Complex a #

(**) :: Complex a -> Complex a -> Complex a #

logBase :: Complex a -> Complex a -> Complex a #

sin :: Complex a -> Complex a #

cos :: Complex a -> Complex a #

tan :: Complex a -> Complex a #

asin :: Complex a -> Complex a #

acos :: Complex a -> Complex a #

atan :: Complex a -> Complex a #

sinh :: Complex a -> Complex a #

cosh :: Complex a -> Complex a #

tanh :: Complex a -> Complex a #

asinh :: Complex a -> Complex a #

acosh :: Complex a -> Complex a #

atanh :: Complex a -> Complex a #

log1p :: Complex a -> Complex a #

expm1 :: Complex a -> Complex a #

log1pexp :: Complex a -> Complex a #

log1mexp :: Complex a -> Complex a #

RealFloat a => Fractional (Complex a)

Since: 2.1

Methods

(/) :: Complex a -> Complex a -> Complex a #

recip :: Complex a -> Complex a #

fromRational :: Rational -> Complex a #

Data a => Data (Complex a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) #

toConstr :: Complex a -> Constr #

dataTypeOf :: Complex a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) #

gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) #

RealFloat a => Num (Complex a)

Since: 2.1

Methods

(+) :: Complex a -> Complex a -> Complex a #

(-) :: Complex a -> Complex a -> Complex a #

(*) :: Complex a -> Complex a -> Complex a #

negate :: Complex a -> Complex a #

abs :: Complex a -> Complex a #

signum :: Complex a -> Complex a #

fromInteger :: Integer -> Complex a #

Read a => Read (Complex a) 
Show a => Show (Complex a) 

Methods

showsPrec :: Int -> Complex a -> ShowS #

show :: Complex a -> String #

showList :: [Complex a] -> ShowS #

Generic (Complex a) 

Associated Types

type Rep (Complex a) :: * -> * #

Methods

from :: Complex a -> Rep (Complex a) x #

to :: Rep (Complex a) x -> Complex a #

(RealFloat a, Arbitrary a) => Arbitrary (Complex a) 

Methods

arbitrary :: Gen (Complex a) #

shrink :: Complex a -> [Complex a] #

(RealFloat a, CoArbitrary a) => CoArbitrary (Complex a) 

Methods

coarbitrary :: Complex a -> Gen b -> Gen b #

Storable a => Storable (Complex a)

Since: 4.8.0.0

Methods

sizeOf :: Complex a -> Int #

alignment :: Complex a -> Int #

peekElemOff :: Ptr (Complex a) -> Int -> IO (Complex a) #

pokeElemOff :: Ptr (Complex a) -> Int -> Complex a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Complex a) #

pokeByteOff :: Ptr b -> Int -> Complex a -> IO () #

peek :: Ptr (Complex a) -> IO (Complex a) #

poke :: Ptr (Complex a) -> Complex a -> IO () #

Epsilon a => Epsilon (Complex a) 
(Semifield a, AdditiveGroup a) => Semifield (Complex a) 
Field a => Field (Complex a) 
(TrigField a, ExpField a) => ExpField (Complex a)

todo: bottom is here somewhere???

Methods

exp :: Complex a -> Complex a #

log :: Complex a -> Complex a #

logBase :: Complex a -> Complex a -> Complex a #

(**) :: Complex a -> Complex a -> Complex a #

sqrt :: Complex a -> Complex a #

(AdditiveGroup a, UpperBoundedField a) => UpperBoundedField (Complex a)

todo: work out boundings for complex as it stands now, complex is different eg

one / (zero :: Complex Float) == nan

Methods

infinity :: Complex a #

nan :: Complex a #

isNaN :: Complex a -> Bool #

(AdditiveGroup a, Semiring a) => Semiring (Complex a) 
Ring a => Ring (Complex a) 
CRing a => CRing (Complex a) 
Ring a => InvolutiveRing (Complex a) 

Methods

adj :: Complex a -> Complex a #

(AdditiveGroup a, Distribution a) => Distribution (Complex a) 
(MultiplicativeMagma a, AdditiveGroup a) => MultiplicativeMagma (Complex a) 

Methods

times :: Complex a -> Complex a -> Complex a #

(AdditiveUnital a, AdditiveGroup a, MultiplicativeUnital a) => MultiplicativeUnital (Complex a) 

Methods

one :: Complex a #

(AdditiveGroup a, MultiplicativeAssociative a) => MultiplicativeAssociative (Complex a) 
(AdditiveGroup a, MultiplicativeCommutative a) => MultiplicativeCommutative (Complex a) 
(AdditiveGroup a, MultiplicativeInvertible a) => MultiplicativeInvertible (Complex a) 

Methods

recip :: Complex a -> Complex a #

(AdditiveGroup a, Multiplicative a) => Multiplicative (Complex a) 

Methods

(*) :: Complex a -> Complex a -> Complex a #

(AdditiveGroup a, MultiplicativeGroup a) => MultiplicativeGroup (Complex a) 

Methods

(/) :: Complex a -> Complex a -> Complex a #

AdditiveMagma a => AdditiveMagma (Complex a) 

Methods

plus :: Complex a -> Complex a -> Complex a #

AdditiveUnital a => AdditiveUnital (Complex a) 

Methods

zero :: Complex a #

AdditiveAssociative a => AdditiveAssociative (Complex a) 
AdditiveCommutative a => AdditiveCommutative (Complex a) 
AdditiveInvertible a => AdditiveInvertible (Complex a) 

Methods

negate :: Complex a -> Complex a #

Additive a => Additive (Complex a) 

Methods

(+) :: Complex a -> Complex a -> Complex a #

AdditiveGroup a => AdditiveGroup (Complex a) 

Methods

(-) :: Complex a -> Complex a -> Complex a #

Generic1 * Complex 

Associated Types

type Rep1 Complex (f :: Complex -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 Complex f a #

to1 :: Rep1 Complex f a -> f a #

(Multiplicative a, ExpField a, Normed a a) => Normed (Complex a) a 

Methods

normL1 :: Complex a -> a #

normL2 :: Complex a -> a #

normLp :: a -> Complex a -> a #

(Multiplicative a, ExpField a, Normed a a) => Metric (Complex a) a 

Methods

distanceL1 :: Complex a -> Complex a -> a #

distanceL2 :: Complex a -> Complex a -> a #

distanceLp :: a -> Complex a -> Complex a -> a #

type Rep (Complex a) 
type Rep1 * Complex 

data Natural :: * #

Type representing arbitrary-precision non-negative integers.

Operations whose result would be negative throw (Underflow :: ArithException).

Since: 4.8.0.0

Constructors

NatS# GmpLimb#

in [0, maxBound::Word]

NatJ# !BigNat

in ]maxBound::Word, +inf[

Invariant: NatJ# is used iff value doesn't fit in NatS# constructor.

Instances

Enum Natural

Since: 4.8.0.0

Eq Natural 

Methods

(==) :: Natural -> Natural -> Bool #

(/=) :: Natural -> Natural -> Bool #

Integral Natural

Since: 4.8.0.0

Num Natural

Since: 4.8.0.0

Ord Natural 
Read Natural

Since: 4.8.0.0

Real Natural

Since: 4.8.0.0

Show Natural

Since: 4.8.0.0

Ix Natural

Since: 4.8.0.0

Lift Natural 

Methods

lift :: Natural -> Q Exp #

Bits Natural

Since: 4.8.0.0

ToRatio Natural 
Signed Natural 

Methods

sign :: Natural -> Natural #

abs :: Natural -> Natural #

Integral Natural 
ToInteger Natural 

Methods

toInteger :: Natural -> Integer #

FromInteger Natural 
Semiring Natural 
InvolutiveRing Natural 

Methods

adj :: Natural -> Natural #

Distribution Natural 
MultiplicativeMagma Natural 

Methods

times :: Natural -> Natural -> Natural #

MultiplicativeUnital Natural 

Methods

one :: Natural #

MultiplicativeAssociative Natural 
MultiplicativeCommutative Natural 
Multiplicative Natural 

Methods

(*) :: Natural -> Natural -> Natural #

AdditiveMagma Natural 

Methods

plus :: Natural -> Natural -> Natural #

AdditiveUnital Natural 

Methods

zero :: Natural #

AdditiveAssociative Natural 
AdditiveCommutative Natural 
Additive Natural 

Methods

(+) :: Natural -> Natural -> Natural #

Normed Natural Natural 
Metric Natural Natural 
type (><) * * Natural Natural 

Algebraic Heirarchy

Re-defines the numeric tower.

Instances for Int, Integer, Float, Double, Bool, Complex and Naturalare supplied.