Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Pandora.Paradigm.Controlflow.Effect.Transformer.Monadic
Documentation
class Interpreted t => Monadic t where Source #
Instances
Monadic Maybe Source # | |
Monadic (Conclusion e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods wrap :: forall (u :: Type -> Type). Pointable u => Conclusion e ~> (Conclusion e :> u) Source # | |
Monadic (State s) Source # | |
Monadic (Environment e) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment Methods wrap :: forall (u :: Type -> Type). Pointable u => Environment e ~> (Environment e :> u) Source # | |
Monoid e => Monadic (Accumulator e) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator Methods wrap :: forall (u :: Type -> Type). Pointable u => Accumulator e ~> (Accumulator e :> u) Source # |
newtype (t :> u) a infixr 3 Source #
Instances
Liftable (Schematic Monad t) => Liftable ((:>) t) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h)))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Lifting v (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Lifting w (Schematic Monad x (y :> (z :> (f :> h)))), Lifting x (Schematic Monad y (z :> (f :> h))), Lifting y (Schematic Monad z (f :> h)), Lifting z (Schematic Monad f h), Wrappable f h) => Adaptable (f :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h)))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Lifting v (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Lifting w (Schematic Monad x (y :> (z :> (f :> h)))), Lifting x (Schematic Monad y (z :> (f :> h))), Lifting y (Schematic Monad z (f :> h)), Lifting z (Schematic Monad f h), Lifting f h) => Adaptable (h :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> f))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Lifting v (Schematic Monad w (x :> (y :> (z :> f)))), Lifting w (Schematic Monad x (y :> (z :> f))), Lifting x (Schematic Monad y (z :> f)), Lifting y (Schematic Monad z f), Wrappable z f) => Adaptable (z :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> f))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Lifting v (Schematic Monad w (x :> (y :> (z :> f)))), Lifting w (Schematic Monad x (y :> (z :> f))), Lifting x (Schematic Monad y (z :> f)), Lifting y (Schematic Monad z f), Lifting z f) => Adaptable (f :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> z)))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Lifting u (Schematic Monad v (w :> (x :> (y :> z)))), Lifting v (Schematic Monad w (x :> (y :> z))), Lifting w (Schematic Monad x (y :> z)), Lifting x (Schematic Monad y z), Wrappable y z) => Adaptable (y :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> z)))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Lifting u (Schematic Monad v (w :> (x :> (y :> z)))), Lifting v (Schematic Monad w (x :> (y :> z))), Lifting w (Schematic Monad x (y :> z)), Lifting x (Schematic Monad y z), Lifting y z) => Adaptable (z :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> y))))), Lifting t (Schematic Monad u (v :> (w :> (x :> y)))), Lifting u (Schematic Monad v (w :> (x :> y))), Lifting v (Schematic Monad w (x :> y)), Lifting w (Schematic Monad x y), Wrappable x y) => Adaptable (x :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> y))))), Lifting t (Schematic Monad u (v :> (w :> (x :> y)))), Lifting u (Schematic Monad v (w :> (x :> y))), Lifting v (Schematic Monad w (x :> y)), Lifting w (Schematic Monad x y), Lifting x y) => Adaptable (y :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> x)))), Lifting t (Schematic Monad u (v :> (w :> x))), Lifting u (Schematic Monad v (w :> x)), Lifting v (Schematic Monad w x), Wrappable w x) => Adaptable (w :: Type -> Type) (t :> (u :> (v :> (w :> x))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> x)))), Lifting t (Schematic Monad u (v :> (w :> x))), Lifting u (Schematic Monad v (w :> x)), Lifting v (Schematic Monad w x), Lifting w x) => Adaptable (x :: Type -> Type) (t :> (u :> (v :> (w :> x))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> w))), Lifting t (Schematic Monad u v), Lifting t (Schematic Monad u (v :> w)), Lifting u (Schematic Monad v w), Lifting v w) => Adaptable (w :: Type -> Type) (t :> (u :> (v :> w)) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> w))), Liftable (Schematic Monad t), Lifting t (Schematic Monad u (v :> w)), Lifting u (Schematic Monad v w), Wrappable v w) => Adaptable (v :: Type -> Type) (t :> (u :> (v :> w)) :: Type -> Type) Source # | |
(Covariant (t :> (u :> v)), Lifting t (Schematic Monad u v), Lifting u v) => Adaptable (v :: Type -> Type) (t :> (u :> v) :: Type -> Type) Source # | |
(Covariant (t :> (u :> v)), Liftable (Schematic Monad t), Covariant (Schematic Monad u v), Wrappable u v) => Adaptable (u :: Type -> Type) (t :> (u :> v) :: Type -> Type) Source # | |
(Covariant (t :> u), Wrappable t u) => Adaptable (t :: Type -> Type) (t :> u :: Type -> Type) Source # | |
(Covariant (t :> u), Lifting t u) => Adaptable (u :: Type -> Type) (t :> u :: Type -> Type) Source # | |
Hoistable (Schematic Monad t) => Hoistable ((:>) t :: (Type -> Type) -> Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant z, Covariant f, Covariant h, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad v (w :> (x :> (y :> z)))), Covariant (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Covariant (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad w (x :> (y :> z))), Covariant (Schematic Monad w (x :> (y :> (z :> f)))), Covariant (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Covariant (Schematic Monad x y), Covariant (Schematic Monad x (y :> z)), Covariant (Schematic Monad x (y :> (z :> f))), Covariant (Schematic Monad x (y :> (z :> (f :> h)))), Covariant (Schematic Monad y z), Covariant (Schematic Monad y (z :> f)), Covariant (Schematic Monad y (z :> (f :> h))), Covariant (Schematic Monad z f), Covariant (Schematic Monad z (f :> h)), Covariant (Schematic Monad f h), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Hoistable (Schematic Monad y), Hoistable (Schematic Monad z), Hoistable (Schematic Monad f), Adaptable h h') => Adaptable (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h'))))))) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant z, Covariant f, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad v (w :> (x :> (y :> z)))), Covariant (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad w (x :> (y :> z))), Covariant (Schematic Monad w (x :> (y :> (z :> f)))), Covariant (Schematic Monad x y), Covariant (Schematic Monad x (y :> z)), Covariant (Schematic Monad x (y :> (z :> f))), Covariant (Schematic Monad y z), Covariant (Schematic Monad y (z :> f)), Covariant (Schematic Monad z f), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Hoistable (Schematic Monad y), Hoistable (Schematic Monad z), Adaptable f f') => Adaptable (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f')))))) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant z, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad v (w :> (x :> (y :> z)))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad w (x :> (y :> z))), Covariant (Schematic Monad x y), Covariant (Schematic Monad x (y :> z)), Covariant (Schematic Monad y z), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Hoistable (Schematic Monad y), Adaptable z z') => Adaptable (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z'))))) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad x y), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Adaptable y y') => Adaptable (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y')))) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant x, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad w x), Hoistable ((:>) (t :> (u :> v))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Adaptable x x') => Adaptable (t :> (u :> (v :> (w :> x))) :: Type -> Type) (t :> (u :> (v :> (w :> x'))) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad v w), Hoistable ((:>) (t :> (u :> v))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Adaptable w w') => Adaptable (t :> (u :> (v :> w)) :: Type -> Type) (t :> (u :> (v :> w')) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant (Schematic Monad u v), Hoistable ((:>) (t :> u)), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Adaptable v v') => Adaptable (t :> (u :> v) :: Type -> Type) (t :> (u :> v') :: Type -> Type) Source # | |
(Covariant u, Hoistable ((:>) t), Adaptable u u') => Adaptable (t :> u :: Type -> Type) (t :> u' :: Type -> Type) Source # | |
Covariant (Schematic Monad t u) => Covariant (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Monadic Methods (<$>) :: (a -> b) -> (t :> u) a -> (t :> u) b Source # comap :: (a -> b) -> (t :> u) a -> (t :> u) b Source # (<$) :: a -> (t :> u) b -> (t :> u) a Source # ($>) :: (t :> u) a -> b -> (t :> u) b Source # void :: (t :> u) a -> (t :> u) () Source # loeb :: (t :> u) (a <:= (t :> u)) -> (t :> u) a Source # (<&>) :: (t :> u) a -> (a -> b) -> (t :> u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> (((t :> u) :. u0) := a) -> ((t :> u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> (((t :> u) :. (u0 :. v)) := a) -> ((t :> u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> (((t :> u) :. (u0 :. (v :. w))) := a) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => (((t :> u) :. u0) := a) -> (a -> b) -> ((t :> u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => (((t :> u) :. (u0 :. v)) := a) -> (a -> b) -> ((t :> u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => (((t :> u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # | |
Bindable (Schematic Monad t u) => Bindable (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Monadic Methods (>>=) :: (t :> u) a -> (a -> (t :> u) b) -> (t :> u) b Source # (=<<) :: (a -> (t :> u) b) -> (t :> u) a -> (t :> u) b Source # bind :: (a -> (t :> u) b) -> (t :> u) a -> (t :> u) b Source # join :: (((t :> u) :. (t :> u)) := a) -> (t :> u) a Source # (>=>) :: (a -> (t :> u) b) -> (b -> (t :> u) c) -> a -> (t :> u) c Source # (<=<) :: (b -> (t :> u) c) -> (a -> (t :> u) b) -> a -> (t :> u) c Source # ($>>=) :: Covariant u0 => ((u0 :. (t :> u)) := a) -> (a -> (t :> u) b) -> (u0 :. (t :> u)) := b Source # | |
Applicative (Schematic Monad t u) => Applicative (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Monadic Methods (<*>) :: (t :> u) (a -> b) -> (t :> u) a -> (t :> u) b Source # apply :: (t :> u) (a -> b) -> (t :> u) a -> (t :> u) b Source # (*>) :: (t :> u) a -> (t :> u) b -> (t :> u) b Source # (<*) :: (t :> u) a -> (t :> u) b -> (t :> u) a Source # forever :: (t :> u) a -> (t :> u) b Source # (<**>) :: Applicative u0 => (((t :> u) :. u0) := (a -> b)) -> (((t :> u) :. u0) := a) -> ((t :> u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => (((t :> u) :. (u0 :. v)) := (a -> b)) -> (((t :> u) :. (u0 :. v)) := a) -> ((t :> u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => (((t :> u) :. (u0 :. (v :. w))) := (a -> b)) -> (((t :> u) :. (u0 :. (v :. w))) := a) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # | |
Alternative (Schematic Monad t u) => Alternative (t :> u) Source # | |
Avoidable (Schematic Monad t u) => Avoidable (t :> u) Source # | |
Distributive (Schematic Monad t u) => Distributive (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Monadic Methods (>>-) :: Covariant u0 => u0 a -> (a -> (t :> u) b) -> ((t :> u) :. u0) := b Source # collect :: Covariant u0 => (a -> (t :> u) b) -> u0 a -> ((t :> u) :. u0) := b Source # distribute :: Covariant u0 => ((u0 :. (t :> u)) := a) -> ((t :> u) :. u0) := a Source # (>>>-) :: (Covariant u0, Covariant v) => ((u0 :. v) := a) -> (a -> (t :> u) b) -> ((t :> u) :. (u0 :. v)) := b Source # (>>>>-) :: (Covariant u0, Covariant v, Covariant w) => ((u0 :. (v :. w)) := a) -> (a -> (t :> u) b) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # (>>>>>-) :: (Covariant u0, Covariant v, Covariant w, Covariant j) => ((u0 :. (v :. (w :. j))) := a) -> (a -> (t :> u) b) -> ((t :> u) :. (u0 :. (v :. (w :. j)))) := b Source # | |
Extendable (Schematic Monad t u) => Extendable (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Monadic Methods (=>>) :: (t :> u) a -> ((t :> u) a -> b) -> (t :> u) b Source # (<<=) :: ((t :> u) a -> b) -> (t :> u) a -> (t :> u) b Source # extend :: ((t :> u) a -> b) -> (t :> u) a -> (t :> u) b Source # duplicate :: (t :> u) a -> ((t :> u) :. (t :> u)) := a Source # (=<=) :: ((t :> u) b -> c) -> ((t :> u) a -> b) -> (t :> u) a -> c Source # (=>=) :: ((t :> u) a -> b) -> ((t :> u) b -> c) -> (t :> u) a -> c Source # ($=>>) :: Covariant u0 => ((u0 :. (t :> u)) := a) -> ((t :> u) a -> b) -> (u0 :. (t :> u)) := b Source # (<<=$) :: Covariant u0 => ((u0 :. (t :> u)) := a) -> ((t :> u) a -> b) -> (u0 :. (t :> u)) := b Source # | |
Extractable (Schematic Monad t u) => Extractable (t :> u) Source # | |
Pointable (Schematic Monad t u) => Pointable (t :> u) Source # | |
(Pointable (t :> u), Bindable (t :> u)) => Monad (t :> u) Source # | |
Traversable (Schematic Monad t u) => Traversable (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Monadic Methods (->>) :: (Pointable u0, Applicative u0) => (t :> u) a -> (a -> u0 b) -> (u0 :. (t :> u)) := b Source # traverse :: (Pointable u0, Applicative u0) => (a -> u0 b) -> (t :> u) a -> (u0 :. (t :> u)) := b Source # sequence :: (Pointable u0, Applicative u0) => (((t :> u) :. u0) := a) -> (u0 :. (t :> u)) := a Source # (->>>) :: (Pointable u0, Applicative u0, Traversable v) => ((v :. (t :> u)) := a) -> (a -> u0 b) -> (u0 :. (v :. (t :> u))) := b Source # (->>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w) => ((w :. (v :. (t :> u))) := a) -> (a -> u0 b) -> (u0 :. (w :. (v :. (t :> u)))) := b Source # (->>>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. (t :> u)))) := a) -> (a -> u0 b) -> (u0 :. (j :. (w :. (v :. (t :> u))))) := b Source # | |
Interpreted (Schematic Monad t u) => Interpreted (t :> u) Source # | |
type Primary (t :> u) a Source # | |