precursor-0.1.0.0: Prelude replacement

Safe HaskellSafe
LanguageHaskell2010

Precursor.Data.Either

Synopsis

Documentation

data Either a b :: * -> * -> * #

The Either type represents values with two possibilities: a value of type Either a b is either Left a or Right b.

The Either type is sometimes used to represent a value which is either correct or an error; by convention, the Left constructor is used to hold an error value and the Right constructor is used to hold a correct value (mnemonic: "right" also means "correct").

Examples

The type Either String Int is the type of values which can be either a String or an Int. The Left constructor can be used only on Strings, and the Right constructor can be used only on Ints:

>>> let s = Left "foo" :: Either String Int
>>> s
Left "foo"
>>> let n = Right 3 :: Either String Int
>>> n
Right 3
>>> :type s
s :: Either String Int
>>> :type n
n :: Either String Int

The fmap from our Functor instance will ignore Left values, but will apply the supplied function to values contained in a Right:

>>> let s = Left "foo" :: Either String Int
>>> let n = Right 3 :: Either String Int
>>> fmap (*2) s
Left "foo"
>>> fmap (*2) n
Right 6

The Monad instance for Either allows us to chain together multiple actions which may fail, and fail overall if any of the individual steps failed. First we'll write a function that can either parse an Int from a Char, or fail.

>>> import Data.Char ( digitToInt, isDigit )
>>> :{
    let parseEither :: Char -> Either String Int
        parseEither c
          | isDigit c = Right (digitToInt c)
          | otherwise = Left "parse error"
>>> :}

The following should work, since both '1' and '2' can be parsed as Ints.

>>> :{
    let parseMultiple :: Either String Int
        parseMultiple = do
          x <- parseEither '1'
          y <- parseEither '2'
          return (x + y)
>>> :}
>>> parseMultiple
Right 3

But the following should fail overall, since the first operation where we attempt to parse 'm' as an Int will fail:

>>> :{
    let parseMultiple :: Either String Int
        parseMultiple = do
          x <- parseEither 'm'
          y <- parseEither '2'
          return (x + y)
>>> :}
>>> parseMultiple
Left "parse error"

Constructors

Left a 
Right b 

Instances

Eq2 Either 

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Either a c -> Either b d -> Bool #

Ord2 Either 

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Either a c -> Either b d -> Ordering #

Read2 Either 

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) #

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] #

Show2 Either 

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Either a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Either a b] -> ShowS #

Bifunctor Either 

Methods

bimap :: (a -> b) -> (c -> d) -> Either a c -> Either b d #

first :: (a -> b) -> Either a c -> Either b c #

second :: (b -> c) -> Either a b -> Either a c #

Monad (Either e) 

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b #

(>>) :: Either e a -> Either e b -> Either e b #

return :: a -> Either e a #

fail :: String -> Either e a #

Functor (Either a) 

Methods

fmap :: (a -> b) -> Either a a -> Either a b #

(<$) :: a -> Either a b -> Either a a #

MonadFix (Either e) 

Methods

mfix :: (a -> Either e a) -> Either e a #

Applicative (Either e) 

Methods

pure :: a -> Either e a #

(<*>) :: Either e (a -> b) -> Either e a -> Either e b #

(*>) :: Either e a -> Either e b -> Either e b #

(<*) :: Either e a -> Either e b -> Either e a #

Foldable (Either a) 

Methods

fold :: Monoid m => Either a m -> m #

foldMap :: Monoid m => (a -> m) -> Either a a -> m #

foldr :: (a -> b -> b) -> b -> Either a a -> b #

foldr' :: (a -> b -> b) -> b -> Either a a -> b #

foldl :: (b -> a -> b) -> b -> Either a a -> b #

foldl' :: (b -> a -> b) -> b -> Either a a -> b #

foldr1 :: (a -> a -> a) -> Either a a -> a #

foldl1 :: (a -> a -> a) -> Either a a -> a #

toList :: Either a a -> [a] #

null :: Either a a -> Bool #

length :: Either a a -> Int #

elem :: Eq a => a -> Either a a -> Bool #

maximum :: Ord a => Either a a -> a #

minimum :: Ord a => Either a a -> a #

sum :: Num a => Either a a -> a #

product :: Num a => Either a a -> a #

Traversable (Either a) 

Methods

traverse :: Applicative f => (a -> f b) -> Either a a -> f (Either a b) #

sequenceA :: Applicative f => Either a (f a) -> f (Either a a) #

mapM :: Monad m => (a -> m b) -> Either a a -> m (Either a b) #

sequence :: Monad m => Either a (m a) -> m (Either a a) #

Generic1 (Either a) 

Associated Types

type Rep1 (Either a :: * -> *) :: * -> * #

Methods

from1 :: Either a a -> Rep1 (Either a) a #

to1 :: Rep1 (Either a) a -> Either a a #

Eq a => Eq1 (Either a) 

Methods

liftEq :: (a -> b -> Bool) -> Either a a -> Either a b -> Bool #

Ord a => Ord1 (Either a) 

Methods

liftCompare :: (a -> b -> Ordering) -> Either a a -> Either a b -> Ordering #

Read a => Read1 (Either a) 

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Either a a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Either a a] #

Show a => Show1 (Either a) 

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Either a a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Either a a] -> ShowS #

(Eq b, Eq a) => Eq (Either a b) 

Methods

(==) :: Either a b -> Either a b -> Bool #

(/=) :: Either a b -> Either a b -> Bool #

(Ord b, Ord a) => Ord (Either a b) 

Methods

compare :: Either a b -> Either a b -> Ordering #

(<) :: Either a b -> Either a b -> Bool #

(<=) :: Either a b -> Either a b -> Bool #

(>) :: Either a b -> Either a b -> Bool #

(>=) :: Either a b -> Either a b -> Bool #

max :: Either a b -> Either a b -> Either a b #

min :: Either a b -> Either a b -> Either a b #

(Read b, Read a) => Read (Either a b) 
(Show b, Show a) => Show (Either a b) 

Methods

showsPrec :: Int -> Either a b -> ShowS #

show :: Either a b -> String #

showList :: [Either a b] -> ShowS #

Generic (Either a b) 

Associated Types

type Rep (Either a b) :: * -> * #

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Semigroup (Either a b) 

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b => b -> Either a b -> Either a b #

(Lift a, Lift b) => Lift (Either a b) 

Methods

lift :: Either a b -> Q Exp #

type Rep1 (Either a) 
type Rep (Either a b) 
type (==) (Either k k1) a b 
type (==) (Either k k1) a b = EqEither k k1 a b

lefts :: [Either a b] -> [a] #

Extracts from a list of Either all the Left elements. All the Left elements are extracted in order.

Examples

Basic usage:

>>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>> lefts list
["foo","bar","baz"]

rights :: [Either a b] -> [b] #

Extracts from a list of Either all the Right elements. All the Right elements are extracted in order.

Examples

Basic usage:

>>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>> rights list
[3,7]

partitionEithers :: [Either a b] -> ([a], [b]) #

Partitions a list of Either into two lists. All the Left elements are extracted, in order, to the first component of the output. Similarly the Right elements are extracted to the second component of the output.

Examples

Basic usage:

>>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>> partitionEithers list
(["foo","bar","baz"],[3,7])

The pair returned by partitionEithers x should be the same pair as (lefts x, rights x):

>>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>> partitionEithers list == (lefts list, rights list)
True