prologue-3.2.6: Better, more general Prelude exporting common utilities.

Safe HaskellNone
LanguageHaskell2010

Prologue.Data.Maybe

Synopsis

Documentation

justIf :: Bool -> a -> Maybe a Source #

justWhen :: Monad m => Bool -> a -> m (Maybe a) Source #

fromMaybe :: a -> Maybe a -> a Source #

Warning: use fromJust instead

fromJust :: a -> Maybe a -> a Source #

fromJustM :: Applicative m => m a -> Maybe a -> m a Source #

unsafeFromJust :: Maybe a -> a Source #

Warning: Do not use in production code

withJust :: (Applicative m, Mempty out) => Maybe a -> (a -> m out) -> m out Source #

withJust_ :: Applicative m => Maybe a -> (a -> m out) -> m () Source #

withJustM :: (Monad m, Mempty out) => m (Maybe a) -> (a -> m out) -> m out Source #

withJustM_ :: Monad m => m (Maybe a) -> (a -> m out) -> m () Source #

whenJust :: (Applicative m, Mempty out) => Maybe a -> m out -> m out Source #

whenJust_ :: Applicative m => Maybe a -> m out -> m () Source #

whenJustM :: (Monad m, Mempty out) => m (Maybe a) -> m out -> m out Source #

whenJustM_ :: Monad m => m (Maybe a) -> m out -> m () Source #

whenNothing :: (Applicative m, Mempty out) => Maybe a -> m out -> m out Source #

whenNothing_ :: Applicative m => Maybe a -> m out -> m () Source #

whenNothingM :: (Monad m, Mempty out) => m (Maybe a) -> m out -> m out Source #

whenNothingM_ :: Monad m => m (Maybe a) -> m out -> m () Source #

data Maybe a #

The Maybe type encapsulates an optional value. A value of type Maybe a either contains a value of type a (represented as Just a), or it is empty (represented as Nothing). Using Maybe is a good way to deal with errors or exceptional cases without resorting to drastic measures such as error.

The Maybe type is also a monad. It is a simple kind of error monad, where all errors are represented by Nothing. A richer error monad can be built using the Either type.

Constructors

Nothing 
Just a 
Instances
Monad Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Functor Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

MonadFix Maybe

Since: base-2.1

Instance details

Defined in Control.Monad.Fix

Methods

mfix :: (a -> Maybe a) -> Maybe a #

MonadFail Maybe

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Fail

Methods

fail :: String -> Maybe a #

Applicative Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> Maybe a #

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b #

liftA2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c #

(*>) :: Maybe a -> Maybe b -> Maybe b #

(<*) :: Maybe a -> Maybe b -> Maybe a #

Foldable Maybe

Since: base-2.1

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Maybe m -> m #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m #

foldr :: (a -> b -> b) -> b -> Maybe a -> b #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b #

foldl :: (b -> a -> b) -> b -> Maybe a -> b #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b #

foldr1 :: (a -> a -> a) -> Maybe a -> a #

foldl1 :: (a -> a -> a) -> Maybe a -> a #

toList :: Maybe a -> [a] #

null :: Maybe a -> Bool #

length :: Maybe a -> Int #

elem :: Eq a => a -> Maybe a -> Bool #

maximum :: Ord a => Maybe a -> a #

minimum :: Ord a => Maybe a -> a #

sum :: Num a => Maybe a -> a #

product :: Num a => Maybe a -> a #

Traversable Maybe

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Alternative Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

empty :: Maybe a #

(<|>) :: Maybe a -> Maybe a -> Maybe a #

some :: Maybe a -> Maybe [a] #

many :: Maybe a -> Maybe [a] #

MonadPlus Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mzero :: Maybe a #

mplus :: Maybe a -> Maybe a -> Maybe a #

Eq1 Maybe

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a -> b -> Bool) -> Maybe a -> Maybe b -> Bool #

Ord1 Maybe

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a -> b -> Ordering) -> Maybe a -> Maybe b -> Ordering #

Read1 Maybe

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Maybe a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Maybe a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Maybe a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Maybe a] #

Show1 Maybe

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Maybe a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Maybe a] -> ShowS #

NFData1 Maybe

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Maybe a -> () #

MonadThrow Maybe 
Instance details

Defined in Control.Monad.Catch

Methods

throwM :: Exception e => e -> Maybe a #

Hashable1 Maybe 
Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> Maybe a -> Int #

Apply Maybe 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: Maybe (a -> b) -> Maybe a -> Maybe b #

(.>) :: Maybe a -> Maybe b -> Maybe b #

(<.) :: Maybe a -> Maybe b -> Maybe a #

liftF2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c #

Pointed Maybe 
Instance details

Defined in Data.Pointed

Methods

point :: a -> Maybe a #

Alt Maybe 
Instance details

Defined in Data.Functor.Alt

Methods

(<!>) :: Maybe a -> Maybe a -> Maybe a #

some :: Applicative Maybe => Maybe a -> Maybe [a] #

many :: Applicative Maybe => Maybe a -> Maybe [a] #

Bind Maybe 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: Maybe a -> (a -> Maybe b) -> Maybe b #

join :: Maybe (Maybe a) -> Maybe a #

FunctorWithIndex () Maybe 
Instance details

Defined in Control.Lens.Indexed

Methods

imap :: (() -> a -> b) -> Maybe a -> Maybe b #

imapped :: IndexedSetter () (Maybe a) (Maybe b) a b #

FoldableWithIndex () Maybe 
Instance details

Defined in Control.Lens.Indexed

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Maybe a -> m #

ifolded :: IndexedFold () (Maybe a) a #

ifoldr :: (() -> a -> b -> b) -> b -> Maybe a -> b #

ifoldl :: (() -> b -> a -> b) -> b -> Maybe a -> b #

ifoldr' :: (() -> a -> b -> b) -> b -> Maybe a -> b #

ifoldl' :: (() -> b -> a -> b) -> b -> Maybe a -> b #

TraversableWithIndex () Maybe 
Instance details

Defined in Control.Lens.Indexed

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Maybe a -> f (Maybe b) #

itraversed :: IndexedTraversal () (Maybe a) (Maybe b) a b #

Eq a => Eq (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Maybe

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Data a => Data (Maybe a)

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) #

toConstr :: Maybe a -> Constr #

dataTypeOf :: Maybe a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) #

gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

Ord a => Ord (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Maybe

Methods

compare :: Maybe a -> Maybe a -> Ordering #

(<) :: Maybe a -> Maybe a -> Bool #

(<=) :: Maybe a -> Maybe a -> Bool #

(>) :: Maybe a -> Maybe a -> Bool #

(>=) :: Maybe a -> Maybe a -> Bool #

max :: Maybe a -> Maybe a -> Maybe a #

min :: Maybe a -> Maybe a -> Maybe a #

Read a => Read (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Read

Show a => Show (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Generic (Maybe a) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (Maybe a) :: Type -> Type #

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Semigroup a => Semigroup (Maybe a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S."

Since 4.11.0: constraint on inner a value generalised from Monoid to Semigroup.

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Lift a => Lift (Maybe a) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Maybe a -> Q Exp #

Hashable a => Hashable (Maybe a) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Maybe a -> Int #

hash :: Maybe a -> Int #

SingKind a => SingKind (Maybe a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type DemoteRep (Maybe a) :: Type

Methods

fromSing :: Sing a0 -> DemoteRep (Maybe a)

Default (Maybe a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Maybe a #

NFData a => NFData (Maybe a) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Maybe a -> () #

Ixed (Maybe a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Maybe a) -> Traversal' (Maybe a) (IxValue (Maybe a)) #

At (Maybe a) 
Instance details

Defined in Control.Lens.At

Methods

at :: Index (Maybe a) -> Lens' (Maybe a) (Maybe (IxValue (Maybe a))) #

AsEmpty (Maybe a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Maybe a) () #

Mempty (Maybe a) 
Instance details

Defined in Data.Monoids

Methods

mempty :: Maybe a #

Recursive (Maybe a) 
Instance details

Defined in Data.Functor.Foldable

Methods

project :: Maybe a -> Base (Maybe a) (Maybe a) #

cata :: (Base (Maybe a) a0 -> a0) -> Maybe a -> a0 #

para :: (Base (Maybe a) (Maybe a, a0) -> a0) -> Maybe a -> a0 #

gpara :: (Corecursive (Maybe a), Comonad w) => (forall b. Base (Maybe a) (w b) -> w (Base (Maybe a) b)) -> (Base (Maybe a) (EnvT (Maybe a) w a0) -> a0) -> Maybe a -> a0 #

prepro :: Corecursive (Maybe a) => (forall b. Base (Maybe a) b -> Base (Maybe a) b) -> (Base (Maybe a) a0 -> a0) -> Maybe a -> a0 #

gprepro :: (Corecursive (Maybe a), Comonad w) => (forall b. Base (Maybe a) (w b) -> w (Base (Maybe a) b)) -> (forall c. Base (Maybe a) c -> Base (Maybe a) c) -> (Base (Maybe a) (w a0) -> a0) -> Maybe a -> a0 #

Corecursive (Maybe a) 
Instance details

Defined in Data.Functor.Foldable

Methods

embed :: Base (Maybe a) (Maybe a) -> Maybe a #

ana :: (a0 -> Base (Maybe a) a0) -> a0 -> Maybe a #

apo :: (a0 -> Base (Maybe a) (Either (Maybe a) a0)) -> a0 -> Maybe a #

postpro :: Recursive (Maybe a) => (forall b. Base (Maybe a) b -> Base (Maybe a) b) -> (a0 -> Base (Maybe a) a0) -> a0 -> Maybe a #

gpostpro :: (Recursive (Maybe a), Monad m) => (forall b. m (Base (Maybe a) b) -> Base (Maybe a) (m b)) -> (forall c. Base (Maybe a) c -> Base (Maybe a) c) -> (a0 -> Base (Maybe a) (m a0)) -> a0 -> Maybe a #

Generic1 Maybe 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 Maybe :: k -> Type #

Methods

from1 :: Maybe a -> Rep1 Maybe a #

to1 :: Rep1 Maybe a -> Maybe a #

SingI (Nothing :: Maybe a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

sing :: Sing Nothing

Each (Maybe a) (Maybe b) a b
each :: Traversal (Maybe a) (Maybe b) a b
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Maybe a) (Maybe b) a b #

SingI a2 => SingI (Just a2 :: Maybe a1)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

sing :: Sing (Just a2)

type Rep (Maybe a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

type Rep (Maybe a) = D1 (MetaData "Maybe" "GHC.Maybe" "base" False) (C1 (MetaCons "Nothing" PrefixI False) (U1 :: Type -> Type) :+: C1 (MetaCons "Just" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))
data Sing (b :: Maybe a) 
Instance details

Defined in GHC.Generics

data Sing (b :: Maybe a) where
type DemoteRep (Maybe a) 
Instance details

Defined in GHC.Generics

type DemoteRep (Maybe a) = Maybe (DemoteRep a)
type Index (Maybe a) 
Instance details

Defined in Control.Lens.At

type Index (Maybe a) = ()
type IxValue (Maybe a) 
Instance details

Defined in Control.Lens.At

type IxValue (Maybe a) = a
type Base (Maybe a)

Example boring stub for non-recursive data types

Instance details

Defined in Data.Functor.Foldable

type Base (Maybe a) = (Const (Maybe a) :: Type -> Type)
type Rep1 Maybe

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

mapMaybe :: (a -> Maybe b) -> [a] -> [b] #

The mapMaybe function is a version of map which can throw out elements. In particular, the functional argument returns something of type Maybe b. If this is Nothing, no element is added on to the result list. If it is Just b, then b is included in the result list.

Examples

Expand

Using mapMaybe f x is a shortcut for catMaybes $ map f x in most cases:

>>> import Text.Read ( readMaybe )
>>> let readMaybeInt = readMaybe :: String -> Maybe Int
>>> mapMaybe readMaybeInt ["1", "Foo", "3"]
[1,3]
>>> catMaybes $ map readMaybeInt ["1", "Foo", "3"]
[1,3]

If we map the Just constructor, the entire list should be returned:

>>> mapMaybe Just [1,2,3]
[1,2,3]

catMaybes :: [Maybe a] -> [a] #

The catMaybes function takes a list of Maybes and returns a list of all the Just values.

Examples

Expand

Basic usage:

>>> catMaybes [Just 1, Nothing, Just 3]
[1,3]

When constructing a list of Maybe values, catMaybes can be used to return all of the "success" results (if the list is the result of a map, then mapMaybe would be more appropriate):

>>> import Text.Read ( readMaybe )
>>> [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[Just 1,Nothing,Just 3]
>>> catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[1,3]

isNothing :: Maybe a -> Bool #

The isNothing function returns True iff its argument is Nothing.

Examples

Expand

Basic usage:

>>> isNothing (Just 3)
False
>>> isNothing (Just ())
False
>>> isNothing Nothing
True

Only the outer constructor is taken into consideration:

>>> isNothing (Just Nothing)
False

isJust :: Maybe a -> Bool #

The isJust function returns True iff its argument is of the form Just _.

Examples

Expand

Basic usage:

>>> isJust (Just 3)
True
>>> isJust (Just ())
True
>>> isJust Nothing
False

Only the outer constructor is taken into consideration:

>>> isJust (Just Nothing)
True

maybe :: b -> (a -> b) -> Maybe a -> b #

The maybe function takes a default value, a function, and a Maybe value. If the Maybe value is Nothing, the function returns the default value. Otherwise, it applies the function to the value inside the Just and returns the result.

Examples

Expand

Basic usage:

>>> maybe False odd (Just 3)
True
>>> maybe False odd Nothing
False

Read an integer from a string using readMaybe. If we succeed, return twice the integer; that is, apply (*2) to it. If instead we fail to parse an integer, return 0 by default:

>>> import Text.Read ( readMaybe )
>>> maybe 0 (*2) (readMaybe "5")
10
>>> maybe 0 (*2) (readMaybe "")
0

Apply show to a Maybe Int. If we have Just n, we want to show the underlying Int n. But if we have Nothing, we return the empty string instead of (for example) "Nothing":

>>> maybe "" show (Just 5)
"5"
>>> maybe "" show Nothing
""

isNothingT :: Monad m => MaybeT m a -> m Bool #

Analogous to isNothing, but for MaybeT

isJustT :: Monad m => MaybeT m a -> m Bool #

Analogous to isJust, but for MaybeT

nothing :: Monad m => MaybeT m a #

Analogous to Nothing and equivalent to mzero

just :: Monad m => a -> MaybeT m a #

Analogous to Just and equivalent to return

maybeT :: Monad m => m b -> (a -> m b) -> MaybeT m a -> m b #

Case analysis for MaybeT

Use the first argument if the MaybeT computation fails, otherwise apply the function to the successful result.

mapMaybeT :: (m (Maybe a) -> n (Maybe b)) -> MaybeT m a -> MaybeT n b #

Transform the computation inside a MaybeT.

newtype MaybeT (m :: Type -> Type) a #

The parameterizable maybe monad, obtained by composing an arbitrary monad with the Maybe monad.

Computations are actions that may produce a value or exit.

The return function yields a computation that produces that value, while >>= sequences two subcomputations, exiting if either computation does.

Constructors

MaybeT 

Fields

Instances
MonadTrans MaybeT 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

lift :: Monad m => m a -> MaybeT m a #

MonadReader r m => MonadReader r (MaybeT m) 
Instance details

Defined in Control.Monad.Reader.Class

Methods

ask :: MaybeT m r #

local :: (r -> r) -> MaybeT m a -> MaybeT m a #

reader :: (r -> a) -> MaybeT m a #

Monad m => Monad (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

(>>=) :: MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b #

(>>) :: MaybeT m a -> MaybeT m b -> MaybeT m b #

return :: a -> MaybeT m a #

fail :: String -> MaybeT m a #

Functor m => Functor (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

fmap :: (a -> b) -> MaybeT m a -> MaybeT m b #

(<$) :: a -> MaybeT m b -> MaybeT m a #

MonadFix m => MonadFix (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

mfix :: (a -> MaybeT m a) -> MaybeT m a #

Monad m => MonadFail (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

fail :: String -> MaybeT m a #

(Functor m, Monad m) => Applicative (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

pure :: a -> MaybeT m a #

(<*>) :: MaybeT m (a -> b) -> MaybeT m a -> MaybeT m b #

liftA2 :: (a -> b -> c) -> MaybeT m a -> MaybeT m b -> MaybeT m c #

(*>) :: MaybeT m a -> MaybeT m b -> MaybeT m b #

(<*) :: MaybeT m a -> MaybeT m b -> MaybeT m a #

Foldable f => Foldable (MaybeT f) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

fold :: Monoid m => MaybeT f m -> m #

foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m #

foldr :: (a -> b -> b) -> b -> MaybeT f a -> b #

foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b #

foldl :: (b -> a -> b) -> b -> MaybeT f a -> b #

foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b #

foldr1 :: (a -> a -> a) -> MaybeT f a -> a #

foldl1 :: (a -> a -> a) -> MaybeT f a -> a #

toList :: MaybeT f a -> [a] #

null :: MaybeT f a -> Bool #

length :: MaybeT f a -> Int #

elem :: Eq a => a -> MaybeT f a -> Bool #

maximum :: Ord a => MaybeT f a -> a #

minimum :: Ord a => MaybeT f a -> a #

sum :: Num a => MaybeT f a -> a #

product :: Num a => MaybeT f a -> a #

Traversable f => Traversable (MaybeT f) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

traverse :: Applicative f0 => (a -> f0 b) -> MaybeT f a -> f0 (MaybeT f b) #

sequenceA :: Applicative f0 => MaybeT f (f0 a) -> f0 (MaybeT f a) #

mapM :: Monad m => (a -> m b) -> MaybeT f a -> m (MaybeT f b) #

sequence :: Monad m => MaybeT f (m a) -> m (MaybeT f a) #

Contravariant m => Contravariant (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

contramap :: (a -> b) -> MaybeT m b -> MaybeT m a #

(>$) :: b -> MaybeT m b -> MaybeT m a #

(Functor m, Monad m) => Alternative (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

empty :: MaybeT m a #

(<|>) :: MaybeT m a -> MaybeT m a -> MaybeT m a #

some :: MaybeT m a -> MaybeT m [a] #

many :: MaybeT m a -> MaybeT m [a] #

Monad m => MonadPlus (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

mzero :: MaybeT m a #

mplus :: MaybeT m a -> MaybeT m a -> MaybeT m a #

Eq1 m => Eq1 (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

liftEq :: (a -> b -> Bool) -> MaybeT m a -> MaybeT m b -> Bool #

Ord1 m => Ord1 (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

liftCompare :: (a -> b -> Ordering) -> MaybeT m a -> MaybeT m b -> Ordering #

Read1 m => Read1 (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (MaybeT m a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [MaybeT m a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (MaybeT m a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [MaybeT m a] #

Show1 m => Show1 (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> MaybeT m a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [MaybeT m a] -> ShowS #

MonadZip m => MonadZip (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

mzip :: MaybeT m a -> MaybeT m b -> MaybeT m (a, b) #

mzipWith :: (a -> b -> c) -> MaybeT m a -> MaybeT m b -> MaybeT m c #

munzip :: MaybeT m (a, b) -> (MaybeT m a, MaybeT m b) #

MonadIO m => MonadIO (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

liftIO :: IO a -> MaybeT m a #

MonadThrow m => MonadThrow (MaybeT m)

Throws exceptions into the base monad.

Instance details

Defined in Control.Monad.Catch

Methods

throwM :: Exception e => e -> MaybeT m a #

MonadCatch m => MonadCatch (MaybeT m)

Catches exceptions from the base monad.

Instance details

Defined in Control.Monad.Catch

Methods

catch :: Exception e => MaybeT m a -> (e -> MaybeT m a) -> MaybeT m a #

MonadMask m => MonadMask (MaybeT m)

Since: exceptions-0.10.0

Instance details

Defined in Control.Monad.Catch

Methods

mask :: ((forall a. MaybeT m a -> MaybeT m a) -> MaybeT m b) -> MaybeT m b #

uninterruptibleMask :: ((forall a. MaybeT m a -> MaybeT m a) -> MaybeT m b) -> MaybeT m b #

generalBracket :: MaybeT m a -> (a -> ExitCase b -> MaybeT m c) -> (a -> MaybeT m b) -> MaybeT m (b, c) #

(Functor m, Monad m) => Apply (MaybeT m) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: MaybeT m (a -> b) -> MaybeT m a -> MaybeT m b #

(.>) :: MaybeT m a -> MaybeT m b -> MaybeT m b #

(<.) :: MaybeT m a -> MaybeT m b -> MaybeT m a #

liftF2 :: (a -> b -> c) -> MaybeT m a -> MaybeT m b -> MaybeT m c #

Pointed m => Pointed (MaybeT m) 
Instance details

Defined in Data.Pointed

Methods

point :: a -> MaybeT m a #

PrimMonad m => PrimMonad (MaybeT m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (MaybeT m) :: Type #

Methods

primitive :: (State# (PrimState (MaybeT m)) -> (#State# (PrimState (MaybeT m)), a#)) -> MaybeT m a #

(Bind f, Monad f) => Alt (MaybeT f) 
Instance details

Defined in Data.Functor.Alt

Methods

(<!>) :: MaybeT f a -> MaybeT f a -> MaybeT f a #

some :: Applicative (MaybeT f) => MaybeT f a -> MaybeT f [a] #

many :: Applicative (MaybeT f) => MaybeT f a -> MaybeT f [a] #

(Functor m, Monad m) => Bind (MaybeT m) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b #

join :: MaybeT m (MaybeT m a) -> MaybeT m a #

Zoom m n s t => Zoom (MaybeT m) (MaybeT n) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (MaybeT m) c) t s -> MaybeT m c -> MaybeT n c #

(Eq1 m, Eq a) => Eq (MaybeT m a) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

(==) :: MaybeT m a -> MaybeT m a -> Bool #

(/=) :: MaybeT m a -> MaybeT m a -> Bool #

(Ord1 m, Ord a) => Ord (MaybeT m a) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

compare :: MaybeT m a -> MaybeT m a -> Ordering #

(<) :: MaybeT m a -> MaybeT m a -> Bool #

(<=) :: MaybeT m a -> MaybeT m a -> Bool #

(>) :: MaybeT m a -> MaybeT m a -> Bool #

(>=) :: MaybeT m a -> MaybeT m a -> Bool #

max :: MaybeT m a -> MaybeT m a -> MaybeT m a #

min :: MaybeT m a -> MaybeT m a -> MaybeT m a #

(Read1 m, Read a) => Read (MaybeT m a) 
Instance details

Defined in Control.Monad.Trans.Maybe

(Show1 m, Show a) => Show (MaybeT m a) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

showsPrec :: Int -> MaybeT m a -> ShowS #

show :: MaybeT m a -> String #

showList :: [MaybeT m a] -> ShowS #

Wrapped (MaybeT m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (MaybeT m a) :: Type #

Methods

_Wrapped' :: Iso' (MaybeT m a) (Unwrapped (MaybeT m a)) #

t ~ MaybeT n b => Rewrapped (MaybeT m a) t 
Instance details

Defined in Control.Lens.Wrapped

type Zoomed (MaybeT m) 
Instance details

Defined in Control.Lens.Zoom

type PrimState (MaybeT m) 
Instance details

Defined in Control.Monad.Primitive

type Unwrapped (MaybeT m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (MaybeT m a) = m (Maybe a)

exceptToMaybeT :: Functor m => ExceptT e m a -> MaybeT m a #

Convert a ExceptT computation to MaybeT, discarding the value of any exception.

maybeToExceptT :: Functor m => e -> MaybeT m a -> ExceptT e m a #

Convert a MaybeT computation to ExceptT, with a default exception value.