{-# Language AllowAmbiguousTypes #-}
{-# LANGUAGE Safe #-}

module Data.Semigroup.Property (
  -- * Required properties of semigroups
    associative_addition_on
  , associative_multiplication_on
  -- * Required properties of monoids
  , neutral_addition_on
  , neutral_multiplication_on
  -- * Properties of commuative semigroups
  , commutative_addition_on
  , commutative_multiplication_on
  -- * Properties of cancellative semigroups
  , cancellative_addition_on
  , cancellative_multiplication_on
  -- * Properties of idempotent semigroups
  , idempotent_addition_on
  , idempotent_multiplication_on
  -- * Required properties of semigroup & monoid morphisms
  , morphism_additive_on
  , morphism_multiplicative_on
  , morphism_additive_on'
  , morphism_multiplicative_on'
) where


import safe Test.Logic (Rel)
import safe Data.Semigroup.Additive
import safe qualified Test.Function  as Prop
import safe qualified Test.Operation as Prop hiding (distributive_on)

import safe Prelude hiding (Num(..), sum)


------------------------------------------------------------------------------------
-- Required properties of semigroups

-- | \( \forall a, b, c \in R: (a + b) + c \sim a + (b + c) \)
--
-- A semigroup must right-associate addition.
--
-- This is a required property for semigroups.
--
associative_addition_on :: (Additive-Semigroup) r => Rel r b -> r -> r -> r -> b
associative_addition_on (~~) = Prop.associative_on (~~) (+)

-- | \( \forall a, b, c \in R: (a * b) * c \sim a * (b * c) \)
--
-- A semigroup must right-associate multiplication.
--
-- This is a required property for semigroups.
--
associative_multiplication_on :: (Multiplicative-Semigroup) r => Rel r b -> r -> r -> r -> b
associative_multiplication_on (~~) = Prop.associative_on (~~) (*)

------------------------------------------------------------------------------------
-- Required properties of monoids

-- | \( \forall a \in R: (z + a) \sim a \)
--
-- A semigroup with a right-neutral additive identity must satisfy:
--
-- @
-- 'neutral_addition_on' ('==') 'zero' r = 'True'
-- @
-- 
-- Or, equivalently:
--
-- @
-- 'zero' '+' r = r
-- @
--
-- This is a required property for additive monoids.
--
neutral_addition_on :: (Additive-Monoid) r => Rel r b -> r -> b
neutral_addition_on (~~) = Prop.neutral_on (~~) (+) zero

-- | \( \forall a \in R: (o * a) \sim a \)
--
-- A semigroup with a right-neutral multiplicative identity must satisfy:
--
-- @
-- 'neutral_multiplication_on' ('==') 'one' r = 'True'
-- @
-- 
-- Or, equivalently:
--
-- @
-- 'one' '*' r = r
-- @
--
-- This is a required property for multiplicative monoids.
--
neutral_multiplication_on :: (Multiplicative-Monoid) r => Rel r b -> r -> b
neutral_multiplication_on (~~) = Prop.neutral_on (~~) (*) one

------------------------------------------------------------------------------------
-- Properties of commutative semigroups

-- | \( \forall a, b \in R: a + b \sim b + a \)
--
-- This is a an optional property for semigroups, and a required property for semirings.
--
commutative_addition_on :: (Additive-Semigroup) r => Rel r b -> r -> r -> b
commutative_addition_on (~~) = Prop.commutative_on (~~) (+)

-- | \( \forall a, b \in R: a * b \sim b * a \)
--
-- This is a an optional property for semigroups, and a optional property for semirings and rings.
--
commutative_multiplication_on :: (Multiplicative-Semigroup) r => Rel r b -> r -> r -> b
commutative_multiplication_on (~~) = Prop.commutative_on (~~) (*)

------------------------------------------------------------------------------------
-- Properties of cancellative semigroups

-- | \( \forall a, b, c \in R: b + a \sim c + a \Rightarrow b = c \)
--
-- If /R/ is right-cancellative wrt addition then for all /a/
-- the section /(a +)/ is injective.
--
-- See < https://en.wikipedia.org/wiki/Cancellation_property >
--
cancellative_addition_on :: (Additive-Semigroup) r => Rel r Bool -> r -> r -> r -> Bool
cancellative_addition_on (~~) a = Prop.injective_on (~~) (+ a)

-- | \( \forall a, b, c \in R: b * a \sim c * a \Rightarrow b = c \)
--
-- If /R/ is right-cancellative wrt multiplication then for all /a/
-- the section /(a *)/ is injective.
--
cancellative_multiplication_on :: (Multiplicative-Semigroup) r => Rel r Bool -> r -> r -> r -> Bool
cancellative_multiplication_on (~~) a = Prop.injective_on (~~) (* a)

------------------------------------------------------------------------------------
-- Properties of idempotent semigroups

-- | Idempotency property for additive semigroups.
--
-- See < https://en.wikipedia.org/wiki/Band_(mathematics) >.
--
-- This is a an optional property for semigroups and semirings.
--
-- This is a required property for lattices.
--
idempotent_addition_on :: (Additive-Semigroup) r => Rel r b -> r -> b
idempotent_addition_on (~~) r = (r + r) ~~ r

-- | Idempotency property for multplicative semigroups.
--
-- See < https://en.wikipedia.org/wiki/Band_(mathematics) >.
--
-- This is a an optional property for semigroups and semirings.
--
-- This is a required property for lattices.
--
idempotent_multiplication_on :: (Multiplicative-Semigroup) r => Rel r b -> r -> b
idempotent_multiplication_on (~~) r = (r * r) ~~ r

------------------------------------------------------------------------------------
-- Properties of semigroup morphisms

-- |
--
-- This is a required property for additive semigroup morphisms.
--
morphism_additive_on :: (Additive-Semigroup) r => (Additive-Semigroup) s => Rel s b -> (r -> s) -> r -> r -> b
morphism_additive_on (~~) f x y = (f $ x + y) ~~ (f x + f y)

-- |
--
-- This is a required property for multiplicative semigroup morphisms.
--
morphism_multiplicative_on :: (Multiplicative-Semigroup) r => (Multiplicative-Semigroup) s => Rel s b -> (r -> s) -> r -> r -> b
morphism_multiplicative_on (~~) f x y = (f $ x * y) ~~ (f x * f y)

-- |
--
-- This is a required property for additive monoid morphisms.
--
morphism_additive_on' :: (Additive-Monoid) r => (Additive-Monoid) s => Rel s b -> (r -> s) -> b
morphism_additive_on' (~~) f = (f zero) ~~ zero

-- |
--
-- This is a required property for multiplicative monoid morphisms.
--
morphism_multiplicative_on' :: (Multiplicative-Monoid) r => (Multiplicative-Monoid) s => Rel s b -> (r -> s) -> b
morphism_multiplicative_on' (~~) f = (f one) ~~ one