{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE IncoherentInstances #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}

-- | This module defines all the functions you will use to define your test suite.
module Test.Syd.SpecDef where

import Data.Kind
import Data.Text (Text)
import Data.Word
import GHC.Stack
import Test.QuickCheck.IO ()
import Test.Syd.HList
import Test.Syd.Run
import Test.Syd.SpecForest

data TDef value = TDef {TDef value -> value
testDefVal :: value, TDef value -> CallStack
testDefCallStack :: CallStack}
  deriving (a -> TDef b -> TDef a
(a -> b) -> TDef a -> TDef b
(forall a b. (a -> b) -> TDef a -> TDef b)
-> (forall a b. a -> TDef b -> TDef a) -> Functor TDef
forall a b. a -> TDef b -> TDef a
forall a b. (a -> b) -> TDef a -> TDef b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> TDef b -> TDef a
$c<$ :: forall a b. a -> TDef b -> TDef a
fmap :: (a -> b) -> TDef a -> TDef b
$cfmap :: forall a b. (a -> b) -> TDef a -> TDef b
Functor, TDef a -> Bool
(a -> m) -> TDef a -> m
(a -> b -> b) -> b -> TDef a -> b
(forall m. Monoid m => TDef m -> m)
-> (forall m a. Monoid m => (a -> m) -> TDef a -> m)
-> (forall m a. Monoid m => (a -> m) -> TDef a -> m)
-> (forall a b. (a -> b -> b) -> b -> TDef a -> b)
-> (forall a b. (a -> b -> b) -> b -> TDef a -> b)
-> (forall b a. (b -> a -> b) -> b -> TDef a -> b)
-> (forall b a. (b -> a -> b) -> b -> TDef a -> b)
-> (forall a. (a -> a -> a) -> TDef a -> a)
-> (forall a. (a -> a -> a) -> TDef a -> a)
-> (forall a. TDef a -> [a])
-> (forall a. TDef a -> Bool)
-> (forall a. TDef a -> Int)
-> (forall a. Eq a => a -> TDef a -> Bool)
-> (forall a. Ord a => TDef a -> a)
-> (forall a. Ord a => TDef a -> a)
-> (forall a. Num a => TDef a -> a)
-> (forall a. Num a => TDef a -> a)
-> Foldable TDef
forall a. Eq a => a -> TDef a -> Bool
forall a. Num a => TDef a -> a
forall a. Ord a => TDef a -> a
forall m. Monoid m => TDef m -> m
forall a. TDef a -> Bool
forall a. TDef a -> Int
forall a. TDef a -> [a]
forall a. (a -> a -> a) -> TDef a -> a
forall m a. Monoid m => (a -> m) -> TDef a -> m
forall b a. (b -> a -> b) -> b -> TDef a -> b
forall a b. (a -> b -> b) -> b -> TDef a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: TDef a -> a
$cproduct :: forall a. Num a => TDef a -> a
sum :: TDef a -> a
$csum :: forall a. Num a => TDef a -> a
minimum :: TDef a -> a
$cminimum :: forall a. Ord a => TDef a -> a
maximum :: TDef a -> a
$cmaximum :: forall a. Ord a => TDef a -> a
elem :: a -> TDef a -> Bool
$celem :: forall a. Eq a => a -> TDef a -> Bool
length :: TDef a -> Int
$clength :: forall a. TDef a -> Int
null :: TDef a -> Bool
$cnull :: forall a. TDef a -> Bool
toList :: TDef a -> [a]
$ctoList :: forall a. TDef a -> [a]
foldl1 :: (a -> a -> a) -> TDef a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> TDef a -> a
foldr1 :: (a -> a -> a) -> TDef a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> TDef a -> a
foldl' :: (b -> a -> b) -> b -> TDef a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> TDef a -> b
foldl :: (b -> a -> b) -> b -> TDef a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> TDef a -> b
foldr' :: (a -> b -> b) -> b -> TDef a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> TDef a -> b
foldr :: (a -> b -> b) -> b -> TDef a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> TDef a -> b
foldMap' :: (a -> m) -> TDef a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> TDef a -> m
foldMap :: (a -> m) -> TDef a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> TDef a -> m
fold :: TDef m -> m
$cfold :: forall m. Monoid m => TDef m -> m
Foldable, Functor TDef
Foldable TDef
Functor TDef
-> Foldable TDef
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> TDef a -> f (TDef b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    TDef (f a) -> f (TDef a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> TDef a -> m (TDef b))
-> (forall (m :: * -> *) a. Monad m => TDef (m a) -> m (TDef a))
-> Traversable TDef
(a -> f b) -> TDef a -> f (TDef b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => TDef (m a) -> m (TDef a)
forall (f :: * -> *) a. Applicative f => TDef (f a) -> f (TDef a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> TDef a -> m (TDef b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> TDef a -> f (TDef b)
sequence :: TDef (m a) -> m (TDef a)
$csequence :: forall (m :: * -> *) a. Monad m => TDef (m a) -> m (TDef a)
mapM :: (a -> m b) -> TDef a -> m (TDef b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> TDef a -> m (TDef b)
sequenceA :: TDef (f a) -> f (TDef a)
$csequenceA :: forall (f :: * -> *) a. Applicative f => TDef (f a) -> f (TDef a)
traverse :: (a -> f b) -> TDef a -> f (TDef b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> TDef a -> f (TDef b)
$cp2Traversable :: Foldable TDef
$cp1Traversable :: Functor TDef
Traversable)

type TestForest outers inner = SpecDefForest outers inner ()

type TestTree outers inner = SpecDefTree outers inner ()

type SpecDefForest (outers :: [Type]) inner extra = [SpecDefTree outers inner extra]

-- | A tree of tests
--
-- This type has three parameters:
--
-- * @outers@: A type-level list of the outer resources. These are resources that are prived once, around a group of tests. (This is the type of the results of `aroundAll`.)
-- * @inner@: The inner resource. This is a resource that is set up around every test, and even every example of a property test. (This is the type of the result of `around`.)
-- * @result@: The result ('TestDefM' is a monad.)
--
-- In practice, all of these three parameters should be '()' at the top level.
--
-- When you're just using sydtest and not writing a library for sydtest, you probably don't even want to concern yourself with this type.
data SpecDefTree (outers :: [Type]) inner extra where
  -- | Define a test
  DefSpecifyNode ::
    -- | The description of the test
    Text ->
    -- | How the test can be run given a function that provides the resources
    TDef (((HList outers -> inner -> IO ()) -> IO ()) -> IO TestRunResult) ->
    extra ->
    SpecDefTree outers inner extra
  -- | Define a pending test
  DefPendingNode ::
    -- | The description of the test
    Text ->
    -- | The reason why the test is pending
    Maybe Text ->
    SpecDefTree outers inner extra
  -- | Group tests using a description
  DefDescribeNode ::
    -- | The description
    Text ->
    SpecDefForest outers inner extra ->
    SpecDefTree outers inner extra
  DefWrapNode ::
    -- | The function that wraps running the tests.
    (IO () -> IO ()) ->
    SpecDefForest outers inner extra ->
    SpecDefTree outers inner extra
  DefBeforeAllNode ::
    -- | The function to run (once), beforehand, to produce the outer resource.
    IO outer ->
    SpecDefForest (outer ': otherOuters) inner extra ->
    SpecDefTree otherOuters inner extra
  DefAroundAllNode ::
    -- | The function that provides the outer resource (once), around the tests.
    ((outer -> IO ()) -> IO ()) ->
    SpecDefForest (outer ': otherOuters) inner extra ->
    SpecDefTree otherOuters inner extra
  DefAroundAllWithNode ::
    -- | The function that provides the new outer resource (once), using the old outer resource.
    ((newOuter -> IO ()) -> (oldOuter -> IO ())) ->
    SpecDefForest (newOuter ': oldOuter ': otherOuters) inner extra ->
    SpecDefTree (oldOuter ': otherOuters) inner extra
  DefAfterAllNode ::
    -- | The function to run (once), afterwards, using all outer resources.
    (HList outers -> IO ()) ->
    SpecDefForest outers inner extra ->
    SpecDefTree outers inner extra
  -- | Control the level of parallelism for a given group of tests
  DefParallelismNode ::
    -- | The level of parallelism
    Parallelism ->
    SpecDefForest outers inner extra ->
    SpecDefTree outers inner extra
  -- | Control the execution order randomisation for a given group of tests
  DefRandomisationNode ::
    -- | The execution order randomisation
    ExecutionOrderRandomisation ->
    SpecDefForest outers inner extra ->
    SpecDefTree outers inner extra

instance Functor (SpecDefTree a c) where
  fmap :: forall e f. (e -> f) -> SpecDefTree a c e -> SpecDefTree a c f
  fmap :: (e -> f) -> SpecDefTree a c e -> SpecDefTree a c f
fmap e -> f
f =
    let goF :: forall x y. SpecDefForest x y e -> SpecDefForest x y f
        goF :: SpecDefForest x y e -> SpecDefForest x y f
goF = (SpecDefTree x y e -> SpecDefTree x y f)
-> SpecDefForest x y e -> SpecDefForest x y f
forall a b. (a -> b) -> [a] -> [b]
map ((e -> f) -> SpecDefTree x y e -> SpecDefTree x y f
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap e -> f
f)
     in \case
          DefDescribeNode Text
t SpecDefForest a c e
sdf -> Text -> SpecDefForest a c f -> SpecDefTree a c f
forall (outers :: [*]) inner extra.
Text
-> SpecDefForest outers inner extra
-> SpecDefTree outers inner extra
DefDescribeNode Text
t (SpecDefForest a c f -> SpecDefTree a c f)
-> SpecDefForest a c f -> SpecDefTree a c f
forall a b. (a -> b) -> a -> b
$ SpecDefForest a c e -> SpecDefForest a c f
forall (x :: [*]) y. SpecDefForest x y e -> SpecDefForest x y f
goF SpecDefForest a c e
sdf
          DefPendingNode Text
t Maybe Text
mr -> Text -> Maybe Text -> SpecDefTree a c f
forall (outers :: [*]) inner extra.
Text -> Maybe Text -> SpecDefTree outers inner extra
DefPendingNode Text
t Maybe Text
mr
          DefSpecifyNode Text
t TDef (((HList a -> c -> IO ()) -> IO ()) -> IO TestRunResult)
td e
e -> Text
-> TDef (((HList a -> c -> IO ()) -> IO ()) -> IO TestRunResult)
-> f
-> SpecDefTree a c f
forall (outers :: [*]) inner extra.
Text
-> TDef
     (((HList outers -> inner -> IO ()) -> IO ()) -> IO TestRunResult)
-> extra
-> SpecDefTree outers inner extra
DefSpecifyNode Text
t TDef (((HList a -> c -> IO ()) -> IO ()) -> IO TestRunResult)
td (e -> f
f e
e)
          DefWrapNode IO () -> IO ()
func SpecDefForest a c e
sdf -> (IO () -> IO ()) -> SpecDefForest a c f -> SpecDefTree a c f
forall (outers :: [*]) inner extra.
(IO () -> IO ())
-> SpecDefForest outers inner extra
-> SpecDefTree outers inner extra
DefWrapNode IO () -> IO ()
func (SpecDefForest a c f -> SpecDefTree a c f)
-> SpecDefForest a c f -> SpecDefTree a c f
forall a b. (a -> b) -> a -> b
$ SpecDefForest a c e -> SpecDefForest a c f
forall (x :: [*]) y. SpecDefForest x y e -> SpecDefForest x y f
goF SpecDefForest a c e
sdf
          DefBeforeAllNode IO outer
func SpecDefForest (outer : a) c e
sdf -> IO outer -> SpecDefForest (outer : a) c f -> SpecDefTree a c f
forall outer (otherOuters :: [*]) inner extra.
IO outer
-> SpecDefForest (outer : otherOuters) inner extra
-> SpecDefTree otherOuters inner extra
DefBeforeAllNode IO outer
func (SpecDefForest (outer : a) c f -> SpecDefTree a c f)
-> SpecDefForest (outer : a) c f -> SpecDefTree a c f
forall a b. (a -> b) -> a -> b
$ SpecDefForest (outer : a) c e -> SpecDefForest (outer : a) c f
forall (x :: [*]) y. SpecDefForest x y e -> SpecDefForest x y f
goF SpecDefForest (outer : a) c e
sdf
          DefAroundAllNode (outer -> IO ()) -> IO ()
func SpecDefForest (outer : a) c e
sdf -> ((outer -> IO ()) -> IO ())
-> SpecDefForest (outer : a) c f -> SpecDefTree a c f
forall outer (otherOuters :: [*]) inner extra.
((outer -> IO ()) -> IO ())
-> SpecDefForest (outer : otherOuters) inner extra
-> SpecDefTree otherOuters inner extra
DefAroundAllNode (outer -> IO ()) -> IO ()
func (SpecDefForest (outer : a) c f -> SpecDefTree a c f)
-> SpecDefForest (outer : a) c f -> SpecDefTree a c f
forall a b. (a -> b) -> a -> b
$ SpecDefForest (outer : a) c e -> SpecDefForest (outer : a) c f
forall (x :: [*]) y. SpecDefForest x y e -> SpecDefForest x y f
goF SpecDefForest (outer : a) c e
sdf
          DefAroundAllWithNode (newOuter -> IO ()) -> oldOuter -> IO ()
func SpecDefForest (newOuter : oldOuter : otherOuters) c e
sdf -> ((newOuter -> IO ()) -> oldOuter -> IO ())
-> SpecDefForest (newOuter : oldOuter : otherOuters) c f
-> SpecDefTree (oldOuter : otherOuters) c f
forall newOuter oldOuter (otherOuters :: [*]) inner extra.
((newOuter -> IO ()) -> oldOuter -> IO ())
-> SpecDefForest (newOuter : oldOuter : otherOuters) inner extra
-> SpecDefTree (oldOuter : otherOuters) inner extra
DefAroundAllWithNode (newOuter -> IO ()) -> oldOuter -> IO ()
func (SpecDefForest (newOuter : oldOuter : otherOuters) c f
 -> SpecDefTree (oldOuter : otherOuters) c f)
-> SpecDefForest (newOuter : oldOuter : otherOuters) c f
-> SpecDefTree (oldOuter : otherOuters) c f
forall a b. (a -> b) -> a -> b
$ SpecDefForest (newOuter : oldOuter : otherOuters) c e
-> SpecDefForest (newOuter : oldOuter : otherOuters) c f
forall (x :: [*]) y. SpecDefForest x y e -> SpecDefForest x y f
goF SpecDefForest (newOuter : oldOuter : otherOuters) c e
sdf
          DefAfterAllNode HList a -> IO ()
func SpecDefForest a c e
sdf -> (HList a -> IO ()) -> SpecDefForest a c f -> SpecDefTree a c f
forall (outers :: [*]) inner extra.
(HList outers -> IO ())
-> SpecDefForest outers inner extra
-> SpecDefTree outers inner extra
DefAfterAllNode HList a -> IO ()
func (SpecDefForest a c f -> SpecDefTree a c f)
-> SpecDefForest a c f -> SpecDefTree a c f
forall a b. (a -> b) -> a -> b
$ SpecDefForest a c e -> SpecDefForest a c f
forall (x :: [*]) y. SpecDefForest x y e -> SpecDefForest x y f
goF SpecDefForest a c e
sdf
          DefParallelismNode Parallelism
p SpecDefForest a c e
sdf -> Parallelism -> SpecDefForest a c f -> SpecDefTree a c f
forall (outers :: [*]) inner extra.
Parallelism
-> SpecDefForest outers inner extra
-> SpecDefTree outers inner extra
DefParallelismNode Parallelism
p (SpecDefForest a c f -> SpecDefTree a c f)
-> SpecDefForest a c f -> SpecDefTree a c f
forall a b. (a -> b) -> a -> b
$ SpecDefForest a c e -> SpecDefForest a c f
forall (x :: [*]) y. SpecDefForest x y e -> SpecDefForest x y f
goF SpecDefForest a c e
sdf
          DefRandomisationNode ExecutionOrderRandomisation
p SpecDefForest a c e
sdf -> ExecutionOrderRandomisation
-> SpecDefForest a c f -> SpecDefTree a c f
forall (outers :: [*]) inner extra.
ExecutionOrderRandomisation
-> SpecDefForest outers inner extra
-> SpecDefTree outers inner extra
DefRandomisationNode ExecutionOrderRandomisation
p (SpecDefForest a c f -> SpecDefTree a c f)
-> SpecDefForest a c f -> SpecDefTree a c f
forall a b. (a -> b) -> a -> b
$ SpecDefForest a c e -> SpecDefForest a c f
forall (x :: [*]) y. SpecDefForest x y e -> SpecDefForest x y f
goF SpecDefForest a c e
sdf

instance Foldable (SpecDefTree a c) where
  foldMap :: forall e m. Monoid m => (e -> m) -> SpecDefTree a c e -> m
  foldMap :: (e -> m) -> SpecDefTree a c e -> m
foldMap e -> m
f =
    let goF :: forall x y. SpecDefForest x y e -> m
        goF :: SpecDefForest x y e -> m
goF = (SpecDefTree x y e -> m) -> SpecDefForest x y e -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap ((e -> m) -> SpecDefTree x y e -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap e -> m
f)
     in \case
          DefDescribeNode Text
_ SpecDefForest a c e
sdf -> SpecDefForest a c e -> m
forall (x :: [*]) y. SpecDefForest x y e -> m
goF SpecDefForest a c e
sdf
          DefPendingNode Text
_ Maybe Text
_ -> m
forall a. Monoid a => a
mempty
          DefSpecifyNode Text
_ TDef (((HList a -> c -> IO ()) -> IO ()) -> IO TestRunResult)
_ e
e -> e -> m
f e
e
          DefWrapNode IO () -> IO ()
_ SpecDefForest a c e
sdf -> SpecDefForest a c e -> m
forall (x :: [*]) y. SpecDefForest x y e -> m
goF SpecDefForest a c e
sdf
          DefBeforeAllNode IO outer
_ SpecDefForest (outer : a) c e
sdf -> SpecDefForest (outer : a) c e -> m
forall (x :: [*]) y. SpecDefForest x y e -> m
goF SpecDefForest (outer : a) c e
sdf
          DefAroundAllNode (outer -> IO ()) -> IO ()
_ SpecDefForest (outer : a) c e
sdf -> SpecDefForest (outer : a) c e -> m
forall (x :: [*]) y. SpecDefForest x y e -> m
goF SpecDefForest (outer : a) c e
sdf
          DefAroundAllWithNode (newOuter -> IO ()) -> oldOuter -> IO ()
_ SpecDefForest (newOuter : oldOuter : otherOuters) c e
sdf -> SpecDefForest (newOuter : oldOuter : otherOuters) c e -> m
forall (x :: [*]) y. SpecDefForest x y e -> m
goF SpecDefForest (newOuter : oldOuter : otherOuters) c e
sdf
          DefAfterAllNode HList a -> IO ()
_ SpecDefForest a c e
sdf -> SpecDefForest a c e -> m
forall (x :: [*]) y. SpecDefForest x y e -> m
goF SpecDefForest a c e
sdf
          DefParallelismNode Parallelism
_ SpecDefForest a c e
sdf -> SpecDefForest a c e -> m
forall (x :: [*]) y. SpecDefForest x y e -> m
goF SpecDefForest a c e
sdf
          DefRandomisationNode ExecutionOrderRandomisation
_ SpecDefForest a c e
sdf -> SpecDefForest a c e -> m
forall (x :: [*]) y. SpecDefForest x y e -> m
goF SpecDefForest a c e
sdf

instance Traversable (SpecDefTree a c) where
  traverse :: forall u w f. Applicative f => (u -> f w) -> SpecDefTree a c u -> f (SpecDefTree a c w)
  traverse :: (u -> f w) -> SpecDefTree a c u -> f (SpecDefTree a c w)
traverse u -> f w
f =
    let goF :: forall x y. SpecDefForest x y u -> f (SpecDefForest x y w)
        goF :: SpecDefForest x y u -> f (SpecDefForest x y w)
goF = (SpecDefTree x y u -> f (SpecDefTree x y w))
-> SpecDefForest x y u -> f (SpecDefForest x y w)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse ((u -> f w) -> SpecDefTree x y u -> f (SpecDefTree x y w)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse u -> f w
f)
     in \case
          DefDescribeNode Text
t SpecDefForest a c u
sdf -> Text -> SpecDefForest a c w -> SpecDefTree a c w
forall (outers :: [*]) inner extra.
Text
-> SpecDefForest outers inner extra
-> SpecDefTree outers inner extra
DefDescribeNode Text
t (SpecDefForest a c w -> SpecDefTree a c w)
-> f (SpecDefForest a c w) -> f (SpecDefTree a c w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SpecDefForest a c u -> f (SpecDefForest a c w)
forall (x :: [*]) y. SpecDefForest x y u -> f (SpecDefForest x y w)
goF SpecDefForest a c u
sdf
          DefPendingNode Text
t Maybe Text
mr -> SpecDefTree a c w -> f (SpecDefTree a c w)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (SpecDefTree a c w -> f (SpecDefTree a c w))
-> SpecDefTree a c w -> f (SpecDefTree a c w)
forall a b. (a -> b) -> a -> b
$ Text -> Maybe Text -> SpecDefTree a c w
forall (outers :: [*]) inner extra.
Text -> Maybe Text -> SpecDefTree outers inner extra
DefPendingNode Text
t Maybe Text
mr
          DefSpecifyNode Text
t TDef (((HList a -> c -> IO ()) -> IO ()) -> IO TestRunResult)
td u
e -> Text
-> TDef (((HList a -> c -> IO ()) -> IO ()) -> IO TestRunResult)
-> w
-> SpecDefTree a c w
forall (outers :: [*]) inner extra.
Text
-> TDef
     (((HList outers -> inner -> IO ()) -> IO ()) -> IO TestRunResult)
-> extra
-> SpecDefTree outers inner extra
DefSpecifyNode Text
t TDef (((HList a -> c -> IO ()) -> IO ()) -> IO TestRunResult)
td (w -> SpecDefTree a c w) -> f w -> f (SpecDefTree a c w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> u -> f w
f u
e
          DefWrapNode IO () -> IO ()
func SpecDefForest a c u
sdf -> (IO () -> IO ()) -> SpecDefForest a c w -> SpecDefTree a c w
forall (outers :: [*]) inner extra.
(IO () -> IO ())
-> SpecDefForest outers inner extra
-> SpecDefTree outers inner extra
DefWrapNode IO () -> IO ()
func (SpecDefForest a c w -> SpecDefTree a c w)
-> f (SpecDefForest a c w) -> f (SpecDefTree a c w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SpecDefForest a c u -> f (SpecDefForest a c w)
forall (x :: [*]) y. SpecDefForest x y u -> f (SpecDefForest x y w)
goF SpecDefForest a c u
sdf
          DefBeforeAllNode IO outer
func SpecDefForest (outer : a) c u
sdf -> IO outer -> SpecDefForest (outer : a) c w -> SpecDefTree a c w
forall outer (otherOuters :: [*]) inner extra.
IO outer
-> SpecDefForest (outer : otherOuters) inner extra
-> SpecDefTree otherOuters inner extra
DefBeforeAllNode IO outer
func (SpecDefForest (outer : a) c w -> SpecDefTree a c w)
-> f (SpecDefForest (outer : a) c w) -> f (SpecDefTree a c w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SpecDefForest (outer : a) c u -> f (SpecDefForest (outer : a) c w)
forall (x :: [*]) y. SpecDefForest x y u -> f (SpecDefForest x y w)
goF SpecDefForest (outer : a) c u
sdf
          DefAroundAllNode (outer -> IO ()) -> IO ()
func SpecDefForest (outer : a) c u
sdf -> ((outer -> IO ()) -> IO ())
-> SpecDefForest (outer : a) c w -> SpecDefTree a c w
forall outer (otherOuters :: [*]) inner extra.
((outer -> IO ()) -> IO ())
-> SpecDefForest (outer : otherOuters) inner extra
-> SpecDefTree otherOuters inner extra
DefAroundAllNode (outer -> IO ()) -> IO ()
func (SpecDefForest (outer : a) c w -> SpecDefTree a c w)
-> f (SpecDefForest (outer : a) c w) -> f (SpecDefTree a c w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SpecDefForest (outer : a) c u -> f (SpecDefForest (outer : a) c w)
forall (x :: [*]) y. SpecDefForest x y u -> f (SpecDefForest x y w)
goF SpecDefForest (outer : a) c u
sdf
          DefAroundAllWithNode (newOuter -> IO ()) -> oldOuter -> IO ()
func SpecDefForest (newOuter : oldOuter : otherOuters) c u
sdf -> ((newOuter -> IO ()) -> oldOuter -> IO ())
-> SpecDefForest (newOuter : oldOuter : otherOuters) c w
-> SpecDefTree (oldOuter : otherOuters) c w
forall newOuter oldOuter (otherOuters :: [*]) inner extra.
((newOuter -> IO ()) -> oldOuter -> IO ())
-> SpecDefForest (newOuter : oldOuter : otherOuters) inner extra
-> SpecDefTree (oldOuter : otherOuters) inner extra
DefAroundAllWithNode (newOuter -> IO ()) -> oldOuter -> IO ()
func (SpecDefForest (newOuter : oldOuter : otherOuters) c w
 -> SpecDefTree (oldOuter : otherOuters) c w)
-> f (SpecDefForest (newOuter : oldOuter : otherOuters) c w)
-> f (SpecDefTree (oldOuter : otherOuters) c w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SpecDefForest (newOuter : oldOuter : otherOuters) c u
-> f (SpecDefForest (newOuter : oldOuter : otherOuters) c w)
forall (x :: [*]) y. SpecDefForest x y u -> f (SpecDefForest x y w)
goF SpecDefForest (newOuter : oldOuter : otherOuters) c u
sdf
          DefAfterAllNode HList a -> IO ()
func SpecDefForest a c u
sdf -> (HList a -> IO ()) -> SpecDefForest a c w -> SpecDefTree a c w
forall (outers :: [*]) inner extra.
(HList outers -> IO ())
-> SpecDefForest outers inner extra
-> SpecDefTree outers inner extra
DefAfterAllNode HList a -> IO ()
func (SpecDefForest a c w -> SpecDefTree a c w)
-> f (SpecDefForest a c w) -> f (SpecDefTree a c w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SpecDefForest a c u -> f (SpecDefForest a c w)
forall (x :: [*]) y. SpecDefForest x y u -> f (SpecDefForest x y w)
goF SpecDefForest a c u
sdf
          DefParallelismNode Parallelism
p SpecDefForest a c u
sdf -> Parallelism -> SpecDefForest a c w -> SpecDefTree a c w
forall (outers :: [*]) inner extra.
Parallelism
-> SpecDefForest outers inner extra
-> SpecDefTree outers inner extra
DefParallelismNode Parallelism
p (SpecDefForest a c w -> SpecDefTree a c w)
-> f (SpecDefForest a c w) -> f (SpecDefTree a c w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SpecDefForest a c u -> f (SpecDefForest a c w)
forall (x :: [*]) y. SpecDefForest x y u -> f (SpecDefForest x y w)
goF SpecDefForest a c u
sdf
          DefRandomisationNode ExecutionOrderRandomisation
p SpecDefForest a c u
sdf -> ExecutionOrderRandomisation
-> SpecDefForest a c w -> SpecDefTree a c w
forall (outers :: [*]) inner extra.
ExecutionOrderRandomisation
-> SpecDefForest outers inner extra
-> SpecDefTree outers inner extra
DefRandomisationNode ExecutionOrderRandomisation
p (SpecDefForest a c w -> SpecDefTree a c w)
-> f (SpecDefForest a c w) -> f (SpecDefTree a c w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SpecDefForest a c u -> f (SpecDefForest a c w)
forall (x :: [*]) y. SpecDefForest x y u -> f (SpecDefForest x y w)
goF SpecDefForest a c u
sdf

data Parallelism = Parallel | Sequential

data ExecutionOrderRandomisation = RandomiseExecutionOrder | DoNotRandomiseExecutionOrder

type ResultForest = SpecForest (TDef (Timed TestRunResult))

type ResultTree = SpecTree (TDef (Timed TestRunResult))

computeTestSuiteStats :: ResultForest -> TestSuiteStats
computeTestSuiteStats :: ResultForest -> TestSuiteStats
computeTestSuiteStats = ResultForest -> TestSuiteStats
goF
  where
    goF :: ResultForest -> TestSuiteStats
    goF :: ResultForest -> TestSuiteStats
goF = (ResultTree -> TestSuiteStats) -> ResultForest -> TestSuiteStats
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap ResultTree -> TestSuiteStats
goT
    goT :: ResultTree -> TestSuiteStats
    goT :: ResultTree -> TestSuiteStats
goT = \case
      SpecifyNode Text
_ (TDef (Timed TestRunResult {[String]
Maybe String
Maybe Word
Maybe (Either String Assertion)
Maybe (Map String Int)
Maybe (Map String (Map String Int))
Maybe (Map [String] Int)
Maybe GoldenCase
TestStatus
testRunResultExtraInfo :: TestRunResult -> Maybe String
testRunResultGoldenCase :: TestRunResult -> Maybe GoldenCase
testRunResultTables :: TestRunResult -> Maybe (Map String (Map String Int))
testRunResultClasses :: TestRunResult -> Maybe (Map String Int)
testRunResultLabels :: TestRunResult -> Maybe (Map [String] Int)
testRunResultFailingInputs :: TestRunResult -> [String]
testRunResultNumShrinks :: TestRunResult -> Maybe Word
testRunResultNumTests :: TestRunResult -> Maybe Word
testRunResultException :: TestRunResult -> Maybe (Either String Assertion)
testRunResultStatus :: TestRunResult -> TestStatus
testRunResultExtraInfo :: Maybe String
testRunResultGoldenCase :: Maybe GoldenCase
testRunResultTables :: Maybe (Map String (Map String Int))
testRunResultClasses :: Maybe (Map String Int)
testRunResultLabels :: Maybe (Map [String] Int)
testRunResultFailingInputs :: [String]
testRunResultNumShrinks :: Maybe Word
testRunResultNumTests :: Maybe Word
testRunResultException :: Maybe (Either String Assertion)
testRunResultStatus :: TestStatus
..} Word64
t) CallStack
_) ->
        TestSuiteStats :: Word -> Word -> Word -> Maybe Word64 -> TestSuiteStats
TestSuiteStats
          { testSuiteStatSuccesses :: Word
testSuiteStatSuccesses = case TestStatus
testRunResultStatus of
              TestStatus
TestPassed -> Word
1
              TestStatus
TestFailed -> Word
0,
            testSuiteStatFailures :: Word
testSuiteStatFailures = case TestStatus
testRunResultStatus of
              TestStatus
TestPassed -> Word
0
              TestStatus
TestFailed -> Word
1,
            testSuiteStatPending :: Word
testSuiteStatPending = Word
0,
            testSuiteStatLongestTime :: Maybe Word64
testSuiteStatLongestTime = Word64 -> Maybe Word64
forall a. a -> Maybe a
Just Word64
t
          }
      PendingNode Text
_ Maybe Text
_ ->
        TestSuiteStats :: Word -> Word -> Word -> Maybe Word64 -> TestSuiteStats
TestSuiteStats
          { testSuiteStatSuccesses :: Word
testSuiteStatSuccesses = Word
0,
            testSuiteStatFailures :: Word
testSuiteStatFailures = Word
0,
            testSuiteStatPending :: Word
testSuiteStatPending = Word
1,
            testSuiteStatLongestTime :: Maybe Word64
testSuiteStatLongestTime = Maybe Word64
forall a. Maybe a
Nothing
          }
      DescribeNode Text
_ ResultForest
sf -> ResultForest -> TestSuiteStats
goF ResultForest
sf
      SubForestNode ResultForest
sf -> ResultForest -> TestSuiteStats
goF ResultForest
sf

data TestSuiteStats = TestSuiteStats
  { TestSuiteStats -> Word
testSuiteStatSuccesses :: !Word,
    TestSuiteStats -> Word
testSuiteStatFailures :: !Word,
    TestSuiteStats -> Word
testSuiteStatPending :: !Word,
    TestSuiteStats -> Maybe Word64
testSuiteStatLongestTime :: !(Maybe Word64)
  }
  deriving (Int -> TestSuiteStats -> ShowS
[TestSuiteStats] -> ShowS
TestSuiteStats -> String
(Int -> TestSuiteStats -> ShowS)
-> (TestSuiteStats -> String)
-> ([TestSuiteStats] -> ShowS)
-> Show TestSuiteStats
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [TestSuiteStats] -> ShowS
$cshowList :: [TestSuiteStats] -> ShowS
show :: TestSuiteStats -> String
$cshow :: TestSuiteStats -> String
showsPrec :: Int -> TestSuiteStats -> ShowS
$cshowsPrec :: Int -> TestSuiteStats -> ShowS
Show, TestSuiteStats -> TestSuiteStats -> Bool
(TestSuiteStats -> TestSuiteStats -> Bool)
-> (TestSuiteStats -> TestSuiteStats -> Bool) -> Eq TestSuiteStats
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: TestSuiteStats -> TestSuiteStats -> Bool
$c/= :: TestSuiteStats -> TestSuiteStats -> Bool
== :: TestSuiteStats -> TestSuiteStats -> Bool
$c== :: TestSuiteStats -> TestSuiteStats -> Bool
Eq)

instance Semigroup TestSuiteStats where
  <> :: TestSuiteStats -> TestSuiteStats -> TestSuiteStats
(<>) TestSuiteStats
tss1 TestSuiteStats
tss2 =
    TestSuiteStats :: Word -> Word -> Word -> Maybe Word64 -> TestSuiteStats
TestSuiteStats
      { testSuiteStatSuccesses :: Word
testSuiteStatSuccesses = TestSuiteStats -> Word
testSuiteStatSuccesses TestSuiteStats
tss1 Word -> Word -> Word
forall a. Num a => a -> a -> a
+ TestSuiteStats -> Word
testSuiteStatSuccesses TestSuiteStats
tss2,
        testSuiteStatFailures :: Word
testSuiteStatFailures = TestSuiteStats -> Word
testSuiteStatFailures TestSuiteStats
tss1 Word -> Word -> Word
forall a. Num a => a -> a -> a
+ TestSuiteStats -> Word
testSuiteStatFailures TestSuiteStats
tss2,
        testSuiteStatPending :: Word
testSuiteStatPending = TestSuiteStats -> Word
testSuiteStatPending TestSuiteStats
tss1 Word -> Word -> Word
forall a. Num a => a -> a -> a
+ TestSuiteStats -> Word
testSuiteStatPending TestSuiteStats
tss2,
        testSuiteStatLongestTime :: Maybe Word64
testSuiteStatLongestTime = case (TestSuiteStats -> Maybe Word64
testSuiteStatLongestTime TestSuiteStats
tss1, TestSuiteStats -> Maybe Word64
testSuiteStatLongestTime TestSuiteStats
tss2) of
          (Maybe Word64
Nothing, Maybe Word64
Nothing) -> Maybe Word64
forall a. Maybe a
Nothing
          (Just Word64
t1, Maybe Word64
Nothing) -> Word64 -> Maybe Word64
forall a. a -> Maybe a
Just Word64
t1
          (Maybe Word64
Nothing, Just Word64
t2) -> Word64 -> Maybe Word64
forall a. a -> Maybe a
Just Word64
t2
          (Just Word64
t1, Just Word64
t2) -> Word64 -> Maybe Word64
forall a. a -> Maybe a
Just (Word64 -> Word64 -> Word64
forall a. Ord a => a -> a -> a
max Word64
t1 Word64
t2)
      }

instance Monoid TestSuiteStats where
  mappend :: TestSuiteStats -> TestSuiteStats -> TestSuiteStats
mappend = TestSuiteStats -> TestSuiteStats -> TestSuiteStats
forall a. Semigroup a => a -> a -> a
(<>)
  mempty :: TestSuiteStats
mempty =
    TestSuiteStats :: Word -> Word -> Word -> Maybe Word64 -> TestSuiteStats
TestSuiteStats
      { testSuiteStatSuccesses :: Word
testSuiteStatSuccesses = Word
0,
        testSuiteStatFailures :: Word
testSuiteStatFailures = Word
0,
        testSuiteStatPending :: Word
testSuiteStatPending = Word
0,
        testSuiteStatLongestTime :: Maybe Word64
testSuiteStatLongestTime = Maybe Word64
forall a. Maybe a
Nothing
      }

shouldExitFail :: ResultForest -> Bool
shouldExitFail :: ResultForest -> Bool
shouldExitFail = (ResultTree -> Bool) -> ResultForest -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any ((TDef (Timed TestRunResult) -> Bool) -> ResultTree -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any ((TestStatus -> TestStatus -> Bool
forall a. Eq a => a -> a -> Bool
== TestStatus
TestFailed) (TestStatus -> Bool)
-> (TDef (Timed TestRunResult) -> TestStatus)
-> TDef (Timed TestRunResult)
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TestRunResult -> TestStatus
testRunResultStatus (TestRunResult -> TestStatus)
-> (TDef (Timed TestRunResult) -> TestRunResult)
-> TDef (Timed TestRunResult)
-> TestStatus
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Timed TestRunResult -> TestRunResult
forall a. Timed a -> a
timedValue (Timed TestRunResult -> TestRunResult)
-> (TDef (Timed TestRunResult) -> Timed TestRunResult)
-> TDef (Timed TestRunResult)
-> TestRunResult
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TDef (Timed TestRunResult) -> Timed TestRunResult
forall value. TDef value -> value
testDefVal))