module TextBuilderDev
  ( TextBuilder,

    -- * Accessors
    buildText,
    length,
    null,

    -- ** Output IO
    putToStdOut,
    putToStdErr,
    putLnToStdOut,
    putLnToStdErr,

    -- * Constructors

    -- ** Builder manipulators
    force,
    intercalate,
    intercalateMap,
    padFromLeft,
    padFromRight,

    -- ** Textual
    text,
    lazyText,
    string,
    asciiByteString,
    hexData,

    -- ** Character
    char,

    -- *** Low-level character
    unicodeCodePoint,
    utf16CodeUnits1,
    utf16CodeUnits2,
    utf8CodeUnits1,
    utf8CodeUnits2,
    utf8CodeUnits3,
    utf8CodeUnits4,

    -- ** Integers

    -- *** Decimal
    decimal,
    unsignedDecimal,
    fixedUnsignedDecimal,
    thousandSeparatedDecimal,
    thousandSeparatedUnsignedDecimal,
    dataSizeInBytesInDecimal,

    -- *** Binary
    unsignedBinary,
    unsignedPaddedBinary,
    finiteBitsUnsignedBinary,

    -- *** Hexadecimal
    hexadecimal,
    unsignedHexadecimal,

    -- ** Digits
    decimalDigit,
    hexadecimalDigit,

    -- ** Real
    fixedDouble,
    doublePercent,

    -- ** Time
    utcTimeInIso8601,
    utcTimestampInIso8601,
    intervalInSeconds,

    -- * Classes
    IsomorphicToTextBuilder (..),
  )
where

import qualified Data.ByteString as ByteString
import qualified Data.List.Split as Split
import qualified Data.Text as Text
import qualified Data.Text.IO as Text
import qualified Data.Text.Lazy as TextLazy
import qualified Data.Text.Lazy.Builder as TextLazyBuilder
import qualified DeferredFolds.Unfoldr as Unfoldr
import qualified Test.QuickCheck.Gen as QcGen
import qualified TextBuilderDev.Allocator as Allocator
import TextBuilderDev.Prelude hiding (intercalate, length, null)

-- * --

-- |
-- Evidence that there exists an unambiguous way to convert
-- a type to and from "TextBuilder".
--
-- Unlike conversion classes from other libs this class is lawful.
-- The law is:
--
-- @'fromTextBuilder' . 'toTextBuilder' = 'id'@
--
-- This class does not provide implicit rendering,
-- such as from integer to its decimal representation.
-- There are multiple ways of representing an integer
-- as text (e.g., hexadecimal, binary).
-- The non-ambiguity is further enforced by the presence of
-- the inverse conversion.
-- In the integer case there is no way to read it
-- from a textual form without a possibility of failing
-- (e.g., when the input string cannot be parsed as an integer).
--
-- If you're looking for such conversion classes,
-- this library is not a place for them,
-- since there can be infinite amount of flavours of
-- conversions. They are context-dependent and as such
-- should be defined as part of the domain.
class IsomorphicToTextBuilder a where
  toTextBuilder :: a -> TextBuilder
  fromTextBuilder :: TextBuilder -> a

instance IsomorphicToTextBuilder TextBuilder where
  toTextBuilder :: TextBuilder -> TextBuilder
toTextBuilder = forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
  fromTextBuilder :: TextBuilder -> TextBuilder
fromTextBuilder = forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id

instance IsomorphicToTextBuilder Text where
  toTextBuilder :: Text -> TextBuilder
toTextBuilder = Text -> TextBuilder
text
  fromTextBuilder :: TextBuilder -> Text
fromTextBuilder = TextBuilder -> Text
buildText

instance IsomorphicToTextBuilder String where
  toTextBuilder :: String -> TextBuilder
toTextBuilder = forall a. IsString a => String -> a
fromString
  fromTextBuilder :: TextBuilder -> String
fromTextBuilder = Text -> String
Text.unpack forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. TextBuilder -> Text
buildText

instance IsomorphicToTextBuilder TextLazy.Text where
  toTextBuilder :: Text -> TextBuilder
toTextBuilder = Text -> TextBuilder
lazyText
  fromTextBuilder :: TextBuilder -> Text
fromTextBuilder = Text -> Text
TextLazy.fromStrict forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. TextBuilder -> Text
buildText

instance IsomorphicToTextBuilder TextLazyBuilder.Builder where
  toTextBuilder :: Builder -> TextBuilder
toTextBuilder = Text -> TextBuilder
text forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Text -> Text
TextLazy.toStrict forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Builder -> Text
TextLazyBuilder.toLazyText
  fromTextBuilder :: TextBuilder -> Builder
fromTextBuilder = Text -> Builder
TextLazyBuilder.fromText forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. TextBuilder -> Text
buildText

-- * --

-- |
-- Specification of how to efficiently construct strict 'Text'.
-- Provides instances of 'Semigroup' and 'Monoid', which have complexity of /O(1)/.
data TextBuilder
  = TextBuilder
      {-# UNPACK #-} !Allocator.Allocator
      {-# UNPACK #-} !Int

instance Semigroup TextBuilder where
  <> :: TextBuilder -> TextBuilder -> TextBuilder
(<>) (TextBuilder Allocator
allocator1 Int
sizeInChars1) (TextBuilder Allocator
allocator2 Int
sizeInChars2) =
    Allocator -> Int -> TextBuilder
TextBuilder
      (Allocator
allocator1 forall a. Semigroup a => a -> a -> a
<> Allocator
allocator2)
      (Int
sizeInChars1 forall a. Num a => a -> a -> a
+ Int
sizeInChars2)
  stimes :: forall b. Integral b => b -> TextBuilder -> TextBuilder
stimes b
n (TextBuilder Allocator
allocator Int
size) =
    Allocator -> Int -> TextBuilder
TextBuilder (forall a b. (Semigroup a, Integral b) => b -> a -> a
stimes b
n Allocator
allocator) (Int
size forall a. Num a => a -> a -> a
* forall a b. (Integral a, Num b) => a -> b
fromIntegral b
n)

instance Monoid TextBuilder where
  {-# INLINE mempty #-}
  mempty :: TextBuilder
mempty = Allocator -> Int -> TextBuilder
TextBuilder forall a. Monoid a => a
mempty Int
0

instance IsString TextBuilder where
  fromString :: String -> TextBuilder
fromString = String -> TextBuilder
string

instance Show TextBuilder where
  show :: TextBuilder -> String
show = Text -> String
Text.unpack forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. TextBuilder -> Text
buildText

instance Eq TextBuilder where
  == :: TextBuilder -> TextBuilder -> Bool
(==) = forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
on forall a. Eq a => a -> a -> Bool
(==) TextBuilder -> Text
buildText

instance Arbitrary TextBuilder where
  arbitrary :: Gen TextBuilder
arbitrary =
    forall a. [Gen a] -> Gen a
QcGen.oneof
      [ forall a. (Int -> Int) -> Gen a -> Gen a
QcGen.scale (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a. Integral a => a -> a -> a
div Int
2)
          forall a b. (a -> b) -> a -> b
$ forall a. [Gen a] -> Gen a
QcGen.oneof
            [ forall a. Semigroup a => a -> a -> a
(<>) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary,
              forall a. Semigroup a => NonEmpty a -> a
sconcat forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
              forall a b. (Semigroup a, Integral b) => b -> a -> a
stimes forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary @Word8 forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary,
              forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Monoid a => a
mempty,
              forall a. Monoid a => [a] -> a
mconcat forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary
            ],
        Text -> TextBuilder
text forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        Text -> TextBuilder
lazyText forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        String -> TextBuilder
string forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        ByteString -> TextBuilder
asciiByteString forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. (Word8 -> Bool) -> ByteString -> ByteString
ByteString.filter (forall a. Ord a => a -> a -> Bool
< Word8
128) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        ByteString -> TextBuilder
hexData forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        Char -> TextBuilder
char forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. Integral a => a -> TextBuilder
decimal @Integer forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. Integral a => a -> TextBuilder
unsignedDecimal @Natural forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. Integral a => Char -> a -> TextBuilder
thousandSeparatedDecimal @Integer forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. Integral a => Char -> a -> TextBuilder
thousandSeparatedUnsignedDecimal @Natural forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. Integral a => Char -> a -> TextBuilder
dataSizeInBytesInDecimal @Natural forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. Integral a => a -> TextBuilder
unsignedBinary @Natural forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. (Integral a, FiniteBits a) => a -> TextBuilder
unsignedPaddedBinary @Word forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. FiniteBits a => a -> TextBuilder
finiteBitsUnsignedBinary @Word forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. Integral a => a -> TextBuilder
hexadecimal @Integer forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. Integral a => a -> TextBuilder
unsignedHexadecimal @Natural forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary,
        forall a. Integral a => a -> TextBuilder
decimalDigit forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Random a => (a, a) -> Gen a
QcGen.choose @Int (Int
0, Int
9),
        forall a. Integral a => a -> TextBuilder
hexadecimalDigit forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Random a => (a, a) -> Gen a
QcGen.choose @Int (Int
0, Int
15),
        Int -> Double -> TextBuilder
fixedDouble forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Random a => (a, a) -> Gen a
QcGen.choose (Int
0, Int
19) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary,
        Int -> Double -> TextBuilder
doublePercent forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Random a => (a, a) -> Gen a
QcGen.choose (Int
0, Int
19) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary,
        Int -> Int -> Int -> Int -> Int -> Int -> TextBuilder
utcTimestampInIso8601 forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Arbitrary a => Gen a
arbitrary,
        forall seconds. RealFrac seconds => seconds -> TextBuilder
intervalInSeconds @Double forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Arbitrary a => Gen a
arbitrary
      ]

instance IsomorphicTo TextBuilder TextBuilder where
  to :: TextBuilder -> TextBuilder
to = forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id

instance IsomorphicTo TextBuilder String where
  to :: String -> TextBuilder
to = String -> TextBuilder
TextBuilderDev.string

instance IsomorphicTo TextBuilder Text where
  to :: Text -> TextBuilder
to = Text -> TextBuilder
TextBuilderDev.text

instance IsomorphicTo TextBuilder TextLazy.Text where
  to :: Text -> TextBuilder
to = Text -> TextBuilder
TextBuilderDev.lazyText

instance IsomorphicTo TextBuilder TextLazyBuilder.Builder where
  to :: Builder -> TextBuilder
to = forall a b. IsomorphicTo a b => b -> a
to forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. IsomorphicTo a b => b -> a
to @TextLazy.Text

instance IsomorphicTo String TextBuilder where
  to :: TextBuilder -> String
to = forall a b. IsomorphicTo a b => b -> a
to forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. IsomorphicTo a b => b -> a
to @Text

instance IsomorphicTo Text TextBuilder where
  to :: TextBuilder -> Text
to = TextBuilder -> Text
TextBuilderDev.buildText

instance IsomorphicTo TextLazy.Text TextBuilder where
  to :: TextBuilder -> Text
to = forall a b. IsomorphicTo a b => b -> a
to forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. IsomorphicTo a b => b -> a
to @Text

instance IsomorphicTo TextLazyBuilder.Builder TextBuilder where
  to :: TextBuilder -> Builder
to = forall a b. IsomorphicTo a b => b -> a
to forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. IsomorphicTo a b => b -> a
to @Text

-- * Accessors

-- | Get the amount of characters.
{-# INLINE length #-}
length :: TextBuilder -> Int
length :: TextBuilder -> Int
length (TextBuilder Allocator
_ Int
x) = Int
x

-- | Check whether the builder is empty.
{-# INLINE null #-}
null :: TextBuilder -> Bool
null :: TextBuilder -> Bool
null = (forall a. Eq a => a -> a -> Bool
== Int
0) forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. TextBuilder -> Int
length

-- | Execute a builder producing a strict text.
buildText :: TextBuilder -> Text
buildText :: TextBuilder -> Text
buildText (TextBuilder Allocator
allocator Int
_) =
  Allocator -> Text
Allocator.allocate Allocator
allocator

-- ** Output IO

-- | Put builder, to stdout.
putToStdOut :: TextBuilder -> IO ()
putToStdOut :: TextBuilder -> IO ()
putToStdOut = Handle -> Text -> IO ()
Text.hPutStr Handle
stdout forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. TextBuilder -> Text
buildText

-- | Put builder, to stderr.
putToStdErr :: TextBuilder -> IO ()
putToStdErr :: TextBuilder -> IO ()
putToStdErr = Handle -> Text -> IO ()
Text.hPutStr Handle
stderr forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. TextBuilder -> Text
buildText

-- | Put builder, followed by a line, to stdout.
putLnToStdOut :: TextBuilder -> IO ()
putLnToStdOut :: TextBuilder -> IO ()
putLnToStdOut = Handle -> Text -> IO ()
Text.hPutStrLn Handle
stdout forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. TextBuilder -> Text
buildText

-- | Put builder, followed by a line, to stderr.
putLnToStdErr :: TextBuilder -> IO ()
putLnToStdErr :: TextBuilder -> IO ()
putLnToStdErr = Handle -> Text -> IO ()
Text.hPutStrLn Handle
stderr forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. TextBuilder -> Text
buildText

-- * Constructors

-- |
-- Run the builder and pack the produced text into a new builder.
--
-- Useful to have around builders that you reuse,
-- because a forced builder is much faster,
-- since it's virtually a single call @memcopy@.
{-# INLINE force #-}
force :: TextBuilder -> TextBuilder
force :: TextBuilder -> TextBuilder
force = Text -> TextBuilder
text forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. TextBuilder -> Text
buildText

-- | Unicode character.
{-# INLINE char #-}
char :: Char -> TextBuilder
char :: Char -> TextBuilder
char = Int -> TextBuilder
unicodeCodePoint forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Char -> Int
ord

-- | Unicode code point.
{-# INLINE unicodeCodePoint #-}
unicodeCodePoint :: Int -> TextBuilder
unicodeCodePoint :: Int -> TextBuilder
unicodeCodePoint Int
a =
  Allocator -> Int -> TextBuilder
TextBuilder (Int -> Allocator
Allocator.unicodeCodePoint Int
a) Int
1

-- | Single code-unit UTF-16 character.
{-# INLINEABLE utf16CodeUnits1 #-}
utf16CodeUnits1 :: Word16 -> TextBuilder
utf16CodeUnits1 :: Word16 -> TextBuilder
utf16CodeUnits1 Word16
a =
  Allocator -> Int -> TextBuilder
TextBuilder (Word16 -> Allocator
Allocator.utf16CodeUnits1 Word16
a) Int
1

-- | Double code-unit UTF-16 character.
{-# INLINEABLE utf16CodeUnits2 #-}
utf16CodeUnits2 :: Word16 -> Word16 -> TextBuilder
utf16CodeUnits2 :: Word16 -> Word16 -> TextBuilder
utf16CodeUnits2 Word16
a Word16
b =
  Allocator -> Int -> TextBuilder
TextBuilder (Word16 -> Word16 -> Allocator
Allocator.utf16CodeUnits2 Word16
a Word16
b) Int
1

-- | Single code-unit UTF-8 character.
{-# INLINE utf8CodeUnits1 #-}
utf8CodeUnits1 :: Word8 -> TextBuilder
utf8CodeUnits1 :: Word8 -> TextBuilder
utf8CodeUnits1 Word8
a =
  Allocator -> Int -> TextBuilder
TextBuilder (Word8 -> Allocator
Allocator.utf8CodeUnits1 Word8
a) Int
1

-- | Double code-unit UTF-8 character.
{-# INLINE utf8CodeUnits2 #-}
utf8CodeUnits2 :: Word8 -> Word8 -> TextBuilder
utf8CodeUnits2 :: Word8 -> Word8 -> TextBuilder
utf8CodeUnits2 Word8
a Word8
b =
  Allocator -> Int -> TextBuilder
TextBuilder (Word8 -> Word8 -> Allocator
Allocator.utf8CodeUnits2 Word8
a Word8
b) Int
1

-- | Triple code-unit UTF-8 character.
{-# INLINE utf8CodeUnits3 #-}
utf8CodeUnits3 :: Word8 -> Word8 -> Word8 -> TextBuilder
utf8CodeUnits3 :: Word8 -> Word8 -> Word8 -> TextBuilder
utf8CodeUnits3 Word8
a Word8
b Word8
c =
  Allocator -> Int -> TextBuilder
TextBuilder (Word8 -> Word8 -> Word8 -> Allocator
Allocator.utf8CodeUnits3 Word8
a Word8
b Word8
c) Int
1

-- | UTF-8 character out of 4 code units.
{-# INLINE utf8CodeUnits4 #-}
utf8CodeUnits4 :: Word8 -> Word8 -> Word8 -> Word8 -> TextBuilder
utf8CodeUnits4 :: Word8 -> Word8 -> Word8 -> Word8 -> TextBuilder
utf8CodeUnits4 Word8
a Word8
b Word8
c Word8
d =
  Allocator -> Int -> TextBuilder
TextBuilder (Word8 -> Word8 -> Word8 -> Word8 -> Allocator
Allocator.utf8CodeUnits4 Word8
a Word8
b Word8
c Word8
d) Int
1

-- | ASCII byte string.
--
-- It's your responsibility to ensure that the bytes are in proper range,
-- otherwise the produced text will be broken.
{-# INLINEABLE asciiByteString #-}
asciiByteString :: ByteString -> TextBuilder
asciiByteString :: ByteString -> TextBuilder
asciiByteString ByteString
byteString =
  Allocator -> Int -> TextBuilder
TextBuilder
    (ByteString -> Allocator
Allocator.asciiByteString ByteString
byteString)
    (ByteString -> Int
ByteString.length ByteString
byteString)

-- | Strict text.
{-# INLINEABLE text #-}
text :: Text -> TextBuilder
text :: Text -> TextBuilder
text Text
text =
  Allocator -> Int -> TextBuilder
TextBuilder (Text -> Allocator
Allocator.text Text
text) (Text -> Int
Text.length Text
text)

-- | Lazy text.
{-# INLINE lazyText #-}
lazyText :: TextLazy.Text -> TextBuilder
lazyText :: Text -> TextBuilder
lazyText =
  forall a. (Text -> a -> a) -> a -> Text -> a
TextLazy.foldrChunks (forall a. Monoid a => a -> a -> a
mappend forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Text -> TextBuilder
text) forall a. Monoid a => a
mempty

-- | String.
{-# INLINE string #-}
string :: String -> TextBuilder
string :: String -> TextBuilder
string =
  forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Char -> TextBuilder
char

-- | Decimal representation of an integral value.
{-# INLINEABLE decimal #-}
decimal :: (Integral a) => a -> TextBuilder
decimal :: forall a. Integral a => a -> TextBuilder
decimal a
i =
  if a
i forall a. Ord a => a -> a -> Bool
>= a
0
    then forall a. Integral a => a -> TextBuilder
unsignedDecimal a
i
    else Int -> TextBuilder
unicodeCodePoint Int
45 forall a. Semigroup a => a -> a -> a
<> forall a. Integral a => a -> TextBuilder
unsignedDecimal (forall a. Num a => a -> a
negate a
i)

-- | Decimal representation of an unsigned integral value.
{-# INLINEABLE unsignedDecimal #-}
unsignedDecimal :: (Integral a) => a -> TextBuilder
unsignedDecimal :: forall a. Integral a => a -> TextBuilder
unsignedDecimal =
  forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (forall a. Integral a => a -> TextBuilder
decimalDigit forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Integral a => a -> Unfoldr a
Unfoldr.decimalDigits

fixedUnsignedDecimal :: (Integral a) => Int -> a -> TextBuilder
fixedUnsignedDecimal :: forall a. Integral a => Int -> a -> TextBuilder
fixedUnsignedDecimal Int
size a
val =
  Allocator -> Int -> TextBuilder
TextBuilder (forall a. Integral a => Int -> a -> Allocator
Allocator.fixedUnsignedDecimal Int
size a
val) Int
size

-- | Decimal representation of an integral value with thousands separated by the specified character.
{-# INLINEABLE thousandSeparatedDecimal #-}
thousandSeparatedDecimal :: (Integral a) => Char -> a -> TextBuilder
thousandSeparatedDecimal :: forall a. Integral a => Char -> a -> TextBuilder
thousandSeparatedDecimal Char
separatorChar a
a =
  if a
a forall a. Ord a => a -> a -> Bool
>= a
0
    then forall a. Integral a => Char -> a -> TextBuilder
thousandSeparatedUnsignedDecimal Char
separatorChar a
a
    else Int -> TextBuilder
unicodeCodePoint Int
45 forall a. Semigroup a => a -> a -> a
<> forall a. Integral a => Char -> a -> TextBuilder
thousandSeparatedUnsignedDecimal Char
separatorChar (forall a. Num a => a -> a
negate a
a)

-- | Decimal representation of an unsigned integral value with thousands separated by the specified character.
{-# INLINEABLE thousandSeparatedUnsignedDecimal #-}
thousandSeparatedUnsignedDecimal :: (Integral a) => Char -> a -> TextBuilder
thousandSeparatedUnsignedDecimal :: forall a. Integral a => Char -> a -> TextBuilder
thousandSeparatedUnsignedDecimal Char
separatorChar =
  a -> TextBuilder
processRightmostDigit
  where
    processRightmostDigit :: a -> TextBuilder
processRightmostDigit a
value =
      case forall a. Integral a => a -> a -> (a, a)
divMod a
value a
10 of
        (a
value, a
digit) ->
          [TextBuilder] -> Year -> a -> TextBuilder
processAnotherDigit [forall a. Integral a => a -> TextBuilder
decimalDigit (forall a b. (Integral a, Num b) => a -> b
fromIntegral a
digit)] Year
1 a
value
    processAnotherDigit :: [TextBuilder] -> Year -> a -> TextBuilder
processAnotherDigit [TextBuilder]
builders Year
index a
value =
      if a
value forall a. Eq a => a -> a -> Bool
== a
0
        then forall a. Monoid a => [a] -> a
mconcat [TextBuilder]
builders
        else case forall a. Integral a => a -> a -> (a, a)
divMod a
value a
10 of
          (a
value, a
digit) ->
            if forall a. Integral a => a -> a -> a
mod Year
index Year
3 forall a. Eq a => a -> a -> Bool
== Year
0
              then
                [TextBuilder] -> Year -> a -> TextBuilder
processAnotherDigit
                  (forall a. Integral a => a -> TextBuilder
decimalDigit (forall a b. (Integral a, Num b) => a -> b
fromIntegral a
digit) forall a. a -> [a] -> [a]
: Char -> TextBuilder
char Char
separatorChar forall a. a -> [a] -> [a]
: [TextBuilder]
builders)
                  (forall a. Enum a => a -> a
succ Year
index)
                  a
value
              else
                [TextBuilder] -> Year -> a -> TextBuilder
processAnotherDigit
                  (forall a. Integral a => a -> TextBuilder
decimalDigit (forall a b. (Integral a, Num b) => a -> b
fromIntegral a
digit) forall a. a -> [a] -> [a]
: [TextBuilder]
builders)
                  (forall a. Enum a => a -> a
succ Year
index)
                  a
value

-- | Data size in decimal notation over amount of bytes.
{-# INLINEABLE dataSizeInBytesInDecimal #-}
dataSizeInBytesInDecimal :: (Integral a) => Char -> a -> TextBuilder
dataSizeInBytesInDecimal :: forall a. Integral a => Char -> a -> TextBuilder
dataSizeInBytesInDecimal Char
separatorChar a
amount =
  if a
amount forall a. Ord a => a -> a -> Bool
< a
1000
    then forall a. Integral a => a -> TextBuilder
unsignedDecimal a
amount forall a. Semigroup a => a -> a -> a
<> TextBuilder
"B"
    else
      if a
amount forall a. Ord a => a -> a -> Bool
< a
1000000
        then forall a. Integral a => Char -> a -> a -> TextBuilder
dividedDecimal Char
separatorChar a
100 a
amount forall a. Semigroup a => a -> a -> a
<> TextBuilder
"kB"
        else
          if a
amount forall a. Ord a => a -> a -> Bool
< a
1000000000
            then forall a. Integral a => Char -> a -> a -> TextBuilder
dividedDecimal Char
separatorChar a
100000 a
amount forall a. Semigroup a => a -> a -> a
<> TextBuilder
"MB"
            else
              if a
amount forall a. Ord a => a -> a -> Bool
< a
1000000000000
                then forall a. Integral a => Char -> a -> a -> TextBuilder
dividedDecimal Char
separatorChar a
100000000 a
amount forall a. Semigroup a => a -> a -> a
<> TextBuilder
"GB"
                else
                  if a
amount forall a. Ord a => a -> a -> Bool
< a
1000000000000000
                    then forall a. Integral a => Char -> a -> a -> TextBuilder
dividedDecimal Char
separatorChar a
100000000000 a
amount forall a. Semigroup a => a -> a -> a
<> TextBuilder
"TB"
                    else
                      if a
amount forall a. Ord a => a -> a -> Bool
< a
1000000000000000000
                        then forall a. Integral a => Char -> a -> a -> TextBuilder
dividedDecimal Char
separatorChar a
100000000000000 a
amount forall a. Semigroup a => a -> a -> a
<> TextBuilder
"PB"
                        else
                          if a
amount forall a. Ord a => a -> a -> Bool
< a
1000000000000000000000
                            then forall a. Integral a => Char -> a -> a -> TextBuilder
dividedDecimal Char
separatorChar a
100000000000000000 a
amount forall a. Semigroup a => a -> a -> a
<> TextBuilder
"EB"
                            else
                              if a
amount forall a. Ord a => a -> a -> Bool
< a
1000000000000000000000000
                                then forall a. Integral a => Char -> a -> a -> TextBuilder
dividedDecimal Char
separatorChar a
100000000000000000000 a
amount forall a. Semigroup a => a -> a -> a
<> TextBuilder
"ZB"
                                else forall a. Integral a => Char -> a -> a -> TextBuilder
dividedDecimal Char
separatorChar a
100000000000000000000000 a
amount forall a. Semigroup a => a -> a -> a
<> TextBuilder
"YB"

dividedDecimal :: (Integral a) => Char -> a -> a -> TextBuilder
dividedDecimal :: forall a. Integral a => Char -> a -> a -> TextBuilder
dividedDecimal Char
separatorChar a
divisor a
n =
  let byDivisor :: a
byDivisor = forall a. Integral a => a -> a -> a
div a
n a
divisor
      byExtraTen :: a
byExtraTen = forall a. Integral a => a -> a -> a
div a
byDivisor a
10
      remainder :: a
remainder = a
byDivisor forall a. Num a => a -> a -> a
- a
byExtraTen forall a. Num a => a -> a -> a
* a
10
   in if a
remainder forall a. Eq a => a -> a -> Bool
== a
0 Bool -> Bool -> Bool
|| a
byExtraTen forall a. Ord a => a -> a -> Bool
>= a
10
        then forall a. Integral a => Char -> a -> TextBuilder
thousandSeparatedDecimal Char
separatorChar a
byExtraTen
        else forall a. Integral a => Char -> a -> TextBuilder
thousandSeparatedDecimal Char
separatorChar a
byExtraTen forall a. Semigroup a => a -> a -> a
<> TextBuilder
"." forall a. Semigroup a => a -> a -> a
<> forall a. Integral a => a -> TextBuilder
decimalDigit (forall a b. (Integral a, Num b) => a -> b
fromIntegral a
remainder)

-- | Unsigned binary number.
{-# INLINE unsignedBinary #-}
unsignedBinary :: (Integral a) => a -> TextBuilder
unsignedBinary :: forall a. Integral a => a -> TextBuilder
unsignedBinary =
  forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (forall a. Integral a => a -> TextBuilder
decimalDigit forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Integral a => a -> Unfoldr a
Unfoldr.binaryDigits

-- | A less general but faster alternative to 'unsignedBinary'.
finiteBitsUnsignedBinary :: (FiniteBits a) => a -> TextBuilder
finiteBitsUnsignedBinary :: forall a. FiniteBits a => a -> TextBuilder
finiteBitsUnsignedBinary a
a =
  Allocator -> Int -> TextBuilder
TextBuilder Allocator
allocator Int
size
  where
    allocator :: Allocator
allocator = forall a. FiniteBits a => a -> Allocator
Allocator.finiteBitsUnsignedBinary a
a
    size :: Int
size = Allocator -> Int
Allocator.sizeBound Allocator
allocator

-- | Unsigned binary number.
{-# INLINE unsignedPaddedBinary #-}
unsignedPaddedBinary :: (Integral a, FiniteBits a) => a -> TextBuilder
unsignedPaddedBinary :: forall a. (Integral a, FiniteBits a) => a -> TextBuilder
unsignedPaddedBinary a
a =
  Int -> Char -> TextBuilder -> TextBuilder
padFromLeft (forall b. FiniteBits b => b -> Int
finiteBitSize a
a) Char
'0' forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (forall a. Integral a => a -> TextBuilder
decimalDigit forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) forall a b. (a -> b) -> a -> b
$ forall a. Integral a => a -> Unfoldr a
Unfoldr.binaryDigits a
a

-- | Hexadecimal representation of an integral value.
{-# INLINE hexadecimal #-}
hexadecimal :: (Integral a) => a -> TextBuilder
hexadecimal :: forall a. Integral a => a -> TextBuilder
hexadecimal a
i =
  if a
i forall a. Ord a => a -> a -> Bool
>= a
0
    then forall a. Integral a => a -> TextBuilder
unsignedHexadecimal a
i
    else Int -> TextBuilder
unicodeCodePoint Int
45 forall a. Semigroup a => a -> a -> a
<> forall a. Integral a => a -> TextBuilder
unsignedHexadecimal (forall a. Num a => a -> a
negate a
i)

-- | Unsigned hexadecimal representation of an integral value.
{-# INLINE unsignedHexadecimal #-}
unsignedHexadecimal :: (Integral a) => a -> TextBuilder
unsignedHexadecimal :: forall a. Integral a => a -> TextBuilder
unsignedHexadecimal =
  forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (forall a. Integral a => a -> TextBuilder
hexadecimalDigit forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Integral a => a -> Unfoldr a
Unfoldr.hexadecimalDigits

-- | Decimal digit.
{-# INLINE decimalDigit #-}
decimalDigit :: (Integral a) => a -> TextBuilder
decimalDigit :: forall a. Integral a => a -> TextBuilder
decimalDigit (forall a b. (Integral a, Num b) => a -> b
fromIntegral -> Int
n) =
  Int -> TextBuilder
unicodeCodePoint (Int
n forall a. Num a => a -> a -> a
+ Int
48)

-- | Hexadecimal digit.
{-# INLINE hexadecimalDigit #-}
hexadecimalDigit :: (Integral a) => a -> TextBuilder
hexadecimalDigit :: forall a. Integral a => a -> TextBuilder
hexadecimalDigit (forall a b. (Integral a, Num b) => a -> b
fromIntegral -> Int
n) =
  if Int
n forall a. Ord a => a -> a -> Bool
<= Int
9
    then Int -> TextBuilder
unicodeCodePoint (Int
n forall a. Num a => a -> a -> a
+ Int
48)
    else Int -> TextBuilder
unicodeCodePoint (Int
n forall a. Num a => a -> a -> a
+ Int
87)

-- | Intercalate builders.
{-# INLINE intercalate #-}
intercalate :: (Foldable f) => TextBuilder -> f TextBuilder -> TextBuilder
intercalate :: forall (f :: * -> *).
Foldable f =>
TextBuilder -> f TextBuilder -> TextBuilder
intercalate TextBuilder
separator = forall {a} {b}. Product2 a b -> b
extract forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' Product2 Bool TextBuilder
-> TextBuilder -> Product2 Bool TextBuilder
step forall {b}. Monoid b => Product2 Bool b
init
  where
    init :: Product2 Bool b
init = forall a b. a -> b -> Product2 a b
Product2 Bool
False forall a. Monoid a => a
mempty
    step :: Product2 Bool TextBuilder
-> TextBuilder -> Product2 Bool TextBuilder
step (Product2 Bool
isNotFirst TextBuilder
builder) TextBuilder
element =
      forall a b. a -> b -> Product2 a b
Product2 Bool
True
        forall a b. (a -> b) -> a -> b
$ if Bool
isNotFirst
          then TextBuilder
builder forall a. Semigroup a => a -> a -> a
<> TextBuilder
separator forall a. Semigroup a => a -> a -> a
<> TextBuilder
element
          else TextBuilder
element
    extract :: Product2 a b -> b
extract (Product2 a
_ b
builder) = b
builder

-- | Intercalate projecting values to builder.
{-# INLINE intercalateMap #-}
intercalateMap :: (Foldable f) => TextBuilder -> (a -> TextBuilder) -> f a -> TextBuilder
intercalateMap :: forall (f :: * -> *) a.
Foldable f =>
TextBuilder -> (a -> TextBuilder) -> f a -> TextBuilder
intercalateMap TextBuilder
separator a -> TextBuilder
mapper = forall {a}. Monoid a => Maybe a -> a
extract forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' Maybe TextBuilder -> a -> Maybe TextBuilder
step forall {a}. Maybe a
init
  where
    init :: Maybe a
init = forall {a}. Maybe a
Nothing
    step :: Maybe TextBuilder -> a -> Maybe TextBuilder
step Maybe TextBuilder
acc a
element =
      forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ case Maybe TextBuilder
acc of
        Maybe TextBuilder
Nothing -> a -> TextBuilder
mapper a
element
        Just TextBuilder
acc -> TextBuilder
acc forall a. Semigroup a => a -> a -> a
<> TextBuilder
separator forall a. Semigroup a => a -> a -> a
<> a -> TextBuilder
mapper a
element
    extract :: Maybe a -> a
extract = forall a. a -> Maybe a -> a
fromMaybe forall a. Monoid a => a
mempty

-- | Pad a builder from the left side to the specified length with the specified character.
{-# INLINEABLE padFromLeft #-}
padFromLeft :: Int -> Char -> TextBuilder -> TextBuilder
padFromLeft :: Int -> Char -> TextBuilder -> TextBuilder
padFromLeft Int
paddedLength Char
paddingChar TextBuilder
builder =
  let builderLength :: Int
builderLength = TextBuilder -> Int
length TextBuilder
builder
   in if Int
paddedLength forall a. Ord a => a -> a -> Bool
<= Int
builderLength
        then TextBuilder
builder
        else forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Char -> TextBuilder
char (forall a. Int -> a -> [a]
replicate (Int
paddedLength forall a. Num a => a -> a -> a
- Int
builderLength) Char
paddingChar) forall a. Semigroup a => a -> a -> a
<> TextBuilder
builder

-- | Pad a builder from the right side to the specified length with the specified character.
{-# INLINEABLE padFromRight #-}
padFromRight :: Int -> Char -> TextBuilder -> TextBuilder
padFromRight :: Int -> Char -> TextBuilder -> TextBuilder
padFromRight Int
paddedLength Char
paddingChar TextBuilder
builder =
  let builderLength :: Int
builderLength = TextBuilder -> Int
length TextBuilder
builder
   in if Int
paddedLength forall a. Ord a => a -> a -> Bool
<= Int
builderLength
        then TextBuilder
builder
        else TextBuilder
builder forall a. Semigroup a => a -> a -> a
<> forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Char -> TextBuilder
char (forall a. Int -> a -> [a]
replicate (Int
paddedLength forall a. Num a => a -> a -> a
- Int
builderLength) Char
paddingChar)

utcTimeInIso8601 :: UTCTime -> TextBuilder
utcTimeInIso8601 :: UTCTime -> TextBuilder
utcTimeInIso8601 UTCTime {DiffTime
Day
utctDay :: UTCTime -> Day
utctDayTime :: UTCTime -> DiffTime
utctDayTime :: DiffTime
utctDay :: Day
..} =
  let (Year
year, Int
month, Int
day) = Day -> (Year, Int, Int)
toGregorian Day
utctDay
      daySeconds :: Int
daySeconds = forall a b. (RealFrac a, Integral b) => a -> b
round DiffTime
utctDayTime
      (Int
dayMinutes, Int
second) = forall a. Integral a => a -> a -> (a, a)
divMod Int
daySeconds Int
60
      (Int
hour, Int
minute) = forall a. Integral a => a -> a -> (a, a)
divMod Int
dayMinutes Int
60
   in Int -> Int -> Int -> Int -> Int -> Int -> TextBuilder
utcTimestampInIso8601 (forall a b. (Integral a, Num b) => a -> b
fromIntegral Year
year) Int
month Int
day Int
hour Int
minute Int
second

-- |
-- General template for formatting date values according to the ISO8601 standard.
-- The format is the following:
--
-- > 2021-11-24T12:11:02Z
--
-- Integrations with various time-libraries can be easily derived from that.
utcTimestampInIso8601 ::
  -- | Year.
  Int ->
  -- | Month.
  Int ->
  -- | Day.
  Int ->
  -- | Hour.
  Int ->
  -- | Minute.
  Int ->
  -- | Second.
  Int ->
  TextBuilder
utcTimestampInIso8601 :: Int -> Int -> Int -> Int -> Int -> Int -> TextBuilder
utcTimestampInIso8601 Int
y Int
mo Int
d Int
h Int
mi Int
s =
  forall a. Monoid a => [a] -> a
mconcat
    [ forall a. Integral a => Int -> a -> TextBuilder
fixedUnsignedDecimal Int
4 Int
y,
      TextBuilder
"-",
      forall a. Integral a => Int -> a -> TextBuilder
fixedUnsignedDecimal Int
2 Int
mo,
      TextBuilder
"-",
      forall a. Integral a => Int -> a -> TextBuilder
fixedUnsignedDecimal Int
2 Int
d,
      TextBuilder
"T",
      forall a. Integral a => Int -> a -> TextBuilder
fixedUnsignedDecimal Int
2 Int
h,
      TextBuilder
":",
      forall a. Integral a => Int -> a -> TextBuilder
fixedUnsignedDecimal Int
2 Int
mi,
      TextBuilder
":",
      forall a. Integral a => Int -> a -> TextBuilder
fixedUnsignedDecimal Int
2 Int
s,
      TextBuilder
"Z"
    ]

-- |
-- Time interval in seconds.
-- Directly applicable to 'DiffTime' and 'NominalDiffTime'.
{-# INLINEABLE intervalInSeconds #-}
intervalInSeconds :: (RealFrac seconds) => seconds -> TextBuilder
intervalInSeconds :: forall seconds. RealFrac seconds => seconds -> TextBuilder
intervalInSeconds seconds
interval = forall a b c. (a -> b -> c) -> b -> a -> c
flip forall s a. State s a -> s -> a
evalState (forall a b. (RealFrac a, Integral b) => a -> b
round seconds
interval) forall a b. (a -> b) -> a -> b
$ do
  Year
seconds <- forall (m :: * -> *) s a. Monad m => (s -> (a, s)) -> StateT s m a
state (forall a b. (a, b) -> (b, a)
swap forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a. Integral a => a -> a -> (a, a)
divMod Year
60)
  Year
minutes <- forall (m :: * -> *) s a. Monad m => (s -> (a, s)) -> StateT s m a
state (forall a b. (a, b) -> (b, a)
swap forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a. Integral a => a -> a -> (a, a)
divMod Year
60)
  Year
hours <- forall (m :: * -> *) s a. Monad m => (s -> (a, s)) -> StateT s m a
state (forall a b. (a, b) -> (b, a)
swap forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a. Integral a => a -> a -> (a, a)
divMod Year
24)
  Year
days <- forall (m :: * -> *) s. Monad m => StateT s m s
get
  forall (m :: * -> *) a. Monad m => a -> m a
return
    forall a b. (a -> b) -> a -> b
$ Int -> Char -> TextBuilder -> TextBuilder
padFromLeft Int
2 Char
'0' (forall a. Integral a => a -> TextBuilder
decimal Year
days)
    forall a. Semigroup a => a -> a -> a
<> TextBuilder
":"
    forall a. Semigroup a => a -> a -> a
<> Int -> Char -> TextBuilder -> TextBuilder
padFromLeft Int
2 Char
'0' (forall a. Integral a => a -> TextBuilder
decimal Year
hours)
    forall a. Semigroup a => a -> a -> a
<> TextBuilder
":"
    forall a. Semigroup a => a -> a -> a
<> Int -> Char -> TextBuilder -> TextBuilder
padFromLeft Int
2 Char
'0' (forall a. Integral a => a -> TextBuilder
decimal Year
minutes)
    forall a. Semigroup a => a -> a -> a
<> TextBuilder
":"
    forall a. Semigroup a => a -> a -> a
<> Int -> Char -> TextBuilder -> TextBuilder
padFromLeft Int
2 Char
'0' (forall a. Integral a => a -> TextBuilder
decimal Year
seconds)

-- | Double with a fixed number of decimal places.
{-# INLINE fixedDouble #-}
fixedDouble ::
  -- | Amount of decimals after point.
  Int ->
  Double ->
  TextBuilder
fixedDouble :: Int -> Double -> TextBuilder
fixedDouble Int
decimalPlaces = forall a. IsString a => String -> a
fromString forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall r. PrintfType r => String -> r
printf (String
"%." forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> String
show Int
decimalPlaces forall a. [a] -> [a] -> [a]
++ String
"f")

-- | Double multiplied by 100 with a fixed number of decimal places applied and followed by a percent-sign.
{-# INLINE doublePercent #-}
doublePercent ::
  -- | Amount of decimals after point.
  Int ->
  Double ->
  TextBuilder
doublePercent :: Int -> Double -> TextBuilder
doublePercent Int
decimalPlaces Double
x = Int -> Double -> TextBuilder
fixedDouble Int
decimalPlaces (Double
x forall a. Num a => a -> a -> a
* Double
100) forall a. Semigroup a => a -> a -> a
<> TextBuilder
"%"

-- | Hexadecimal readable representation of binary data.
{-# INLINE hexData #-}
hexData :: ByteString -> TextBuilder
hexData :: ByteString -> TextBuilder
hexData =
  forall (f :: * -> *).
Foldable f =>
TextBuilder -> f TextBuilder -> TextBuilder
intercalate TextBuilder
" "
    forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Monoid a => [a] -> a
mconcat
    forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall e. Int -> [e] -> [[e]]
Split.chunksOf Int
2
    forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Integral a => a -> TextBuilder
byte
    forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. ByteString -> [Word8]
ByteString.unpack
  where
    byte :: a -> TextBuilder
byte =
      Int -> Char -> TextBuilder -> TextBuilder
padFromLeft Int
2 Char
'0' forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Integral a => a -> TextBuilder
unsignedHexadecimal