Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Language.Haskell.TTH.LetRec
Synopsis
- letrecE :: forall q tag r a. (Ord tag, Quote q, MonadFix q) => (forall. tag -> String) -> (forall m. Monad m => (tag -> m (Code q a)) -> tag -> m (Code q a)) -> (forall m. Monad m => (tag -> m (Code q a)) -> m (Code q r)) -> Code q r
- letrecH :: forall q tag r. (GCompare tag, Quote q, MonadFix q) => (forall x. tag x -> String) -> (forall m y. Monad m => (forall x. tag x -> m (Code q x)) -> tag y -> m (Code q y)) -> (forall m. Monad m => (forall x. tag x -> m (Code q x)) -> m (Code q r)) -> Code q r
Documentation
Arguments
:: forall q tag r a. (Ord tag, Quote q, MonadFix q) | |
=> (forall. tag -> String) | tag naming function |
-> (forall m. Monad m => (tag -> m (Code q a)) -> tag -> m (Code q a)) | bindings generator (with recursive function) |
-> (forall m. Monad m => (tag -> m (Code q a)) -> m (Code q r)) | final expression generator |
-> Code q r | generated let expression |
Generate potentially recursive let expression.
Example of generating a list ofg alternative True
and False
values.
>>>
let trueFalse = letrecE (\tag -> "go" ++ show tag) (\rec tag -> rec (not tag) >>= \next -> return [|| $$(TH.liftTyped tag) : $$next ||]) (\rec -> rec True)
The generated let-bindings looks like:
>>>
TH.ppr <$> TH.unTypeCode trueFalse
let {goFalse_0 = GHC.Types.False GHC.Types.: goTrue_1; goTrue_1 = GHC.Types.True GHC.Types.: goFalse_0} in goTrue_1
And when spliced it produces a list of alternative True
and False
values:
>>>
take 10 $$trueFalse
[True,False,True,False,True,False,True,False,True,False]
Arguments
:: forall q tag r. (GCompare tag, Quote q, MonadFix q) | |
=> (forall x. tag x -> String) | tag naming function |
-> (forall m y. Monad m => (forall x. tag x -> m (Code q x)) -> tag y -> m (Code q y)) | bindings generator (with recursive function) |
-> (forall m. Monad m => (forall x. tag x -> m (Code q x)) -> m (Code q r)) | final expression generator |
-> Code q r | generated let expression |
Generate potentially recursive let expression with heterogenously typed bindings.
A simple example is consider a case where you have a NP
(from sop-core
) of Code
values
>>>
:{
data NP f xs where Nil :: NP f '[] (:*) :: f x -> NP f xs -> NP f (x : xs) infixr 5 :* :}
>>>
:{
let values :: TH.Quote q => NP (Code q) '[ Bool, Char ] values = [|| True ||] :* [|| 'x' ||] :* Nil :}
and function from that to a single Code
>>>
:{
let gen :: TH.Quote q => NP (Code q) '[ Bool, Char ] -> Code q String gen (x :* y :* Nil) = [|| $$y : $$y : show $$x ||] :}
We can apply gen
to values
to get a code expression:
>>>
TH.ppr <$> TH.unTypeCode (gen values)
'x' GHC.Types.: ('x' GHC.Types.: GHC.Show.show GHC.Types.True)
But if values
where big, we would potentially duplicate the computations.
Better to first let-bind them.
We'll need a type to act as a tag:
>>>
:{
data Idx xs x where IZ :: Idx (x ': xs) x IS :: Idx xs x -> Idx (y ': xs) x instance GEq (Idx xs) where geq = defaultGeq instance GCompare (Idx xs) where gcompare IZ IZ = GEQ gcompare (IS x) (IS y) = gcompare x y gcompare IZ (IS _) = GLT gcompare (IS _) IZ = GGT :}
Using Idx
we can index NP
values:
>>>
:{
let index :: NP f xs -> Idx xs x -> f x index (x :* _) IZ = x index (_ :* xs) (IS i) = index xs i :}
And with some extra utilities
>>>
mapNP :: (forall x. f x -> g x) -> NP f xs -> NP g xs; mapNP _ Nil = Nil; mapNP f (x :* xs) = f x :* mapNP f xs
>>>
traverseNP :: Applicative m => (forall x. f x -> m (g x)) -> NP f xs -> m (NP g xs); traverseNP _ Nil = pure Nil; traverseNP f (x :* xs) = (:*) <$> f x <*> traverseNP f xs
>>>
indices :: NP f xs -> NP (Idx xs) xs; indices Nil = Nil; indices (_ :* xs) = IZ :* mapNP IS (indices xs) -- first argument acts as list singleton
we can make a combinator for generating dynamic let-expression:
>>>
:{
let letNP :: (Quote q, MonadFix q) => NP (Code q) xs -> (NP (Code q) xs -> Code q r) -> Code q r letNP vals g = letrecH (\_ -> "x") (\_rec idx -> return (index vals idx)) (\rec -> do { vals' <- traverseNP rec (indices vals); return (g vals') }) :}
and use it to bind values
before using them in gen
:
>>>
TH.ppr <$> TH.unTypeCode (letNP values gen)
let {x_0 = GHC.Types.True; x_1 = 'x'} in x_1 GHC.Types.: (x_1 GHC.Types.: GHC.Show.show x_0)
The result of evaluating either expression is the same:
>>>
$$(gen values)
"xxTrue"
>>>
$$(letNP values gen)
"xxTrue"
This example illustrates that letrecH
is more general than something
like letNP
and doesn't require extra data-structures
(Instead of having GCompare
constraint the function can ask for tag x -> tag y -> Maybe (x :~: y)
function)