vector-0.6.0.1: Efficient Arrays

Portabilitynon-portable
Stabilityexperimental
MaintainerRoman Leshchinskiy <rl@cse.unsw.edu.au>

Data.Vector.Unboxed.Mutable

Contents

Description

Mutable adaptive unboxed vectors

Synopsis

Mutable vectors of primitive types

data family MVector s a Source

class (Vector Vector a, MVector MVector a) => Unbox a Source

Instances

Unbox Bool 
Unbox Char 
Unbox Double 
Unbox Float 
Unbox Int 
Unbox Int8 
Unbox Int16 
Unbox Int32 
Unbox Int64 
Unbox Word 
Unbox Word8 
Unbox Word16 
Unbox Word32 
Unbox Word64 
Unbox () 
(RealFloat a, Unbox a) => Unbox (Complex a) 
(Unbox a, Unbox b) => Unbox (a, b) 
(Unbox a, Unbox b, Unbox c) => Unbox (a, b, c) 
(Unbox a, Unbox b, Unbox c, Unbox d) => Unbox (a, b, c, d) 
(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => Unbox (a, b, c, d, e) 
(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => Unbox (a, b, c, d, e, f) 

Operations on mutable vectors

length :: Unbox a => MVector s a -> IntSource

Length of the mutable vector.

overlaps :: Unbox a => MVector s a -> MVector s a -> BoolSource

slice :: Unbox a => Int -> Int -> MVector s a -> MVector s aSource

Yield a part of the mutable vector without copying it.

new :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)Source

Create a mutable vector of the given length.

newWith :: (PrimMonad m, Unbox a) => Int -> a -> m (MVector (PrimState m) a)Source

Create a mutable vector of the given length and fill it with an initial value.

read :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m aSource

Yield the element at the given position.

write :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()Source

Replace the element at the given position.

swap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()Source

Swap the elements at the given positions.

clear :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m ()Source

Reset all elements of the vector to some undefined value, clearing all references to external objects. This is usually a noop for unboxed vectors.

set :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> a -> m ()Source

Set all elements of the vector to the given value.

copy :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()Source

Copy a vector. The two vectors must have the same length and may not overlap.

grow :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)Source

Grow a vector by the given number of elements. The number must be positive.

zip :: (Unbox a, Unbox b) => MVector s a -> MVector s b -> MVector s (a, b)Source

O(1) Zip 2 vectors

zip3 :: (Unbox a, Unbox b, Unbox c) => MVector s a -> MVector s b -> MVector s c -> MVector s (a, b, c)Source

O(1) Zip 3 vectors

zip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s (a, b, c, d)Source

O(1) Zip 4 vectors

zip5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s e -> MVector s (a, b, c, d, e)Source

O(1) Zip 5 vectors

zip6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s e -> MVector s f -> MVector s (a, b, c, d, e, f)Source

O(1) Zip 6 vectors

unzip :: (Unbox a, Unbox b) => MVector s (a, b) -> (MVector s a, MVector s b)Source

O(1) Unzip 2 vectors

unzip3 :: (Unbox a, Unbox b, Unbox c) => MVector s (a, b, c) -> (MVector s a, MVector s b, MVector s c)Source

O(1) Unzip 3 vectors

unzip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s (a, b, c, d) -> (MVector s a, MVector s b, MVector s c, MVector s d)Source

O(1) Unzip 4 vectors

unzip5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector s (a, b, c, d, e) -> (MVector s a, MVector s b, MVector s c, MVector s d, MVector s e)Source

O(1) Unzip 5 vectors

unzip6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector s (a, b, c, d, e, f) -> (MVector s a, MVector s b, MVector s c, MVector s d, MVector s e, MVector s f)Source

O(1) Unzip 6 vectors

Unsafe operations

unsafeSliceSource

Arguments

:: Unbox a 
=> Int

starting index

-> Int

length of the slice

-> MVector s a 
-> MVector s a 

Yield a part of the mutable vector without copying it. No bounds checks are performed.

unsafeNew :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)Source

Create a mutable vector of the given length. The length is not checked.

unsafeNewWith :: (PrimMonad m, Unbox a) => Int -> a -> m (MVector (PrimState m) a)Source

Create a mutable vector of the given length and fill it with an initial value. The length is not checked.

unsafeRead :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m aSource

Yield the element at the given position. No bounds checks are performed.

unsafeWrite :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()Source

Replace the element at the given position. No bounds checks are performed.

unsafeSwap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()Source

Swap the elements at the given positions. No bounds checks are performed.

unsafeCopySource

Arguments

:: (PrimMonad m, Unbox a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Copy a vector. The two vectors must have the same length and may not overlap. This is not checked.

unsafeGrow :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)Source

Grow a vector by the given number of elements. The number must be positive but this is not checked.