| Copyright | (c) Justus Sagemüller 2017 |
|---|---|
| License | GPL v3 |
| Maintainer | (@) jsag $ hvl.no |
| Stability | experimental |
| Portability | portable |
| Safe Haskell | None |
| Language | Haskell2010 |
Presentation.Yeamer.Maths.Unicode.MathLatin_RomanGreek
Description
Convenience module, re-exporting the necessary LaTeX builders for writing maths in a Yeamer presentation.
Synopsis
- (<>) :: Semigroup a => a -> a -> a
- class Semigroup a => Monoid a where
- newtype First a = First {}
- newtype Last a = Last {}
- newtype Ap (f :: k -> Type) (a :: k) :: forall k. (k -> Type) -> k -> Type = Ap {
- getAp :: f a
- newtype Dual a = Dual {
- getDual :: a
- newtype Endo a = Endo {
- appEndo :: a -> a
- newtype All = All {}
- newtype Any = Any {}
- newtype Sum a = Sum {
- getSum :: a
- newtype Product a = Product {
- getProduct :: a
- newtype Alt (f :: k -> Type) (a :: k) :: forall k. (k -> Type) -> k -> Type = Alt {
- getAlt :: f a
- (===) :: SemigroupY g => g -> g -> g
- (|||) :: SemigroupX g => g -> g -> g
- (──) :: SemigroupY g => g -> g -> g
- (━━) :: SemigroupY g => g -> g -> g
- (│) :: SemigroupX g => g -> g -> g
- (┃) :: SemigroupX g => g -> g -> g
- (██) :: SemigroupZ g => g -> g -> g
- (■) :: SemigroupZ g => g -> g -> g
- class SemigroupNo (n :: Nat) g where
- type SemigroupX = SemigroupNo 0
- type SemigroupY = SemigroupNo 1
- type SemigroupZ = SemigroupNo 2
- data Css
- type Presentation = IPresentation IO ()
- data IPresentation m r
- data YeamerServerConfig
- (→│) :: Sessionable a => IPresentation m a -> IPresentation m b -> IPresentation m a
- (↘──) :: Sessionable a => IPresentation m a -> IPresentation m b -> IPresentation m a
- (│←) :: Sessionable b => IPresentation m a -> IPresentation m b -> IPresentation m b
- (──↖) :: Sessionable b => IPresentation m a -> IPresentation m b -> IPresentation m b
- (→│→) :: (Sessionable a, Monad m) => IPresentation m a -> (a -> IPresentation m ()) -> IPresentation m a
- (↘──↘) :: (Sessionable a, Monad m) => IPresentation m a -> (a -> IPresentation m ()) -> IPresentation m a
- (→│←) :: (Sessionable a, Sessionable b) => IPresentation m a -> IPresentation m b -> IPresentation m (a, b)
- (↘──↖) :: (Sessionable a, Sessionable b) => IPresentation m a -> IPresentation m b -> IPresentation m (a, b)
- discardResult :: IPresentation m r -> IPresentation m ()
- feedback_ :: Sessionable a => (Maybe a -> IPresentation m a) -> IPresentation m ()
- serverSide :: Sessionable a => m a -> IPresentation m a
- (======) :: Sessionable r => Html -> IPresentation m r -> IPresentation m r
- addHeading :: Sessionable r => Html -> IPresentation m r -> IPresentation m r
- divClass :: Sessionable r => Text -> IPresentation m r -> IPresentation m r
- spanClass :: Sessionable r => Text -> IPresentation m r -> IPresentation m r
- divClasses :: Sessionable r => [(Text, IPresentation m r)] -> IPresentation m r
- (#%) :: Sessionable r => Text -> IPresentation m r -> IPresentation m r
- styling :: Css -> IPresentation m r -> IPresentation m r
- staticContent :: Monoid r => Html -> IPresentation m r
- tweakContent :: Sessionable r => (Html -> Html) -> IPresentation m r -> IPresentation m r
- inputBox :: forall i m. (Inputtable i, FromJSON i) => i -> IPresentation m i
- dropdownSelect :: forall a m. (a -> String) -> [a] -> Int -> IPresentation m a
- verbatim :: QuasiQuoter
- verbatimWithin :: Name -> QuasiQuoter
- plaintext :: QuasiQuoter
- imageFromFileSupplier :: String -> (FilePath -> IO ()) -> IPresentation IO ()
- imageFromFile :: FilePath -> IPresentation IO ()
- mediaFromFile :: FilePath -> IPresentation IO ()
- useFile :: FilePath -> (Url -> Html) -> IPresentation IO ()
- useFileSupplier :: String -> (FilePath -> IO ()) -> (Url -> Html) -> IPresentation IO ()
- class InteractiveShow a where
- display :: a -> Presentation
- displayOriented :: DisplayOrientation -> a -> Presentation
- displayList :: DisplayOrientation -> [a] -> Presentation
- yeamerTcpPort :: Lens' YeamerServerConfig Int
- yeamer' :: YeamerServerConfig -> Presentation -> IO ()
- yeamer :: Presentation -> IO ()
- (&) :: a -> (a -> b) -> b
- (%$>) :: (SymbolClass σ, SCConstraint σ c) => (c -> c') -> CAS' γ s² s¹ (SymbolD σ c) -> CAS' γ s² s¹ (SymbolD σ c')
- (&~~!) :: (Eq l, Eq (Encapsulation l), SymbolClass σ, SCConstraint σ l, Show (AlgebraExpr σ l), Show (AlgebraPattern σ l)) => AlgebraExpr σ l -> [AlgebraPattern σ l] -> AlgebraExpr σ l
- (&~~:) :: (Eq l, Eq (Encapsulation l), SymbolClass σ, SCConstraint σ l, Show (AlgebraExpr σ l), Show (AlgebraPattern σ l)) => AlgebraExpr σ l -> [AlgebraPattern σ l] -> AlgebraExpr σ l
- continueExpr :: (Eq l, Monoid l) => (AlgebraExpr' γ σ l -> AlgebraExpr' γ σ l -> AlgebraExpr' γ σ l) -> (AlgebraExpr' γ σ l -> AlgebraExpr' γ σ l) -> AlgebraExpr' γ σ l -> AlgebraExpr' γ σ l
- don'tParenthesise :: Monoid s¹ => CAS' γ (Infix s²) (Encapsulation s¹) s⁰ -> CAS' γ (Infix s²) (Encapsulation s¹) s⁰
- expressionFixity :: AlgebraExpr σ c -> Maybe Fixity
- normaliseSymbols :: (SymbolClass σ, SCConstraint σ c) => CAS' γ s² s¹ (SymbolD σ c) -> CAS' γ s² s¹ (SymbolD σ c)
- renderSymbolExpression :: (SymbolClass σ, SCConstraint σ c, HasCallStack) => ContextFixity -> RenderingCombinator σ c r -> AlgebraExpr σ c -> r
- showsPrecASCIISymbol :: (ASCIISymbols c, SymbolClass σ, SCConstraint σ c) => Int -> AlgebraExpr σ c -> ShowS
- showsPrecUnicodeSymbol :: (UnicodeSymbols c, SymbolClass σ, SCConstraint σ c) => Int -> AlgebraExpr σ c -> ShowS
- symbolFunction :: Monoid s¹ => s¹ -> CAS' γ (Infix s²) (Encapsulation s¹) s⁰ -> CAS' γ (Infix s²) (Encapsulation s¹) s⁰
- symbolInfix :: s² -> CAS' γ s² s¹ s⁰ -> CAS' γ s² s¹ s⁰ -> CAS' γ s² s¹ s⁰
- class ASCIISymbols c where
- fromASCIISymbol :: Char -> c
- toASCIISymbols :: c -> String
- type AlgebraExpr σ l = CAS (Infix l) (Encapsulation l) (SymbolD σ l)
- type AlgebraExpr' γ σ l = CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- type AlgebraPattern σ l = AlgebraExpr' GapId σ l
- data AlgebraicInvEncapsulation
- data ContextFixity
- data Encapsulation s
- = Encapsulation {
- needInnerParens :: !Bool
- haveOuterparens :: !Bool
- leftEncaps :: !s
- rightEncaps :: !s
- | SpecialEncapsulation (SpecialEncapsulation s)
- = Encapsulation {
- data Infix s = Infix {
- symbolFixity :: !Fixity
- infixSymbox :: !s
- class Eq (SpecialEncapsulation c) => RenderableEncapsulations c where
- fixateAlgebraEncaps :: (SymbolClass σ, SCConstraint σ c) => CAS' γ (Infix c) (Encapsulation c) (SymbolD σ c) -> CAS' γ (Infix c) (Encapsulation c) (SymbolD σ c)
- type RenderingCombinator σ c r = Bool -> Maybe r -> SymbolD σ c -> Maybe r -> r
- type family SpecialEncapsulation s :: Type
- class SymbolClass σ where
- type SCConstraint σ :: Type -> Constraint
- fromCharSymbol :: (Functor p, SCConstraint σ c) => p σ -> Char -> c
- data SymbolD σ c
- class UnicodeSymbols c where
- fromUnicodeSymbol :: Char -> c
- toUnicodeSymbols :: c -> String
- (&~!) :: (Eq s⁰, Eq s¹, Eq s², Show (CAS s² s¹ s⁰), Show (CAS' GapId s² s¹ s⁰)) => CAS s² s¹ s⁰ -> Eqspattern s² s¹ s⁰ -> CAS s² s¹ s⁰
- (&~:) :: (Eq s⁰, Eq s¹, Eq s²) => CAS s² s¹ s⁰ -> Eqspattern s² s¹ s⁰ -> CAS s² s¹ s⁰
- (&~?) :: (Eq s⁰, Eq s¹, Eq s²) => CAS s² s¹ s⁰ -> Eqspattern s² s¹ s⁰ -> [CAS s² s¹ s⁰]
- underline :: LaTeXC l => l -> l
- bar :: LaTeXC l => l -> l
- dot :: LaTeXC l => l -> l
- hat :: LaTeXC l => l -> l
- tilde :: LaTeXC l => l -> l
- vec :: LaTeXC l => l -> l
- ddot :: LaTeXC l => l -> l
- dcalculation :: (LaTeXC (m ()), LaTeXSymbol σ, Functor m) => LaTeXMath σ -> String -> m (LaTeXMath σ)
- dmaths :: (LaTeXC r, LaTeXSymbol σ) => [[LaTeXMath σ]] -> String -> r
- equations :: (LaTeXC r, LaTeXSymbol σ, HasCallStack) => [(LaTeXMath σ, String)] -> String -> r
- (*..*) :: MathsInfix
- (+..+) :: MathsInfix
- (-\-) :: MathsInfix
- (-→) :: MathsInfix
- (...) :: MathsInfix
- (/⊂) :: MathsInfix
- (<.<) :: MathsInfix
- (<.≤) :: MathsInfix
- (<==) :: MathsInfix
- (<=>) :: MathsInfix
- (<،>) :: MathsInfix
- (==>) :: MathsInfix
- (=→) :: MathsInfix
- (=⸪) :: MathsInfix
- cases :: LaTeXC l => [(CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), LaTeX)] -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- d :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ -> Integrand γ (Infix l) (Encapsulation l) s⁰
- del :: (SymbolClass σ, SCConstraint σ LaTeX) => CAS' γ s² s¹ (SymbolD σ LaTeX)
- factorial :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- infty :: (SymbolClass σ, SCConstraint σ LaTeX) => CAS' γ s² s¹ (SymbolD σ LaTeX)
- intv :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- matrix :: LaTeXC l => [[CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)]] -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- nabla :: (SymbolClass σ, SCConstraint σ LaTeX) => CAS' γ s² s¹ (SymbolD σ LaTeX)
- nobreaks :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- norm :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- set :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- setCompr :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- toMathLaTeX :: (l ~ LaTeX, SymbolClass σ, SCConstraint σ l) => CAS (Infix l) (Encapsulation l) (SymbolD σ l) -> l
- tup :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (|◝) :: LaTeXC s => CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) -> CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) -> CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s)
- (|◞) :: MathsInfix
- (|◞◝) :: LaTeXC s => CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) -> (CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s), CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s)) -> CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s)
- (°) :: MathsInfix
- (±) :: MathsInfix
- (×) :: MathsInfix
- (،) :: MathsInfix
- (،..،) :: MathsInfix
- (⁀) :: MathsInfix
- (₌₌) :: MathsInfix
- (←-) :: MathsInfix
- (←=) :: MathsInfix
- (↦) :: MathsInfix
- (↪) :: MathsInfix
- (∀:) :: MathsInfix
- (∃:) :: MathsInfix
- (∄:) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰
- (∈) :: MathsInfix
- (∉) :: MathsInfix
- (∋) :: MathsInfix
- (∌) :: MathsInfix
- (∏) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (∑) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (∓) :: MathsInfix
- (∖) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰
- (∗) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰
- (∘) :: MathsInfix
- (∝) :: MathsInfix
- (∥) :: MathsInfix
- (∧) :: MathsInfix
- (∨) :: MathsInfix
- (∩) :: MathsInfix
- (∪) :: MathsInfix
- (∫) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> Integrand γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (∼) :: MathsInfix
- (≃) :: MathsInfix
- (≅) :: MathsInfix
- (≈) :: MathsInfix
- (≠) :: MathsInfix
- (≡) :: MathsInfix
- (≤) :: MathsInfix
- (≤.<) :: MathsInfix
- (≤.≤) :: MathsInfix
- (≥) :: MathsInfix
- (≪) :: MathsInfix
- (≫) :: MathsInfix
- (⊂) :: MathsInfix
- (⊃) :: MathsInfix
- (⊆) :: MathsInfix
- (⊇) :: MathsInfix
- (⊎) :: MathsInfix
- (⊕) :: MathsInfix
- (⊗) :: MathsInfix
- (⋂) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (⋃) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (⋆) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰
- (␣) :: MathsInfix
- (◝) :: MathsInfix
- (◝⁀) :: MathsInfix
- (◞) :: MathsInfix
- (◞∏) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (◞∑) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (◞∫) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> Integrand γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (◞∮) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> Integrand γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (◞⋂) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (◞⋃) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (◞◝) :: LaTeXC s => CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) -> (CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s), CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s)) -> CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s)
- (◞⨄) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (⟂) :: MathsInfix
- (⧵) :: MathsInfix
- (⨄) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)
- (⩵) :: MathsInfix
- (⩵!) :: MathsInfix
- (⪡) :: MathsInfix
- (⪢) :: MathsInfix
- (⸪) :: MathsInfix
- (⸪=) :: MathsInfix
- (>$) :: LaTeXC r => r -> LaTeXMath__MathLatin_RomanGreek__BopomofoGaps -> r
- prime :: LaTeXC l => l -> l
- (|->) :: CAS' γ s² s¹ s⁰ -> CAS' γ s² s¹ s⁰ -> Equality' γ s² s¹ s⁰
- pattern Α :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Β :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Γ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Δ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Ε :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Ζ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Η :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Θ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Ι :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Κ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Λ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Μ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Ν :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Ξ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Ο :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Π :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Ρ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Σ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Τ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Υ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Φ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Χ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Ψ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern Ω :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- α :: Expression' γ s² s¹ ζ
- β :: Expression' γ s² s¹ ζ
- γ :: Expression' γ s² s¹ ζ
- δ :: Expression' γ s² s¹ ζ
- ε :: Expression' γ s² s¹ ζ
- ζ :: Expression' γ s² s¹ ζ
- η :: Expression' γ s² s¹ ζ
- θ :: Expression' γ s² s¹ ζ
- ι :: Expression' γ s² s¹ ζ
- κ :: Expression' γ s² s¹ ζ
- λ :: Expression' γ s² s¹ ζ
- μ :: Expression' γ s² s¹ ζ
- ν :: Expression' γ s² s¹ ζ
- ξ :: Expression' γ s² s¹ ζ
- ο :: Expression' γ s² s¹ ζ
- π :: Expression' γ s² s¹ ζ
- ρ :: Expression' γ s² s¹ ζ
- ς :: Expression' γ s² s¹ ζ
- σ :: Expression' γ s² s¹ ζ
- τ :: Expression' γ s² s¹ ζ
- υ :: Expression' γ s² s¹ ζ
- φ :: Expression' γ s² s¹ ζ
- χ :: Expression' γ s² s¹ ζ
- ψ :: Expression' γ s² s¹ ζ
- ω :: Expression' γ s² s¹ ζ
- ϑ :: Expression' γ s² s¹ ζ
- ϕ :: Expression' γ s² s¹ ζ
- ϱ :: Expression' γ s² s¹ ζ
- pattern ℂ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℋ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℌ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℍ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- ℎ :: Expression' γ s² s¹ ζ
- pattern ℐ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℑ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℒ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℕ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℚ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℛ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℜ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℝ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℤ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℬ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℭ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℰ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℱ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern ℳ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- ㄅ :: CAS' GapId s² s¹ s⁰
- ㄆ :: CAS' GapId s² s¹ s⁰
- ㄇ :: CAS' GapId s² s¹ s⁰
- ㄈ :: CAS' GapId s² s¹ s⁰
- ㄉ :: CAS' GapId s² s¹ s⁰
- ㄊ :: CAS' GapId s² s¹ s⁰
- ㄋ :: CAS' GapId s² s¹ s⁰
- ㄌ :: CAS' GapId s² s¹ s⁰
- ㄍ :: CAS' GapId s² s¹ s⁰
- ㄎ :: CAS' GapId s² s¹ s⁰
- ㄏ :: CAS' GapId s² s¹ s⁰
- ㄐ :: CAS' GapId s² s¹ s⁰
- ㄑ :: CAS' GapId s² s¹ s⁰
- ㄒ :: CAS' GapId s² s¹ s⁰
- ㄓ :: CAS' GapId s² s¹ s⁰
- ㄔ :: CAS' GapId s² s¹ s⁰
- ㄕ :: CAS' GapId s² s¹ s⁰
- ㄖ :: CAS' GapId s² s¹ s⁰
- ㄗ :: CAS' GapId s² s¹ s⁰
- ㄘ :: CAS' GapId s² s¹ s⁰
- ㄙ :: CAS' GapId s² s¹ s⁰
- ㄚ :: CAS' GapId s² s¹ s⁰
- ㄛ :: CAS' GapId s² s¹ s⁰
- ㄜ :: CAS' GapId s² s¹ s⁰
- ㄝ :: CAS' GapId s² s¹ s⁰
- ㄞ :: CAS' GapId s² s¹ s⁰
- ㄟ :: CAS' GapId s² s¹ s⁰
- ㄠ :: CAS' GapId s² s¹ s⁰
- ㄡ :: CAS' GapId s² s¹ s⁰
- ㄢ :: CAS' GapId s² s¹ s⁰
- ㄣ :: CAS' GapId s² s¹ s⁰
- ㄤ :: CAS' GapId s² s¹ s⁰
- ㄥ :: CAS' GapId s² s¹ s⁰
- ㄦ :: CAS' GapId s² s¹ s⁰
- ㄧ :: CAS' GapId s² s¹ s⁰
- ㄨ :: CAS' GapId s² s¹ s⁰
- ㄩ :: CAS' GapId s² s¹ s⁰
- ㄪ :: CAS' GapId s² s¹ s⁰
- ㄫ :: CAS' GapId s² s¹ s⁰
- ㄬ :: CAS' GapId s² s¹ s⁰
- pattern 𝐀 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐁 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐂 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐃 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐄 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐅 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐆 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐇 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐈 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐉 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐊 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐋 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐌 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐍 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐎 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐏 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐐 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐑 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐒 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐓 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐔 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐕 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐖 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐗 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐘 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐙 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- 𝐚 :: Expression' γ s² s¹ ζ
- 𝐛 :: Expression' γ s² s¹ ζ
- 𝐜 :: Expression' γ s² s¹ ζ
- 𝐝 :: Expression' γ s² s¹ ζ
- 𝐞 :: Expression' γ s² s¹ ζ
- 𝐟 :: Expression' γ s² s¹ ζ
- 𝐠 :: Expression' γ s² s¹ ζ
- 𝐡 :: Expression' γ s² s¹ ζ
- 𝐢 :: Expression' γ s² s¹ ζ
- 𝐣 :: Expression' γ s² s¹ ζ
- 𝐤 :: Expression' γ s² s¹ ζ
- 𝐥 :: Expression' γ s² s¹ ζ
- 𝐦 :: Expression' γ s² s¹ ζ
- 𝐧 :: Expression' γ s² s¹ ζ
- 𝐨 :: Expression' γ s² s¹ ζ
- 𝐩 :: Expression' γ s² s¹ ζ
- 𝐪 :: Expression' γ s² s¹ ζ
- 𝐫 :: Expression' γ s² s¹ ζ
- 𝐬 :: Expression' γ s² s¹ ζ
- 𝐭 :: Expression' γ s² s¹ ζ
- 𝐮 :: Expression' γ s² s¹ ζ
- 𝐯 :: Expression' γ s² s¹ ζ
- 𝐰 :: Expression' γ s² s¹ ζ
- 𝐱 :: Expression' γ s² s¹ ζ
- 𝐲 :: Expression' γ s² s¹ ζ
- 𝐳 :: Expression' γ s² s¹ ζ
- pattern 𝐴 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐵 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐶 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐷 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐸 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐹 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐺 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐻 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐼 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐽 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐾 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝐿 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑀 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑁 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑂 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑃 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑄 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑅 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑆 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑇 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑈 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑉 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑊 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑋 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑌 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝑍 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- 𝑎 :: Expression' γ s² s¹ ζ
- 𝑏 :: Expression' γ s² s¹ ζ
- 𝑐 :: Expression' γ s² s¹ ζ
- 𝑑 :: Expression' γ s² s¹ ζ
- 𝑒 :: Expression' γ s² s¹ ζ
- 𝑓 :: Expression' γ s² s¹ ζ
- 𝑔 :: Expression' γ s² s¹ ζ
- 𝑖 :: Expression' γ s² s¹ ζ
- 𝑗 :: Expression' γ s² s¹ ζ
- 𝑘 :: Expression' γ s² s¹ ζ
- 𝑙 :: Expression' γ s² s¹ ζ
- 𝑚 :: Expression' γ s² s¹ ζ
- 𝑛 :: Expression' γ s² s¹ ζ
- 𝑜 :: Expression' γ s² s¹ ζ
- 𝑝 :: Expression' γ s² s¹ ζ
- 𝑞 :: Expression' γ s² s¹ ζ
- 𝑟 :: Expression' γ s² s¹ ζ
- 𝑠 :: Expression' γ s² s¹ ζ
- 𝑡 :: Expression' γ s² s¹ ζ
- 𝑢 :: Expression' γ s² s¹ ζ
- 𝑣 :: Expression' γ s² s¹ ζ
- 𝑤 :: Expression' γ s² s¹ ζ
- 𝑥 :: Expression' γ s² s¹ ζ
- 𝑦 :: Expression' γ s² s¹ ζ
- 𝑧 :: Expression' γ s² s¹ ζ
- pattern 𝒜 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒞 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒟 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒢 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒥 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒦 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒩 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒪 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒫 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒬 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒮 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒯 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒰 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒱 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒲 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒳 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒴 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝒵 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓐 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓑 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓒 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓓 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓔 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓕 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓖 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓗 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓘 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓙 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓚 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓛 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓜 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓝 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓞 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓟 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓠 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓡 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓢 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓣 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓤 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓥 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓦 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓧 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓨 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝓩 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔄 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔅 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔇 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔈 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔉 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔊 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔍 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔎 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔏 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔐 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔑 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔒 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔓 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔔 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔖 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔗 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔘 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔙 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔚 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔛 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔜 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔸 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔹 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔻 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔼 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔽 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝔾 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕀 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕁 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕂 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕃 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕄 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕆 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕊 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕋 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕌 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕍 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕎 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕏 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- pattern 𝕐 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ
- type LaTeXMath σ = CAS (Infix LaTeX) (Encapsulation LaTeX) (SymbolD σ LaTeX)
- type LaTeXSymbol σ = (SymbolClass σ, SCConstraint σ LaTeX)
- type LaTeXMath__MathLatin_RomanGreek__BopomofoGaps = CAS (Infix LaTeX) (Encapsulation LaTeX) (Symbol LaTeX)
- type Expression c = Expression' Void (Infix c) (Encapsulation c) c
- type Expression' γ s² s¹ c = CAS' γ s² s¹ (Symbol c)
- type Pattern c = Expression' GapId (Infix c) (Encapsulation c) c
- type Symbol = SymbolD Unicode_MathLatin_RomanGreek__BopomofoGaps
- data Unicode_MathLatin_RomanGreek__BopomofoGaps
- maths :: r ~ () => [[CAS (Infix LaTeX) (Encapsulation LaTeX) (Symbol LaTeX)]] -> String -> IPresentation m r
- ($<>) :: CAS (Infix LaTeX) (Encapsulation LaTeX) (Symbol LaTeX) -> Presentation -> Presentation
- type Math = Expression LaTeX
Documentation
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:
x
<>mempty= xmempty<>x = xx(<>(y<>z) = (x<>y)<>zSemigrouplaw)mconcat=foldr'(<>)'mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtypes and make those instances
of Monoid, e.g. Sum and Product.
NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
An associative operation
NOTE: This method is redundant and has the default
implementation since base-4.11.0.0.mappend = '(<>)'
Fold a list using the monoid.
For most types, the default definition for mconcat will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
Instances
| Monoid Ordering | Since: base-2.1 |
| Monoid () | Since: base-2.1 |
| Monoid All | Since: base-2.1 |
| Monoid Any | Since: base-2.1 |
| Monoid ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods mappend :: ShortByteString -> ShortByteString -> ShortByteString # mconcat :: [ShortByteString] -> ShortByteString # | |
| Monoid ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
| Monoid ByteString | |
Defined in Data.ByteString.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
| Monoid Builder | |
| Monoid IntSet | |
| Monoid Doc | |
| Monoid Builder | |
| Monoid Series | |
| Monoid More | |
| Monoid Encoding | |
| Monoid CalendarDiffDays | |
| Monoid CalendarDiffTime | |
| Monoid ByteArray | |
| Monoid LiteApp | |
| Monoid Enctype | |
| Monoid String | |
| Monoid LogStr | |
| Monoid Mixin | |
| Monoid ChoiceString | |
| Monoid Javascript | |
| Monoid Attribute | |
| Monoid AttributeValue | |
| Monoid LaTeX | |
| Monoid Meta | |
| Monoid Pandoc | |
| Monoid [a] | Since: base-2.1 |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
| Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
| (Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
| (Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
| Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
| Semigroup a => Monoid (Option a) | Since: base-4.9.0.0 |
| Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
| Monoid (First a) | Since: base-2.1 |
| Monoid (Last a) | Since: base-2.1 |
| Monoid a => Monoid (Dual a) | Since: base-2.1 |
| Monoid (Endo a) | Since: base-2.1 |
| Num a => Monoid (Sum a) | Since: base-2.1 |
| Num a => Monoid (Product a) | Since: base-2.1 |
| Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
| Monoid (IntMap a) | |
| Monoid (Seq a) | |
| Ord a => Monoid (Set a) | |
| Monoid (Doc a) | |
| Monoid (Result a) | |
| Monoid (IResult a) | |
| Monoid (DList a) | |
| (Hashable a, Eq a) => Monoid (HashSet a) | |
| Monoid (Parser a) | |
| Monoid (Vector a) | |
| Semigroup a => Monoid (Maybe a) | |
| Storable a => Monoid (Vector a) | |
| Monoid (Array a) | |
| Monoid (PrimArray a) | |
| Monoid (SmallArray a) | |
| Prim a => Monoid (Vector a) | |
| Monoid (MergeSet a) | |
| Monoid m => Monoid (FormResult m) | |
| Num a => Monoid (AlphaColour a) | |
| Num a => Monoid (Colour a) | |
| PrimType ty => Monoid (UArray ty) | |
| Monoid (CountOf ty) | |
| PrimType ty => Monoid (Block ty) | |
| Monoid a => Monoid (MarkupM a) | |
| Monoid (GWData a) | |
| Monoid (Body url) | |
| Monoid (Head url) | |
| Monoid (UniqueList x) | |
| Monoid a => Monoid (Matrix a) | |
| Monoid (Vault s) | |
| Monoid b => Monoid (a -> b) | Since: base-2.1 |
| Monoid (U1 p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
| Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
| Monoid (Proxy s) | Since: base-4.7.0.0 |
| Ord k => Monoid (Map k v) | |
| Monoid (Parser i a) | |
| (Eq k, Hashable k) => Monoid (HashMap k v) | |
| (Monoid a, Monoid b) => Monoid (Pair a b) | |
| Applicative f => Monoid (Traversed a f) | |
| a ~ () => Monoid (WidgetFor site a) | |
| (Monad m, Monoid a) => Monoid (AForm m a) | |
| (Monoid a, MonadUnliftIO m) => Monoid (Conc m a) | |
| (Semigroup a, Monoid a, MonadUnliftIO m) => Monoid (Concurrently m a) | |
| (Monad m, Monoid a) => Monoid (LaTeXT m a) | |
| (HasTrie a, Monoid b) => Monoid (a :->: b) | |
| Monoid (f a) => Monoid (Indexing f a) | |
| Monoid (ReifiedFold s a) | |
| Monad m => Monoid (IPresentation m ()) Source # | |
Defined in Presentation.Yeamer Methods mempty :: IPresentation m () # mappend :: IPresentation m () -> IPresentation m () -> IPresentation m () # mconcat :: [IPresentation m ()] -> IPresentation m () # | |
| Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
| Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
| Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
| (Semigroup a, Monoid a) => Monoid (Tagged s a) | |
| Reifies s (ReifiedMonoid a) => Monoid (ReflectedMonoid a s) | |
| Monoid (ReifiedIndexedFold i s a) | |
| Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
| (Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
| Monad m => Monoid (ConduitT i o m ()) | |
| Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
| Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
| Monad m => Monoid (Pipe l i o u m ()) | |
Maybe monoid returning the leftmost non-Nothing value.
is isomorphic to First a, but precedes it
historically.Alt Maybe a
>>>getFirst (First (Just "hello") <> First Nothing <> First (Just "world"))Just "hello"
Use of this type is discouraged. Note the following equivalence:
Data.Monoid.First x === Maybe (Data.Semigroup.First x)
In addition to being equivalent in the structural sense, the two
also have Monoid instances that behave the same. This type will
be marked deprecated in GHC 8.8, and removed in GHC 8.10.
Users are advised to use the variant from Data.Semigroup and wrap
it in Maybe.
Instances
| Monad First | Since: base-4.8.0.0 |
| Functor First | Since: base-4.8.0.0 |
| Applicative First | Since: base-4.8.0.0 |
| Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Traversable First | Since: base-4.8.0.0 |
| FromJSON1 First | |
Defined in Data.Aeson.Types.FromJSON Methods liftParseJSON :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser (First a) liftParseJSONList :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser [First a] | |
| ToJSON1 First | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a -> Value) -> ([a] -> Value) -> First a -> Value liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [First a] -> Value liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> First a -> Encoding liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [First a] -> Encoding | |
| Eq a => Eq (First a) | Since: base-2.1 |
| Ord a => Ord (First a) | Since: base-2.1 |
| Read a => Read (First a) | Since: base-2.1 |
| Show a => Show (First a) | Since: base-2.1 |
| Generic (First a) | |
| Semigroup (First a) | Since: base-4.9.0.0 |
| Monoid (First a) | Since: base-2.1 |
| FromJSON a => FromJSON (First a) | |
Defined in Data.Aeson.Types.FromJSON | |
| ToJSON a => ToJSON (First a) | |
Defined in Data.Aeson.Types.ToJSON Methods toEncoding :: First a -> Encoding toJSONList :: [First a] -> Value toEncodingList :: [First a] -> Encoding | |
| Default (First a) | |
Defined in Data.Default.Class | |
| Newtype (First a) | |
| Wrapped (First a) | |
| Generic1 First | |
| t ~ First b => Rewrapped (First a) t | |
Defined in Control.Lens.Wrapped | |
| type Rep (First a) | Since: base-4.7.0.0 |
Defined in Data.Monoid | |
| type O (First a) | |
Defined in Control.Newtype.Generics | |
| type Unwrapped (First a) | |
Defined in Control.Lens.Wrapped | |
| type Rep1 First | Since: base-4.7.0.0 |
Defined in Data.Monoid | |
Maybe monoid returning the rightmost non-Nothing value.
is isomorphic to Last a, and thus to
Dual (First a)Dual (Alt Maybe a)
>>>getLast (Last (Just "hello") <> Last Nothing <> Last (Just "world"))Just "world"
Use of this type is discouraged. Note the following equivalence:
Data.Monoid.Last x === Maybe (Data.Semigroup.Last x)
In addition to being equivalent in the structural sense, the two
also have Monoid instances that behave the same. This type will
be marked deprecated in GHC 8.8, and removed in GHC 8.10.
Users are advised to use the variant from Data.Semigroup and wrap
it in Maybe.
Instances
| Monad Last | Since: base-4.8.0.0 |
| Functor Last | Since: base-4.8.0.0 |
| Applicative Last | Since: base-4.8.0.0 |
| Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Traversable Last | Since: base-4.8.0.0 |
| FromJSON1 Last | |
Defined in Data.Aeson.Types.FromJSON Methods liftParseJSON :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser (Last a) liftParseJSONList :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser [Last a] | |
| ToJSON1 Last | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a -> Value) -> ([a] -> Value) -> Last a -> Value liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [Last a] -> Value liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> Last a -> Encoding liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [Last a] -> Encoding | |
| Eq a => Eq (Last a) | Since: base-2.1 |
| Ord a => Ord (Last a) | Since: base-2.1 |
| Read a => Read (Last a) | Since: base-2.1 |
| Show a => Show (Last a) | Since: base-2.1 |
| Generic (Last a) | |
| Semigroup (Last a) | Since: base-4.9.0.0 |
| Monoid (Last a) | Since: base-2.1 |
| FromJSON a => FromJSON (Last a) | |
Defined in Data.Aeson.Types.FromJSON | |
| ToJSON a => ToJSON (Last a) | |
Defined in Data.Aeson.Types.ToJSON Methods toEncoding :: Last a -> Encoding toJSONList :: [Last a] -> Value toEncodingList :: [Last a] -> Encoding | |
| Default (Last a) | |
Defined in Data.Default.Class | |
| Newtype (Last a) | |
| Wrapped (Last a) | |
| Generic1 Last | |
| t ~ Last b => Rewrapped (Last a) t | |
Defined in Control.Lens.Wrapped | |
| type Rep (Last a) | Since: base-4.7.0.0 |
Defined in Data.Monoid | |
| type O (Last a) | |
Defined in Control.Newtype.Generics | |
| type Unwrapped (Last a) | |
Defined in Control.Lens.Wrapped | |
| type Rep1 Last | Since: base-4.7.0.0 |
Defined in Data.Monoid | |
newtype Ap (f :: k -> Type) (a :: k) :: forall k. (k -> Type) -> k -> Type #
This data type witnesses the lifting of a Monoid into an
Applicative pointwise.
Since: base-4.12.0.0
Instances
| Generic1 (Ap f :: k -> Type) | |
| Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
| Functor f => Functor (Ap f) | Since: base-4.12.0.0 |
| MonadFail f => MonadFail (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Monoid | |
| Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
| Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
| Traversable f => Traversable (Ap f) | Since: base-4.12.0.0 |
| Alternative f => Alternative (Ap f) | Since: base-4.12.0.0 |
| MonadPlus f => MonadPlus (Ap f) | Since: base-4.12.0.0 |
| (Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
| Enum (f a) => Enum (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Monoid | |
| Eq (f a) => Eq (Ap f a) | Since: base-4.12.0.0 |
| (Applicative f, Num a) => Num (Ap f a) | Since: base-4.12.0.0 |
| Ord (f a) => Ord (Ap f a) | Since: base-4.12.0.0 |
| Read (f a) => Read (Ap f a) | Since: base-4.12.0.0 |
| Show (f a) => Show (Ap f a) | Since: base-4.12.0.0 |
| Generic (Ap f a) | |
| (Applicative f, Semigroup a) => Semigroup (Ap f a) | Since: base-4.12.0.0 |
| (Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
| Newtype (Ap f a) | |
| Wrapped (Ap f a) | |
| t ~ Ap g b => Rewrapped (Ap f a) t | |
Defined in Control.Lens.Wrapped | |
| type Rep1 (Ap f :: k -> Type) | Since: base-4.12.0.0 |
Defined in Data.Monoid | |
| type Rep (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Monoid | |
| type O (Ap f a) | |
Defined in Control.Newtype.Generics type O (Ap f a) = f a | |
| type Unwrapped (Ap f a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Ap f a) = f a | |
The dual of a Monoid, obtained by swapping the arguments of mappend.
>>>getDual (mappend (Dual "Hello") (Dual "World"))"WorldHello"
Instances
| Monad Dual | Since: base-4.8.0.0 |
| Functor Dual | Since: base-4.8.0.0 |
| Applicative Dual | Since: base-4.8.0.0 |
| Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
| Traversable Dual | Since: base-4.8.0.0 |
| FromJSON1 Dual | |
Defined in Data.Aeson.Types.FromJSON Methods liftParseJSON :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser (Dual a) liftParseJSONList :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser [Dual a] | |
| ToJSON1 Dual | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a -> Value) -> ([a] -> Value) -> Dual a -> Value liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [Dual a] -> Value liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> Dual a -> Encoding liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [Dual a] -> Encoding | |
| Representable Dual | |
| Unbox a => Vector Vector (Dual a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (Dual a) -> m (Vector (Dual a)) basicUnsafeThaw :: PrimMonad m => Vector (Dual a) -> m (Mutable Vector (PrimState m) (Dual a)) basicLength :: Vector (Dual a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Dual a) -> Vector (Dual a) basicUnsafeIndexM :: Monad m => Vector (Dual a) -> Int -> m (Dual a) basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (Dual a) -> Vector (Dual a) -> m () | |
| Unbox a => MVector MVector (Dual a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Dual a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Dual a) -> MVector s (Dual a) basicOverlaps :: MVector s (Dual a) -> MVector s (Dual a) -> Bool basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (Dual a)) basicInitialize :: PrimMonad m => MVector (PrimState m) (Dual a) -> m () basicUnsafeReplicate :: PrimMonad m => Int -> Dual a -> m (MVector (PrimState m) (Dual a)) basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (Dual a) -> Int -> m (Dual a) basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (Dual a) -> Int -> Dual a -> m () basicClear :: PrimMonad m => MVector (PrimState m) (Dual a) -> m () basicSet :: PrimMonad m => MVector (PrimState m) (Dual a) -> Dual a -> m () basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (Dual a) -> MVector (PrimState m) (Dual a) -> m () basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (Dual a) -> MVector (PrimState m) (Dual a) -> m () basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (Dual a) -> Int -> m (MVector (PrimState m) (Dual a)) | |
| Bounded a => Bounded (Dual a) | Since: base-2.1 |
| Eq a => Eq (Dual a) | Since: base-2.1 |
| Ord a => Ord (Dual a) | Since: base-2.1 |
| Read a => Read (Dual a) | Since: base-2.1 |
| Show a => Show (Dual a) | Since: base-2.1 |
| Generic (Dual a) | |
| Semigroup a => Semigroup (Dual a) | Since: base-4.9.0.0 |
| Monoid a => Monoid (Dual a) | Since: base-2.1 |
| FromJSON a => FromJSON (Dual a) | |
Defined in Data.Aeson.Types.FromJSON | |
| ToJSON a => ToJSON (Dual a) | |
Defined in Data.Aeson.Types.ToJSON Methods toEncoding :: Dual a -> Encoding toJSONList :: [Dual a] -> Value toEncodingList :: [Dual a] -> Encoding | |
| Unbox a => Unbox (Dual a) | |
Defined in Data.Vector.Unboxed.Base | |
| Prim a => Prim (Dual a) | |
Defined in Data.Primitive.Types Methods alignment# :: Dual a -> Int# indexByteArray# :: ByteArray# -> Int# -> Dual a readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Dual a#) writeByteArray# :: MutableByteArray# s -> Int# -> Dual a -> State# s -> State# s setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Dual a -> State# s -> State# s indexOffAddr# :: Addr# -> Int# -> Dual a readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Dual a#) writeOffAddr# :: Addr# -> Int# -> Dual a -> State# s -> State# s setOffAddr# :: Addr# -> Int# -> Int# -> Dual a -> State# s -> State# s | |
| Default a => Default (Dual a) | |
Defined in Data.Default.Class | |
| Newtype (Dual a) | |
| Wrapped (Dual a) | |
| Generic1 Dual | |
| t ~ Dual b => Rewrapped (Dual a) t | |
Defined in Control.Lens.Wrapped | |
| type Rep Dual | |
Defined in Data.Functor.Rep type Rep Dual = () | |
| newtype MVector s (Dual a) | |
Defined in Data.Vector.Unboxed.Base | |
| type Rep (Dual a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
| newtype Vector (Dual a) | |
Defined in Data.Vector.Unboxed.Base | |
| type O (Dual a) | |
Defined in Control.Newtype.Generics type O (Dual a) = a | |
| type Unwrapped (Dual a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Dual a) = a | |
| type Rep1 Dual | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
The monoid of endomorphisms under composition.
>>>let computation = Endo ("Hello, " ++) <> Endo (++ "!")>>>appEndo computation "Haskell""Hello, Haskell!"
Instances
| Generic (Endo a) | |
| Semigroup (Endo a) | Since: base-4.9.0.0 |
| Monoid (Endo a) | Since: base-2.1 |
| Default (Endo a) | |
Defined in Data.Default.Class | |
| Newtype (Endo a) | |
| Wrapped (Endo a) | |
| t ~ Endo b => Rewrapped (Endo a) t | |
Defined in Control.Lens.Wrapped | |
| type Rep (Endo a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
| type O (Endo a) | |
Defined in Control.Newtype.Generics type O (Endo a) = a -> a | |
| type Unwrapped (Endo a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Endo a) = a -> a | |
Boolean monoid under conjunction (&&).
>>>getAll (All True <> mempty <> All False)False
>>>getAll (mconcat (map (\x -> All (even x)) [2,4,6,7,8]))False
Instances
| Bounded All | Since: base-2.1 |
| Eq All | Since: base-2.1 |
| Ord All | Since: base-2.1 |
| Read All | Since: base-2.1 |
| Show All | Since: base-2.1 |
| Generic All | |
| Semigroup All | Since: base-4.9.0.0 |
| Monoid All | Since: base-2.1 |
| Unbox All | |
Defined in Data.Vector.Unboxed.Base | |
| Default All | |
Defined in Data.Default.Class | |
| Newtype All | |
| Wrapped All | |
| Vector Vector All | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) All -> m (Vector All) basicUnsafeThaw :: PrimMonad m => Vector All -> m (Mutable Vector (PrimState m) All) basicLength :: Vector All -> Int basicUnsafeSlice :: Int -> Int -> Vector All -> Vector All basicUnsafeIndexM :: Monad m => Vector All -> Int -> m All basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) All -> Vector All -> m () | |
| MVector MVector All | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s All -> Int basicUnsafeSlice :: Int -> Int -> MVector s All -> MVector s All basicOverlaps :: MVector s All -> MVector s All -> Bool basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) All) basicInitialize :: PrimMonad m => MVector (PrimState m) All -> m () basicUnsafeReplicate :: PrimMonad m => Int -> All -> m (MVector (PrimState m) All) basicUnsafeRead :: PrimMonad m => MVector (PrimState m) All -> Int -> m All basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) All -> Int -> All -> m () basicClear :: PrimMonad m => MVector (PrimState m) All -> m () basicSet :: PrimMonad m => MVector (PrimState m) All -> All -> m () basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) All -> MVector (PrimState m) All -> m () basicUnsafeMove :: PrimMonad m => MVector (PrimState m) All -> MVector (PrimState m) All -> m () basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) All -> Int -> m (MVector (PrimState m) All) | |
| t ~ All => Rewrapped All t | |
Defined in Control.Lens.Wrapped | |
| type Rep All | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
| newtype Vector All | |
Defined in Data.Vector.Unboxed.Base | |
| type O All | |
Defined in Control.Newtype.Generics | |
| type Unwrapped All | |
Defined in Control.Lens.Wrapped | |
| newtype MVector s All | |
Defined in Data.Vector.Unboxed.Base | |
Boolean monoid under disjunction (||).
>>>getAny (Any True <> mempty <> Any False)True
>>>getAny (mconcat (map (\x -> Any (even x)) [2,4,6,7,8]))True
Instances
| Bounded Any | Since: base-2.1 |
| Eq Any | Since: base-2.1 |
| Ord Any | Since: base-2.1 |
| Read Any | Since: base-2.1 |
| Show Any | Since: base-2.1 |
| Generic Any | |
| Semigroup Any | Since: base-4.9.0.0 |
| Monoid Any | Since: base-2.1 |
| Unbox Any | |
Defined in Data.Vector.Unboxed.Base | |
| Default Any | |
Defined in Data.Default.Class | |
| Newtype Any | |
| Wrapped Any | |
| Vector Vector Any | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) Any -> m (Vector Any) basicUnsafeThaw :: PrimMonad m => Vector Any -> m (Mutable Vector (PrimState m) Any) basicLength :: Vector Any -> Int basicUnsafeSlice :: Int -> Int -> Vector Any -> Vector Any basicUnsafeIndexM :: Monad m => Vector Any -> Int -> m Any basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) Any -> Vector Any -> m () | |
| MVector MVector Any | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Any -> Int basicUnsafeSlice :: Int -> Int -> MVector s Any -> MVector s Any basicOverlaps :: MVector s Any -> MVector s Any -> Bool basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) Any) basicInitialize :: PrimMonad m => MVector (PrimState m) Any -> m () basicUnsafeReplicate :: PrimMonad m => Int -> Any -> m (MVector (PrimState m) Any) basicUnsafeRead :: PrimMonad m => MVector (PrimState m) Any -> Int -> m Any basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) Any -> Int -> Any -> m () basicClear :: PrimMonad m => MVector (PrimState m) Any -> m () basicSet :: PrimMonad m => MVector (PrimState m) Any -> Any -> m () basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) Any -> MVector (PrimState m) Any -> m () basicUnsafeMove :: PrimMonad m => MVector (PrimState m) Any -> MVector (PrimState m) Any -> m () basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) Any -> Int -> m (MVector (PrimState m) Any) | |
| t ~ Any => Rewrapped Any t | |
Defined in Control.Lens.Wrapped | |
| type Rep Any | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
| newtype Vector Any | |
Defined in Data.Vector.Unboxed.Base | |
| type O Any | |
Defined in Control.Newtype.Generics | |
| type Unwrapped Any | |
Defined in Control.Lens.Wrapped | |
| newtype MVector s Any | |
Defined in Data.Vector.Unboxed.Base | |
Monoid under addition.
>>>getSum (Sum 1 <> Sum 2 <> mempty)3
Instances
| Monad Sum | Since: base-4.8.0.0 |
| Functor Sum | Since: base-4.8.0.0 |
| Applicative Sum | Since: base-4.8.0.0 |
| Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
| Traversable Sum | Since: base-4.8.0.0 |
| Representable Sum | |
| Unbox a => Vector Vector (Sum a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (Sum a) -> m (Vector (Sum a)) basicUnsafeThaw :: PrimMonad m => Vector (Sum a) -> m (Mutable Vector (PrimState m) (Sum a)) basicLength :: Vector (Sum a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Sum a) -> Vector (Sum a) basicUnsafeIndexM :: Monad m => Vector (Sum a) -> Int -> m (Sum a) basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (Sum a) -> Vector (Sum a) -> m () | |
| Unbox a => MVector MVector (Sum a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Sum a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Sum a) -> MVector s (Sum a) basicOverlaps :: MVector s (Sum a) -> MVector s (Sum a) -> Bool basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (Sum a)) basicInitialize :: PrimMonad m => MVector (PrimState m) (Sum a) -> m () basicUnsafeReplicate :: PrimMonad m => Int -> Sum a -> m (MVector (PrimState m) (Sum a)) basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (Sum a) -> Int -> m (Sum a) basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (Sum a) -> Int -> Sum a -> m () basicClear :: PrimMonad m => MVector (PrimState m) (Sum a) -> m () basicSet :: PrimMonad m => MVector (PrimState m) (Sum a) -> Sum a -> m () basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (Sum a) -> MVector (PrimState m) (Sum a) -> m () basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (Sum a) -> MVector (PrimState m) (Sum a) -> m () basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (Sum a) -> Int -> m (MVector (PrimState m) (Sum a)) | |
| Bounded a => Bounded (Sum a) | Since: base-2.1 |
| Eq a => Eq (Sum a) | Since: base-2.1 |
| Num a => Num (Sum a) | Since: base-4.7.0.0 |
| Ord a => Ord (Sum a) | Since: base-2.1 |
| Read a => Read (Sum a) | Since: base-2.1 |
| Show a => Show (Sum a) | Since: base-2.1 |
| Generic (Sum a) | |
| Num a => Semigroup (Sum a) | Since: base-4.9.0.0 |
| Num a => Monoid (Sum a) | Since: base-2.1 |
| Unbox a => Unbox (Sum a) | |
Defined in Data.Vector.Unboxed.Base | |
| Prim a => Prim (Sum a) | |
Defined in Data.Primitive.Types Methods alignment# :: Sum a -> Int# indexByteArray# :: ByteArray# -> Int# -> Sum a readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Sum a#) writeByteArray# :: MutableByteArray# s -> Int# -> Sum a -> State# s -> State# s setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Sum a -> State# s -> State# s indexOffAddr# :: Addr# -> Int# -> Sum a readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Sum a#) writeOffAddr# :: Addr# -> Int# -> Sum a -> State# s -> State# s setOffAddr# :: Addr# -> Int# -> Int# -> Sum a -> State# s -> State# s | |
| Num a => Default (Sum a) | |
Defined in Data.Default.Class | |
| Newtype (Sum a) | |
| Wrapped (Sum a) | |
| Generic1 Sum | |
| t ~ Sum b => Rewrapped (Sum a) t | |
Defined in Control.Lens.Wrapped | |
| type Rep Sum | |
Defined in Data.Functor.Rep type Rep Sum = () | |
| newtype MVector s (Sum a) | |
Defined in Data.Vector.Unboxed.Base | |
| type Rep (Sum a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
| newtype Vector (Sum a) | |
Defined in Data.Vector.Unboxed.Base | |
| type O (Sum a) | |
Defined in Control.Newtype.Generics type O (Sum a) = a | |
| type Unwrapped (Sum a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Sum a) = a | |
| type Rep1 Sum | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
Monoid under multiplication.
>>>getProduct (Product 3 <> Product 4 <> mempty)12
Constructors
| Product | |
Fields
| |
Instances
| Monad Product | Since: base-4.8.0.0 |
| Functor Product | Since: base-4.8.0.0 |
| Applicative Product | Since: base-4.8.0.0 |
| Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
| Traversable Product | Since: base-4.8.0.0 |
| Representable Product | |
| Unbox a => Vector Vector (Product a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (Product a) -> m (Vector (Product a)) basicUnsafeThaw :: PrimMonad m => Vector (Product a) -> m (Mutable Vector (PrimState m) (Product a)) basicLength :: Vector (Product a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Product a) -> Vector (Product a) basicUnsafeIndexM :: Monad m => Vector (Product a) -> Int -> m (Product a) basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (Product a) -> Vector (Product a) -> m () | |
| Unbox a => MVector MVector (Product a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Product a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Product a) -> MVector s (Product a) basicOverlaps :: MVector s (Product a) -> MVector s (Product a) -> Bool basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (Product a)) basicInitialize :: PrimMonad m => MVector (PrimState m) (Product a) -> m () basicUnsafeReplicate :: PrimMonad m => Int -> Product a -> m (MVector (PrimState m) (Product a)) basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (Product a) -> Int -> m (Product a) basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (Product a) -> Int -> Product a -> m () basicClear :: PrimMonad m => MVector (PrimState m) (Product a) -> m () basicSet :: PrimMonad m => MVector (PrimState m) (Product a) -> Product a -> m () basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (Product a) -> MVector (PrimState m) (Product a) -> m () basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (Product a) -> MVector (PrimState m) (Product a) -> m () basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (Product a) -> Int -> m (MVector (PrimState m) (Product a)) | |
| Bounded a => Bounded (Product a) | Since: base-2.1 |
| Eq a => Eq (Product a) | Since: base-2.1 |
| Num a => Num (Product a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
| Ord a => Ord (Product a) | Since: base-2.1 |
| Read a => Read (Product a) | Since: base-2.1 |
| Show a => Show (Product a) | Since: base-2.1 |
| Generic (Product a) | |
| Num a => Semigroup (Product a) | Since: base-4.9.0.0 |
| Num a => Monoid (Product a) | Since: base-2.1 |
| Unbox a => Unbox (Product a) | |
Defined in Data.Vector.Unboxed.Base | |
| Prim a => Prim (Product a) | |
Defined in Data.Primitive.Types Methods alignment# :: Product a -> Int# indexByteArray# :: ByteArray# -> Int# -> Product a readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Product a#) writeByteArray# :: MutableByteArray# s -> Int# -> Product a -> State# s -> State# s setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Product a -> State# s -> State# s indexOffAddr# :: Addr# -> Int# -> Product a readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Product a#) writeOffAddr# :: Addr# -> Int# -> Product a -> State# s -> State# s setOffAddr# :: Addr# -> Int# -> Int# -> Product a -> State# s -> State# s | |
| Num a => Default (Product a) | |
Defined in Data.Default.Class | |
| Newtype (Product a) | |
| Wrapped (Product a) | |
| Generic1 Product | |
| t ~ Product b => Rewrapped (Product a) t | |
Defined in Control.Lens.Wrapped | |
| type Rep Product | |
Defined in Data.Functor.Rep type Rep Product = () | |
| newtype MVector s (Product a) | |
Defined in Data.Vector.Unboxed.Base | |
| type Rep (Product a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
| newtype Vector (Product a) | |
Defined in Data.Vector.Unboxed.Base | |
| type O (Product a) | |
Defined in Control.Newtype.Generics type O (Product a) = a | |
| type Unwrapped (Product a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Product a) = a | |
| type Rep1 Product | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
newtype Alt (f :: k -> Type) (a :: k) :: forall k. (k -> Type) -> k -> Type #
Monoid under <|>.
Since: base-4.8.0.0
Instances
| Generic1 (Alt f :: k -> Type) | |
| Unbox (f a) => Vector Vector (Alt f a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (Alt f a) -> m (Vector (Alt f a)) basicUnsafeThaw :: PrimMonad m => Vector (Alt f a) -> m (Mutable Vector (PrimState m) (Alt f a)) basicLength :: Vector (Alt f a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Alt f a) -> Vector (Alt f a) basicUnsafeIndexM :: Monad m => Vector (Alt f a) -> Int -> m (Alt f a) basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (Alt f a) -> Vector (Alt f a) -> m () | |
| Unbox (f a) => MVector MVector (Alt f a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Alt f a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Alt f a) -> MVector s (Alt f a) basicOverlaps :: MVector s (Alt f a) -> MVector s (Alt f a) -> Bool basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (Alt f a)) basicInitialize :: PrimMonad m => MVector (PrimState m) (Alt f a) -> m () basicUnsafeReplicate :: PrimMonad m => Int -> Alt f a -> m (MVector (PrimState m) (Alt f a)) basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (Alt f a) -> Int -> m (Alt f a) basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (Alt f a) -> Int -> Alt f a -> m () basicClear :: PrimMonad m => MVector (PrimState m) (Alt f a) -> m () basicSet :: PrimMonad m => MVector (PrimState m) (Alt f a) -> Alt f a -> m () basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (Alt f a) -> MVector (PrimState m) (Alt f a) -> m () basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (Alt f a) -> MVector (PrimState m) (Alt f a) -> m () basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (Alt f a) -> Int -> m (MVector (PrimState m) (Alt f a)) | |
| Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
| Functor f => Functor (Alt f) | Since: base-4.8.0.0 |
| Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
| Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
| Traversable f => Traversable (Alt f) | Since: base-4.12.0.0 |
| Alternative f => Alternative (Alt f) | Since: base-4.8.0.0 |
| MonadPlus f => MonadPlus (Alt f) | Since: base-4.8.0.0 |
| Enum (f a) => Enum (Alt f a) | Since: base-4.8.0.0 |
| Eq (f a) => Eq (Alt f a) | Since: base-4.8.0.0 |
| Num (f a) => Num (Alt f a) | Since: base-4.8.0.0 |
| Ord (f a) => Ord (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
| Read (f a) => Read (Alt f a) | Since: base-4.8.0.0 |
| Show (f a) => Show (Alt f a) | Since: base-4.8.0.0 |
| Generic (Alt f a) | |
| Alternative f => Semigroup (Alt f a) | Since: base-4.9.0.0 |
| Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
| Unbox (f a) => Unbox (Alt f a) | |
Defined in Data.Vector.Unboxed.Base | |
| Newtype (Alt f a) | |
| Wrapped (Alt f a) | |
| t ~ Alt g b => Rewrapped (Alt f a) t | |
Defined in Control.Lens.Wrapped | |
| type Rep1 (Alt f :: k -> Type) | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
| newtype MVector s (Alt f a) | |
Defined in Data.Vector.Unboxed.Base | |
| type Rep (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
| newtype Vector (Alt f a) | |
Defined in Data.Vector.Unboxed.Base | |
| type O (Alt f a) | |
Defined in Control.Newtype.Generics type O (Alt f a) = f a | |
| type Unwrapped (Alt f a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Alt f a) = f a | |
(===) :: SemigroupY g => g -> g -> g #
(|||) :: SemigroupX g => g -> g -> g #
(──) :: SemigroupY g => g -> g -> g #
(━━) :: SemigroupY g => g -> g -> g #
(│) :: SemigroupX g => g -> g -> g #
(┃) :: SemigroupX g => g -> g -> g #
(██) :: SemigroupZ g => g -> g -> g #
(■) :: SemigroupZ g => g -> g -> g #
class SemigroupNo (n :: Nat) g where #
Minimal complete definition
Nothing
Methods
sappendN :: proxy n -> g -> g -> g #
sconcatN :: proxy n -> NonEmpty g -> g #
stimesN :: (Integral b, HasCallStack) => proxy n -> b -> g -> g #
Instances
type SemigroupX = SemigroupNo 0 #
type SemigroupY = SemigroupNo 1 #
type SemigroupZ = SemigroupNo 2 #
Instances
| HasContentType Css | |
Defined in Yesod.Core.Content Methods getContentType :: Monad m => m Css -> ContentType | |
| ToContent Css | |
Defined in Yesod.Core.Content | |
| ToTypedContent Css | |
Defined in Yesod.Core.Content Methods toTypedContent :: Css -> TypedContent | |
| ToWidget site Css | |
Defined in Yesod.Core.Widget | |
| ToWidgetHead site Css | |
Defined in Yesod.Core.Widget Methods toWidgetHead :: (MonadWidget m, HandlerSite m ~ site) => Css -> m () | |
| ToWidgetMedia site Css | |
Defined in Yesod.Core.Widget Methods toWidgetMedia :: (MonadWidget m, HandlerSite m ~ site) => Text -> Css -> m () | |
| render ~ RY site => ToWidget site (render -> Css) | |
Defined in Yesod.Core.Widget | |
| render ~ RY site => ToWidgetHead site (render -> Css) | |
Defined in Yesod.Core.Widget Methods toWidgetHead :: (MonadWidget m, HandlerSite m ~ site) => (render -> Css) -> m () | |
| render ~ RY site => ToWidgetMedia site (render -> Css) | |
Defined in Yesod.Core.Widget Methods toWidgetMedia :: (MonadWidget m, HandlerSite m ~ site) => Text -> (render -> Css) -> m () | |
type Presentation = IPresentation IO () Source #
data IPresentation m r Source #
Instances
data YeamerServerConfig Source #
Instances
| Default YeamerServerConfig Source # | |
Defined in Presentation.Yeamer Methods | |
(→│) :: Sessionable a => IPresentation m a -> IPresentation m b -> IPresentation m a infix 6 Source #
(↘──) :: Sessionable a => IPresentation m a -> IPresentation m b -> IPresentation m a infix 5 Source #
(│←) :: Sessionable b => IPresentation m a -> IPresentation m b -> IPresentation m b infix 6 Source #
(──↖) :: Sessionable b => IPresentation m a -> IPresentation m b -> IPresentation m b infix 5 Source #
(→│→) :: (Sessionable a, Monad m) => IPresentation m a -> (a -> IPresentation m ()) -> IPresentation m a infix 6 Source #
(↘──↘) :: (Sessionable a, Monad m) => IPresentation m a -> (a -> IPresentation m ()) -> IPresentation m a infix 5 Source #
(→│←) :: (Sessionable a, Sessionable b) => IPresentation m a -> IPresentation m b -> IPresentation m (a, b) infix 6 Source #
(↘──↖) :: (Sessionable a, Sessionable b) => IPresentation m a -> IPresentation m b -> IPresentation m (a, b) infix 5 Source #
discardResult :: IPresentation m r -> IPresentation m () Source #
feedback_ :: Sessionable a => (Maybe a -> IPresentation m a) -> IPresentation m () Source #
serverSide :: Sessionable a => m a -> IPresentation m a Source #
Run a monadic action and use the result in the presentation. Note that the action may not be re-run even if it depends to other values chosen at another point in the presentation, so use with care.
(======) :: Sessionable r => Html -> IPresentation m r -> IPresentation m r infixr 6 Source #
Infix synonym of addHeading. Intended to be used
in do blocks, for headings of presentation slides.
addHeading :: Sessionable r => Html -> IPresentation m r -> IPresentation m r Source #
divClass :: Sessionable r => Text -> IPresentation m r -> IPresentation m r Source #
spanClass :: Sessionable r => Text -> IPresentation m r -> IPresentation m r Source #
divClasses :: Sessionable r => [(Text, IPresentation m r)] -> IPresentation m r Source #
(#%) :: Sessionable r => Text -> IPresentation m r -> IPresentation m r infix 8 Source #
styling :: Css -> IPresentation m r -> IPresentation m r Source #
staticContent :: Monoid r => Html -> IPresentation m r Source #
tweakContent :: Sessionable r => (Html -> Html) -> IPresentation m r -> IPresentation m r Source #
inputBox :: forall i m. (Inputtable i, FromJSON i) => i -> IPresentation m i Source #
dropdownSelect :: forall a m. (a -> String) -> [a] -> Int -> IPresentation m a Source #
Arguments
| :: QuasiQuoter | ≈ |
Arguments
| :: Name | A function |
| -> QuasiQuoter | A specialised version of |
Convenience wrapper to generate quasi-quoters that will wrap code in any suitable HTML environment.
Arguments
| :: QuasiQuoter | ≈ |
imageFromFileSupplier Source #
Arguments
| :: String | File extension |
| -> (FilePath -> IO ()) | File-writer function. This will be called every time a slide with the image is requested. |
| -> IPresentation IO () |
Display an image generated on-the-fly in the server. The image will be stored temporarily, in a content-indexed fashion.
imageFromFile :: FilePath -> IPresentation IO () Source #
mediaFromFile :: FilePath -> IPresentation IO () Source #
More general form of imageFromFile. Takes a guess based on the file
extension, as to whether the media is a standing image or a video. In the
latter case, simple HTML5 controls are added.
Arguments
| :: FilePath | File that should be served to the client |
| -> (Url -> Html) | How it should be used in the presentation |
| -> IPresentation IO () |
Arguments
| :: String | File extension |
| -> (FilePath -> IO ()) | Server-side file-providing action |
| -> (Url -> Html) | How to use the file client-side |
| -> IPresentation IO () |
class InteractiveShow a where Source #
Minimal complete definition
Nothing
Methods
display :: a -> Presentation Source #
displayOriented :: DisplayOrientation -> a -> Presentation Source #
displayOriented :: (Generic a, GInteractiveShow (Rep a)) => DisplayOrientation -> a -> Presentation Source #
displayList :: DisplayOrientation -> [a] -> Presentation Source #
Instances
yeamerTcpPort :: Lens' YeamerServerConfig Int Source #
yeamer' :: YeamerServerConfig -> Presentation -> IO () Source #
yeamer :: Presentation -> IO () Source #
Run a Yesod/Warp web server that will allow the presentation to be viewed
in a web browser, on port 14910. This is a shorthand for .yeamer' def
(%$>) :: (SymbolClass σ, SCConstraint σ c) => (c -> c') -> CAS' γ s² s¹ (SymbolD σ c) -> CAS' γ s² s¹ (SymbolD σ c') #
(&~~!) :: (Eq l, Eq (Encapsulation l), SymbolClass σ, SCConstraint σ l, Show (AlgebraExpr σ l), Show (AlgebraPattern σ l)) => AlgebraExpr σ l -> [AlgebraPattern σ l] -> AlgebraExpr σ l #
(&~~:) :: (Eq l, Eq (Encapsulation l), SymbolClass σ, SCConstraint σ l, Show (AlgebraExpr σ l), Show (AlgebraPattern σ l)) => AlgebraExpr σ l -> [AlgebraPattern σ l] -> AlgebraExpr σ l #
continueExpr :: (Eq l, Monoid l) => (AlgebraExpr' γ σ l -> AlgebraExpr' γ σ l -> AlgebraExpr' γ σ l) -> (AlgebraExpr' γ σ l -> AlgebraExpr' γ σ l) -> AlgebraExpr' γ σ l -> AlgebraExpr' γ σ l #
don'tParenthesise :: Monoid s¹ => CAS' γ (Infix s²) (Encapsulation s¹) s⁰ -> CAS' γ (Infix s²) (Encapsulation s¹) s⁰ #
expressionFixity :: AlgebraExpr σ c -> Maybe Fixity #
normaliseSymbols :: (SymbolClass σ, SCConstraint σ c) => CAS' γ s² s¹ (SymbolD σ c) -> CAS' γ s² s¹ (SymbolD σ c) #
renderSymbolExpression :: (SymbolClass σ, SCConstraint σ c, HasCallStack) => ContextFixity -> RenderingCombinator σ c r -> AlgebraExpr σ c -> r #
showsPrecASCIISymbol :: (ASCIISymbols c, SymbolClass σ, SCConstraint σ c) => Int -> AlgebraExpr σ c -> ShowS #
showsPrecUnicodeSymbol :: (UnicodeSymbols c, SymbolClass σ, SCConstraint σ c) => Int -> AlgebraExpr σ c -> ShowS #
symbolFunction :: Monoid s¹ => s¹ -> CAS' γ (Infix s²) (Encapsulation s¹) s⁰ -> CAS' γ (Infix s²) (Encapsulation s¹) s⁰ #
symbolInfix :: s² -> CAS' γ s² s¹ s⁰ -> CAS' γ s² s¹ s⁰ -> CAS' γ s² s¹ s⁰ #
class ASCIISymbols c where #
Instances
| ASCIISymbols String | |
Defined in CAS.Dumb.Symbols | |
type AlgebraExpr σ l = CAS (Infix l) (Encapsulation l) (SymbolD σ l) #
type AlgebraExpr' γ σ l = CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
type AlgebraPattern σ l = AlgebraExpr' GapId σ l #
data AlgebraicInvEncapsulation #
Constructors
| Negation | |
| Reciprocal |
Instances
| Eq AlgebraicInvEncapsulation | |
Defined in CAS.Dumb.Symbols Methods (==) :: AlgebraicInvEncapsulation -> AlgebraicInvEncapsulation -> Bool # (/=) :: AlgebraicInvEncapsulation -> AlgebraicInvEncapsulation -> Bool # | |
| Show AlgebraicInvEncapsulation | |
Defined in CAS.Dumb.Symbols Methods showsPrec :: Int -> AlgebraicInvEncapsulation -> ShowS # show :: AlgebraicInvEncapsulation -> String # showList :: [AlgebraicInvEncapsulation] -> ShowS # | |
data ContextFixity #
Constructors
| AtLHS Fixity | |
| AtRHS Fixity | |
| AtFunctionArgument |
Instances
| Eq ContextFixity | |
Defined in CAS.Dumb.Symbols Methods (==) :: ContextFixity -> ContextFixity -> Bool # (/=) :: ContextFixity -> ContextFixity -> Bool # | |
data Encapsulation s #
Constructors
| Encapsulation | |
Fields
| |
| SpecialEncapsulation (SpecialEncapsulation s) | |
Instances
Constructors
| Infix | |
Fields
| |
Instances
class Eq (SpecialEncapsulation c) => RenderableEncapsulations c where #
Methods
fixateAlgebraEncaps :: (SymbolClass σ, SCConstraint σ c) => CAS' γ (Infix c) (Encapsulation c) (SymbolD σ c) -> CAS' γ (Infix c) (Encapsulation c) (SymbolD σ c) #
Instances
| RenderableEncapsulations String | |
Defined in CAS.Dumb.Symbols Methods fixateAlgebraEncaps :: (SymbolClass σ, SCConstraint σ String) => CAS' γ (Infix String) (Encapsulation String) (SymbolD σ String) -> CAS' γ (Infix String) (Encapsulation String) (SymbolD σ String) # | |
type family SpecialEncapsulation s :: Type #
Instances
| type SpecialEncapsulation String | |
Defined in CAS.Dumb.Symbols | |
| type SpecialEncapsulation LaTeX | |
Defined in CAS.Dumb.LaTeX.Symbols type SpecialEncapsulation LaTeX = LaTeXMathEncapsulation | |
class SymbolClass σ where #
Associated Types
type SCConstraint σ :: Type -> Constraint #
Methods
fromCharSymbol :: (Functor p, SCConstraint σ c) => p σ -> Char -> c #
Instances
| SymbolClass Unicode_MathLatin_RomanGreek__BopomofoGaps | |
Defined in CAS.Dumb.Symbols.Unicode.MathLatin_RomanGreek__BopomofoGaps Associated Types type SCConstraint Unicode_MathLatin_RomanGreek__BopomofoGaps :: Type -> Constraint # Methods fromCharSymbol :: (Functor p, SCConstraint Unicode_MathLatin_RomanGreek__BopomofoGaps c) => p Unicode_MathLatin_RomanGreek__BopomofoGaps -> Char -> c # | |
Constructors
| NatSymbol !Integer | |
| PrimitiveSymbol Char | |
| StringSymbol c |
Instances
class UnicodeSymbols c where #
Instances
| UnicodeSymbols String | |
Defined in CAS.Dumb.Symbols | |
(&~!) :: (Eq s⁰, Eq s¹, Eq s², Show (CAS s² s¹ s⁰), Show (CAS' GapId s² s¹ s⁰)) => CAS s² s¹ s⁰ -> Eqspattern s² s¹ s⁰ -> CAS s² s¹ s⁰ #
dcalculation :: (LaTeXC (m ()), LaTeXSymbol σ, Functor m) => LaTeXMath σ -> String -> m (LaTeXMath σ) #
dmaths :: (LaTeXC r, LaTeXSymbol σ) => [[LaTeXMath σ]] -> String -> r #
equations :: (LaTeXC r, LaTeXSymbol σ, HasCallStack) => [(LaTeXMath σ, String)] -> String -> r #
cases :: LaTeXC l => [(CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), LaTeX)] -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
d :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ -> Integrand γ (Infix l) (Encapsulation l) s⁰ #
del :: (SymbolClass σ, SCConstraint σ LaTeX) => CAS' γ s² s¹ (SymbolD σ LaTeX) #
factorial :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
infty :: (SymbolClass σ, SCConstraint σ LaTeX) => CAS' γ s² s¹ (SymbolD σ LaTeX) #
intv :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
matrix :: LaTeXC l => [[CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)]] -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
nabla :: (SymbolClass σ, SCConstraint σ LaTeX) => CAS' γ s² s¹ (SymbolD σ LaTeX) #
nobreaks :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
norm :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
set :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
setCompr :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
toMathLaTeX :: (l ~ LaTeX, SymbolClass σ, SCConstraint σ l) => CAS (Infix l) (Encapsulation l) (SymbolD σ l) -> l #
tup :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(|◝) :: LaTeXC s => CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) -> CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) -> CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) #
(|◞◝) :: LaTeXC s => CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) -> (CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s), CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s)) -> CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) #
(∄:) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ #
(∏) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(∑) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(∖) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ #
(∗) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ #
(∫) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> Integrand γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(⋂) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(⋃) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(⋆) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ -> CAS' γ (Infix l) (Encapsulation l) s⁰ #
(◞∏) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(◞∑) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(◞∫) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> Integrand γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(◞∮) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> Integrand γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(◞⋂) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(◞⋃) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(◞◝) :: LaTeXC s => CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) -> (CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s), CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s)) -> CAS' γ (Infix s) (Encapsulation s) (SymbolD σ s) #
(◞⨄) :: LaTeXC l => CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(⨄) :: LaTeXC l => (CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l), CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l)) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) -> CAS' γ (Infix l) (Encapsulation l) (SymbolD σ l) #
(>$) :: LaTeXC r => r -> LaTeXMath__MathLatin_RomanGreek__BopomofoGaps -> r #
pattern Α :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Β :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Γ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Δ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Ε :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Ζ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Η :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Θ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Ι :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Κ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Λ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Μ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Ν :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Ξ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Ο :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Π :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Ρ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Σ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Τ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Υ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Φ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Χ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Ψ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern Ω :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
α :: Expression' γ s² s¹ ζ #
β :: Expression' γ s² s¹ ζ #
γ :: Expression' γ s² s¹ ζ #
δ :: Expression' γ s² s¹ ζ #
ε :: Expression' γ s² s¹ ζ #
ζ :: Expression' γ s² s¹ ζ #
η :: Expression' γ s² s¹ ζ #
θ :: Expression' γ s² s¹ ζ #
ι :: Expression' γ s² s¹ ζ #
κ :: Expression' γ s² s¹ ζ #
λ :: Expression' γ s² s¹ ζ #
μ :: Expression' γ s² s¹ ζ #
ν :: Expression' γ s² s¹ ζ #
ξ :: Expression' γ s² s¹ ζ #
ο :: Expression' γ s² s¹ ζ #
π :: Expression' γ s² s¹ ζ #
ρ :: Expression' γ s² s¹ ζ #
ς :: Expression' γ s² s¹ ζ #
σ :: Expression' γ s² s¹ ζ #
τ :: Expression' γ s² s¹ ζ #
υ :: Expression' γ s² s¹ ζ #
φ :: Expression' γ s² s¹ ζ #
χ :: Expression' γ s² s¹ ζ #
ψ :: Expression' γ s² s¹ ζ #
ω :: Expression' γ s² s¹ ζ #
ϑ :: Expression' γ s² s¹ ζ #
ϕ :: Expression' γ s² s¹ ζ #
ϱ :: Expression' γ s² s¹ ζ #
pattern ℂ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℋ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℌ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℍ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
ℎ :: Expression' γ s² s¹ ζ #
pattern ℐ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℑ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℒ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℕ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℚ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℛ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℜ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℝ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℤ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℬ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℭ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℰ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℱ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern ℳ :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐀 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐁 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐂 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐃 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐄 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐅 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐆 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐇 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐈 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐉 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐊 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐋 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐌 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐍 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐎 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐏 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐐 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐑 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐒 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐓 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐔 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐕 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐖 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐗 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐘 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐙 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
𝐚 :: Expression' γ s² s¹ ζ #
𝐛 :: Expression' γ s² s¹ ζ #
𝐜 :: Expression' γ s² s¹ ζ #
𝐝 :: Expression' γ s² s¹ ζ #
𝐞 :: Expression' γ s² s¹ ζ #
𝐟 :: Expression' γ s² s¹ ζ #
𝐠 :: Expression' γ s² s¹ ζ #
𝐡 :: Expression' γ s² s¹ ζ #
𝐢 :: Expression' γ s² s¹ ζ #
𝐣 :: Expression' γ s² s¹ ζ #
𝐤 :: Expression' γ s² s¹ ζ #
𝐥 :: Expression' γ s² s¹ ζ #
𝐦 :: Expression' γ s² s¹ ζ #
𝐧 :: Expression' γ s² s¹ ζ #
𝐨 :: Expression' γ s² s¹ ζ #
𝐩 :: Expression' γ s² s¹ ζ #
𝐪 :: Expression' γ s² s¹ ζ #
𝐫 :: Expression' γ s² s¹ ζ #
𝐬 :: Expression' γ s² s¹ ζ #
𝐭 :: Expression' γ s² s¹ ζ #
𝐮 :: Expression' γ s² s¹ ζ #
𝐯 :: Expression' γ s² s¹ ζ #
𝐰 :: Expression' γ s² s¹ ζ #
𝐱 :: Expression' γ s² s¹ ζ #
𝐲 :: Expression' γ s² s¹ ζ #
𝐳 :: Expression' γ s² s¹ ζ #
pattern 𝐴 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐵 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐶 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐷 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐸 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐹 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐺 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐻 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐼 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐽 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐾 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝐿 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑀 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑁 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑂 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑃 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑄 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑅 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑆 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑇 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑈 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑉 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑊 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑋 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑌 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝑍 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
𝑎 :: Expression' γ s² s¹ ζ #
𝑏 :: Expression' γ s² s¹ ζ #
𝑐 :: Expression' γ s² s¹ ζ #
𝑑 :: Expression' γ s² s¹ ζ #
𝑒 :: Expression' γ s² s¹ ζ #
𝑓 :: Expression' γ s² s¹ ζ #
𝑔 :: Expression' γ s² s¹ ζ #
𝑖 :: Expression' γ s² s¹ ζ #
𝑗 :: Expression' γ s² s¹ ζ #
𝑘 :: Expression' γ s² s¹ ζ #
𝑙 :: Expression' γ s² s¹ ζ #
𝑚 :: Expression' γ s² s¹ ζ #
𝑛 :: Expression' γ s² s¹ ζ #
𝑜 :: Expression' γ s² s¹ ζ #
𝑝 :: Expression' γ s² s¹ ζ #
𝑞 :: Expression' γ s² s¹ ζ #
𝑟 :: Expression' γ s² s¹ ζ #
𝑠 :: Expression' γ s² s¹ ζ #
𝑡 :: Expression' γ s² s¹ ζ #
𝑢 :: Expression' γ s² s¹ ζ #
𝑣 :: Expression' γ s² s¹ ζ #
𝑤 :: Expression' γ s² s¹ ζ #
𝑥 :: Expression' γ s² s¹ ζ #
𝑦 :: Expression' γ s² s¹ ζ #
𝑧 :: Expression' γ s² s¹ ζ #
pattern 𝒜 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒞 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒟 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒢 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒥 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒦 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒩 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒪 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒫 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒬 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒮 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒯 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒰 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒱 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒲 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒳 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒴 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝒵 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓐 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓑 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓒 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓓 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓔 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓕 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓖 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓗 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓘 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓙 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓚 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓛 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓜 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓝 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓞 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓟 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓠 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓡 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓢 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓣 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓤 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓥 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓦 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓧 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓨 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝓩 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔄 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔅 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔇 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔈 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔉 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔊 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔍 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔎 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔏 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔐 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔑 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔒 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔓 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔔 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔖 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔗 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔘 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔙 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔚 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔛 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔜 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔸 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔹 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔻 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔼 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔽 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝔾 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕀 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕁 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕂 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕃 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕄 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕆 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕊 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕋 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕌 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕍 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕎 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕏 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
pattern 𝕐 :: forall γ s² s¹ ζ. Expression' γ s² s¹ ζ #
type LaTeXMath σ = CAS (Infix LaTeX) (Encapsulation LaTeX) (SymbolD σ LaTeX) #
type LaTeXSymbol σ = (SymbolClass σ, SCConstraint σ LaTeX) #
type LaTeXMath__MathLatin_RomanGreek__BopomofoGaps = CAS (Infix LaTeX) (Encapsulation LaTeX) (Symbol LaTeX) #
type Expression c = Expression' Void (Infix c) (Encapsulation c) c #
type Expression' γ s² s¹ c = CAS' γ s² s¹ (Symbol c) #
type Pattern c = Expression' GapId (Infix c) (Encapsulation c) c #
data Unicode_MathLatin_RomanGreek__BopomofoGaps #
Instances
| SymbolClass Unicode_MathLatin_RomanGreek__BopomofoGaps | |
Defined in CAS.Dumb.Symbols.Unicode.MathLatin_RomanGreek__BopomofoGaps Associated Types type SCConstraint Unicode_MathLatin_RomanGreek__BopomofoGaps :: Type -> Constraint # Methods fromCharSymbol :: (Functor p, SCConstraint Unicode_MathLatin_RomanGreek__BopomofoGaps c) => p Unicode_MathLatin_RomanGreek__BopomofoGaps -> Char -> c # | |
| (UnicodeSymbols c, RenderableEncapsulations c) => Show (Expression c) | |
Defined in CAS.Dumb.Symbols.Unicode.MathLatin_RomanGreek__BopomofoGaps Methods showsPrec :: Int -> Expression c -> ShowS # show :: Expression c -> String # showList :: [Expression c] -> ShowS # | |
| (UnicodeSymbols c, RenderableEncapsulations c) => Show (Pattern c) | |
| Unwieldy c => Unwieldy (Symbol c) | |
Defined in CAS.Dumb.Symbols.Unicode.MathLatin_RomanGreek__BopomofoGaps Methods unwieldiness :: Symbol c -> Unwieldiness | |
| type SCConstraint Unicode_MathLatin_RomanGreek__BopomofoGaps | |
maths :: r ~ () => [[CAS (Infix LaTeX) (Encapsulation LaTeX) (Symbol LaTeX)]] -> String -> IPresentation m r Source #
($<>) :: CAS (Infix LaTeX) (Encapsulation LaTeX) (Symbol LaTeX) -> Presentation -> Presentation Source #
type Math = Expression LaTeX Source #