Numeric.Transform.Fourier.FFT
 Portability portable Stability experimental Maintainer m.p.donadio@ieee.org
Description
FFT driver functions
Synopsis
 fft :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> Array a (Complex b) ifft :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> Array a (Complex b) rfft :: (Ix a, Integral a, RealFloat b) => Array a b -> Array a (Complex b) irfft :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> Array a b r2fft :: (Ix a, Integral a, RealFloat b) => Array a b -> Array a b -> (Array a (Complex b), Array a (Complex b))
Documentation
fft
 :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) x[n] -> Array a (Complex b) X[k] This is the driver routine for calculating FFT's. All of the recursion in the various algorithms are defined in terms of fft.
ifft
 :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) X[k] -> Array a (Complex b) x[n] Inverse FFT, including scaling factor, defined in terms of fft
rfft
 :: (Ix a, Integral a, RealFloat b) => Array a b x[n] -> Array a (Complex b) X[k] This is the algorithm for computing 2N-point real FFT with an N-point complex FFT, defined in terms of fft
irfft
 :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) X[k] -> Array a b x[n] This is the algorithm for computing a 2N-point real inverse FFT with an N-point complex FFT, defined in terms of ifft
r2fft
 :: (Ix a, Integral a, RealFloat b) => Array a b x1[n] -> Array a b x2[n] -> (Array a (Complex b), Array a (Complex b)) (X1[k],X2[k]) Algorithm for 2 N-point real FFT's computed with N-point complex FFT, defined in terms of fft