AERN-RnToRm-0.4.9.1: polynomial function enclosures (PFEs) approximating exact real functionsSource codeContentsIndex
Data.Number.ER.RnToRm.UnitDom.ChebyshevBase.Polynom.Basic
Portabilityportable
Stabilityexperimental
Maintainermik@konecny.aow.cz
Description

Internal module for Data.Number.ER.RnToRm.UnitDom.ChebyshevBase.Polynom.

Definition of the polynomial datatype and simple related functions.

Synopsis
data ERChebPoly box b = ERChebPoly {
chplCoeffs :: Map (TermKey box) b
}
type TermKey box = box
chplConstTermKey :: DomainBox box varid d => box
chplIsConstTermKey :: DomainBox box varid d => box -> Bool
chplTermOrder :: (DomainBox box varid d, Num d) => box -> d
chplTermArity :: DomainBox box varid d => box -> Int
chplGetDegree :: (ERRealBase b, DomainBox box varid d, Num d, Ord d) => ERChebPoly box b -> d
chplGetConst :: (ERRealBase b, DomainBox box varid d, Num d, Ord d) => ERChebPoly box b -> Maybe b
chplConst :: (ERRealBase b, DomainBox box varid Int, Ord box) => b -> ERChebPoly box b
chplVar :: (ERRealBase b, DomainBox box varid Int, Ord box) => varid -> ERChebPoly box b
chplAffine :: (ERRealBase b, DomainBox box varid Int, Ord box) => b -> Map varid b -> ERChebPoly box b
chplRemoveZeroTermsUp :: (ERRealBase b, DomainBox box varid Int, Ord box) => ERChebPoly box b -> ERChebPoly box b
chplCountTerms :: (ERRealBase b, DomainBox box varid Int, Ord box) => ERChebPoly box b -> Int
chplShow :: (ERRealBase b, DomainBox box varid Int, Ord box) => Int -> Bool -> Bool -> ERChebPoly box b -> String
chebToXBasis :: (ERRealBase b, DomainBox box varid Int, Ord box) => Map (TermKey box) b -> Map (TermKey box) b
termXterms :: (DomainBox box varid Int, Ord box) => TermKey box -> Map (TermKey box) Integer
chebyXCoeffsLists :: (Num d1, Enum d1, Num d2, Enum d2) => [[(d1, d2)]]
chebyXCoeffs :: (Num d, Enum d) => [[d]]
Documentation
data ERChebPoly box b Source

A polynomial represented by its coefficients it the Chebyshev basis.

The polynomials are never to be used outside the domain [-1,1]^n.

All operations are rounded in such a way that the resulting polynomial is a point-wise upper or lower bound of the exact result.

Constructors
ERChebPoly
chplCoeffs :: Map (TermKey box) b
show/hide Instances
Typeable2 ERChebPoly
(ERRealBase rb, RealFrac rb, DomainBox box varid Int, Ord box, DomainBoxMappable boxb boxras varid rb ([] (ERInterval rb)), DomainBoxMappable boxra boxras varid (ERInterval rb) ([] (ERInterval rb)), DomainIntBox boxra varid (ERInterval rb)) => ERUnitFnBase boxb boxra varid rb (ERInterval rb) (ERChebPoly box rb)
(Eq box, Eq b) => Eq (ERChebPoly box b)
(Data box, Data b, Ord box) => Data (ERChebPoly box b)
(Ord box, Ord b) => Ord (ERChebPoly box b)
(ERRealBase b, DomainBox box varid Int, Ord box) => Show (ERChebPoly box b)
(Ord a, Binary a, Binary b) => Binary (ERChebPoly a b)
type TermKey box = boxSource
chplConstTermKey :: DomainBox box varid d => boxSource
chplIsConstTermKey :: DomainBox box varid d => box -> BoolSource
chplTermOrder :: (DomainBox box varid d, Num d) => box -> dSource
chplTermArity :: DomainBox box varid d => box -> IntSource
chplGetDegree :: (ERRealBase b, DomainBox box varid d, Num d, Ord d) => ERChebPoly box b -> dSource
Inspect all terms of the polynomial and return the degree of the highest degree term.
chplGetConst :: (ERRealBase b, DomainBox box varid d, Num d, Ord d) => ERChebPoly box b -> Maybe bSource
If the polynomial is constant, return the constant, otherwise return Nothing.
chplConst :: (ERRealBase b, DomainBox box varid Int, Ord box) => b -> ERChebPoly box bSource
chplVar :: (ERRealBase b, DomainBox box varid Int, Ord box) => varid -> ERChebPoly box bSource
Make a basic x polynomial for a given variable number.
chplAffine :: (ERRealBase b, DomainBox box varid Int, Ord box) => b -> Map varid b -> ERChebPoly box bSource
Construct an affine polynomial.
chplRemoveZeroTermsUp :: (ERRealBase b, DomainBox box varid Int, Ord box) => ERChebPoly box b -> ERChebPoly box bSource
chplCountTerms :: (ERRealBase b, DomainBox box varid Int, Ord box) => ERChebPoly box b -> IntSource
chplShowSource
:: (ERRealBase b, DomainBox box varid Int, Ord box)
=> Intnumber of decimal digits to show
-> Boolwhether to show granularity
-> Boolshow the polynomial also in its native Chebyshev basis
-> ERChebPoly box b
-> String
Convert a polynomial to a string representation, using the ordinary x^n basis.
chebToXBasisSource
:: (ERRealBase b, DomainBox box varid Int, Ord box)
=> Map (TermKey box) bpolynomial in Chebyshev basis
-> Map (TermKey box) bapproxition of the equivalent polynomial in X^n basis

conversion of polynomials from Chebyshev basis to the X^n basis

(not exact - suffering from rounding in the coefficient conversions)

termXtermsSource
:: (DomainBox box varid Int, Ord box)
=> TermKey boxa Chebyshev term represented by the Chebyshev degrees for each variable in the term
-> Map (TermKey box) Integerthe polynomial equivalent to the given Chebyshev term (using integer coefficients)
conversion of one Chebyshev term to the X^n basis
chebyXCoeffsLists :: (Num d1, Enum d1, Num d2, Enum d2) => [[(d1, d2)]]Source
Chebyshev polynomials expressed as associative lists power -> coeff
chebyXCoeffs :: (Num d, Enum d) => [[d]]Source
Chebyshev polynomials expressed as lists of integer coefficients for powers 0,1,2...
Produced by Haddock version 2.4.2