Agda-2.5.2: A dependently typed functional programming language and proof assistant

Safe HaskellNone
LanguageHaskell2010

Agda.Utils.Permutation

Contents

Synopsis

Documentation

data Permutation Source #

Partial permutations. Examples:

permute [1,2,0] [x0,x1,x2] = [x1,x2,x0] (proper permutation).

permute [1,0] [x0,x1,x2] = [x1,x0] (partial permuation).

permute [1,0,1,2] [x0,x1,x2] = [x1,x0,x1,x2] (not a permutation because not invertible).

Agda typing would be: Perm : {m : Nat}(n : Nat) -> Vec (Fin n) m -> Permutation m is the size of the permutation.

Constructors

Perm 

Fields

permute :: Permutation -> [a] -> [a] Source #

permute [1,2,0] [x0,x1,x2] = [x1,x2,x0] More precisely, permute indices list = sublist, generates sublist from list by picking the elements of list as indicated by indices. permute [1,3,0] [x0,x1,x2,x3] = [x1,x3,x0]

Agda typing: permute (Perm {m} n is) : Vec A m -> Vec A n

class InversePermute a b where Source #

Invert a Permutation on a partial finite int map. inversePermute perm f = f' such that permute perm f' = f

Example, with map represented as [Maybe a]: f = [Nothing, Just a, Just b ] perm = Perm 4 [3,0,2] f' = [ Just a , Nothing , Just b , Nothing ] Zipping perm with f gives [(0,a),(2,b)], after compression with catMaybes. This is an IntMap which can easily written out into a substitution again.

Minimal complete definition

inversePermute

Methods

inversePermute :: Permutation -> a -> b Source #

Instances

idP :: Int -> Permutation Source #

Identity permutation.

takeP :: Int -> Permutation -> Permutation Source #

Restrict a permutation to work on n elements, discarding picks >=n.

droppedP :: Permutation -> Permutation Source #

Pick the elements that are not picked by the permutation.

liftP :: Int -> Permutation -> Permutation Source #

liftP k takes a Perm {m} n to a Perm {m+k} (n+k). Analogous to liftS, but Permutations operate on de Bruijn LEVELS, not indices.

composeP :: Permutation -> Permutation -> Permutation Source #

permute (compose p1 p2) == permute p1 . permute p2

invertP :: Int -> Permutation -> Permutation Source #

invertP err p is the inverse of p where defined, otherwise defaults to err. composeP p (invertP err p) == p

compactP :: Permutation -> Permutation Source #

Turn a possible non-surjective permutation into a surjective permutation.

reverseP :: Permutation -> Permutation Source #

permute (reverseP p) xs ==
    reverse $ permute p $ reverse xs

Example: permute (reverseP (Perm 4 [1,3,0])) [x0,x1,x2,x3] == permute (Perm 4 $ map (3-) [0,3,1]) [x0,x1,x2,x3] == permute (Perm 4 [3,0,2]) [x0,x1,x2,x3] == [x3,x0,x2] == reverse [x2,x0,x3] == reverse $ permute (Perm 4 [1,3,0]) [x3,x2,x1,x0] == reverse $ permute (Perm 4 [1,3,0]) $ reverse [x0,x1,x2,x3]

With reverseP, you can convert a permutation on de Bruijn indices to one on de Bruijn levels, and vice versa.

flipP :: Permutation -> Permutation Source #

permPicks (flipP p) = permute p (downFrom (permRange p)) or permute (flipP (Perm n xs)) [0..n-1] = permute (Perm n xs) (downFrom n)

Can be use to turn a permutation from (de Bruijn) levels to levels to one from levels to indices.

See numberPatVars.

expandP :: Int -> Int -> Permutation -> Permutation Source #

expandP i n π in the domain of π replace the ith element by n elements.

topoSort :: (a -> a -> Bool) -> [a] -> Maybe Permutation Source #

Stable topologic sort. The first argument decides whether its first argument is an immediate parent to its second argument.

Drop (apply) and undrop (abstract)

data Drop a Source #

Delayed dropping which allows undropping.

Constructors

Drop 

Fields

  • dropN :: Int

    Non-negative number of things to drop.

  • dropFrom :: a

    Where to drop from.

Instances

Functor Drop Source # 

Methods

fmap :: (a -> b) -> Drop a -> Drop b #

(<$) :: a -> Drop b -> Drop a #

Foldable Drop Source # 

Methods

fold :: Monoid m => Drop m -> m #

foldMap :: Monoid m => (a -> m) -> Drop a -> m #

foldr :: (a -> b -> b) -> b -> Drop a -> b #

foldr' :: (a -> b -> b) -> b -> Drop a -> b #

foldl :: (b -> a -> b) -> b -> Drop a -> b #

foldl' :: (b -> a -> b) -> b -> Drop a -> b #

foldr1 :: (a -> a -> a) -> Drop a -> a #

foldl1 :: (a -> a -> a) -> Drop a -> a #

toList :: Drop a -> [a] #

null :: Drop a -> Bool #

length :: Drop a -> Int #

elem :: Eq a => a -> Drop a -> Bool #

maximum :: Ord a => Drop a -> a #

minimum :: Ord a => Drop a -> a #

sum :: Num a => Drop a -> a #

product :: Num a => Drop a -> a #

Traversable Drop Source # 

Methods

traverse :: Applicative f => (a -> f b) -> Drop a -> f (Drop b) #

sequenceA :: Applicative f => Drop (f a) -> f (Drop a) #

mapM :: Monad m => (a -> m b) -> Drop a -> m (Drop b) #

sequence :: Monad m => Drop (m a) -> m (Drop a) #

Eq a => Eq (Drop a) Source # 

Methods

(==) :: Drop a -> Drop a -> Bool #

(/=) :: Drop a -> Drop a -> Bool #

Ord a => Ord (Drop a) Source # 

Methods

compare :: Drop a -> Drop a -> Ordering #

(<) :: Drop a -> Drop a -> Bool #

(<=) :: Drop a -> Drop a -> Bool #

(>) :: Drop a -> Drop a -> Bool #

(>=) :: Drop a -> Drop a -> Bool #

max :: Drop a -> Drop a -> Drop a #

min :: Drop a -> Drop a -> Drop a #

Show a => Show (Drop a) Source # 

Methods

showsPrec :: Int -> Drop a -> ShowS #

show :: Drop a -> String #

showList :: [Drop a] -> ShowS #

KillRange a => KillRange (Drop a) Source # 

class DoDrop a where Source #

Things that support delayed dropping.

Minimal complete definition

doDrop

Methods

doDrop :: Drop a -> a Source #

dropMore :: Int -> Drop a -> Drop a Source #

unDrop :: Int -> Drop a -> Drop a Source #