| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Agda.Syntax.Internal.Univ
Description
Kinds of standard universes: Prop, Type, SSet.
Types
Flavor of standard universe (Prop < Type < SSet,).
Instances
| EmbPrj Univ Source # | |||||
| NFData Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ | |||||
| Bounded Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ | |||||
| Enum Univ Source # | |||||
| Generic Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ Associated Types
| |||||
| Show Univ Source # | |||||
| Eq Univ Source # | |||||
| Ord Univ Source # | |||||
| type Rep Univ Source # | |||||
Defined in Agda.Syntax.Internal.Univ type Rep Univ = D1 ('MetaData "Univ" "Agda.Syntax.Internal.Univ" "Agda-2.6.20240731-inplace" 'False) (C1 ('MetaCons "UProp" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "UType" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "USSet" 'PrefixI 'False) (U1 :: Type -> Type))) | |||||
We have IsFibrant < IsStrict.
Instances
| EmbPrj IsFibrant Source # | |||||
| Boolean IsFibrant Source # | |||||
| IsBool IsFibrant Source # | |||||
| NFData IsFibrant | |||||
Defined in Agda.Syntax.Internal | |||||
| Generic IsFibrant Source # | |||||
Defined in Agda.Syntax.Internal.Univ Associated Types
| |||||
| Show IsFibrant Source # | |||||
| Eq IsFibrant Source # | |||||
| Ord IsFibrant Source # | |||||
Defined in Agda.Syntax.Internal.Univ | |||||
| type Rep IsFibrant Source # | |||||
Defined in Agda.Syntax.Internal.Univ type Rep IsFibrant = D1 ('MetaData "IsFibrant" "Agda.Syntax.Internal.Univ" "Agda-2.6.20240731-inplace" 'False) (C1 ('MetaCons "IsFibrant" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "IsStrict" 'PrefixI 'False) (U1 :: Type -> Type)) | |||||
Universe kind arithmetic
funUniv :: Univ -> Univ -> Univ Source #
Compute the universe type of a function space from the universe types of domain and codomain.
Inverting funUniv
Arguments
| :: Bool | Have |
| -> Univ |
|
| -> Univ |
|
| -> Maybe Univ |
|
Conclude u1 from funUniv u1 u2 and u2.
Arguments
| :: Univ |
|
| -> Univ |
|
| -> Maybe Univ |
|
Conclude u2 from funUniv u1 u2 and u1.
Fibrancy
univFibrancy :: Univ -> IsFibrant Source #
Fibrancy of standard universes.