Agda-2.6.4.3: A dependently typed functional programming language and proof assistant
Safe HaskellSafe-Inferred
LanguageHaskell2010

Agda.TypeChecking.Rules.LHS.Problem

Synopsis

Documentation

data FlexibleVarKind Source #

When we encounter a flexible variable in the unifier, where did it come from? The alternatives are ordered such that we will assign the higher one first, i.e., first we try to assign a DotFlex, then...

Constructors

RecordFlex [FlexibleVarKind]

From a record pattern (ConP). Saves the FlexibleVarKind of its subpatterns.

ImplicitFlex

From a hidden formal argument or underscore (WildP).

DotFlex

From a dot pattern (DotP).

OtherFlex

From a non-record constructor or literal (ConP or LitP).

data FlexibleVar a Source #

Flexible variables are equipped with information where they come from, in order to make a choice which one to assign when two flexibles are unified.

Instances

Instances details
Foldable FlexibleVar Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Methods

fold :: Monoid m => FlexibleVar m -> m #

foldMap :: Monoid m => (a -> m) -> FlexibleVar a -> m #

foldMap' :: Monoid m => (a -> m) -> FlexibleVar a -> m #

foldr :: (a -> b -> b) -> b -> FlexibleVar a -> b #

foldr' :: (a -> b -> b) -> b -> FlexibleVar a -> b #

foldl :: (b -> a -> b) -> b -> FlexibleVar a -> b #

foldl' :: (b -> a -> b) -> b -> FlexibleVar a -> b #

foldr1 :: (a -> a -> a) -> FlexibleVar a -> a #

foldl1 :: (a -> a -> a) -> FlexibleVar a -> a #

toList :: FlexibleVar a -> [a] #

null :: FlexibleVar a -> Bool #

length :: FlexibleVar a -> Int #

elem :: Eq a => a -> FlexibleVar a -> Bool #

maximum :: Ord a => FlexibleVar a -> a #

minimum :: Ord a => FlexibleVar a -> a #

sum :: Num a => FlexibleVar a -> a #

product :: Num a => FlexibleVar a -> a #

Traversable FlexibleVar Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Methods

traverse :: Applicative f => (a -> f b) -> FlexibleVar a -> f (FlexibleVar b) #

sequenceA :: Applicative f => FlexibleVar (f a) -> f (FlexibleVar a) #

mapM :: Monad m => (a -> m b) -> FlexibleVar a -> m (FlexibleVar b) #

sequence :: Monad m => FlexibleVar (m a) -> m (FlexibleVar a) #

Functor FlexibleVar Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Methods

fmap :: (a -> b) -> FlexibleVar a -> FlexibleVar b #

(<$) :: a -> FlexibleVar b -> FlexibleVar a #

LensArgInfo (FlexibleVar a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

LensHiding (FlexibleVar a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

LensModality (FlexibleVar a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

LensOrigin (FlexibleVar a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

ChooseFlex a => ChooseFlex (FlexibleVar a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Show a => Show (FlexibleVar a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Eq a => Eq (FlexibleVar a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

class ChooseFlex a where Source #

Methods

chooseFlex :: a -> a -> FlexChoice Source #

data ProblemEq Source #

A user pattern together with an internal term that it should be equal to after splitting is complete. Special cases: * User pattern is a variable but internal term isn't: this will be turned into an as pattern. * User pattern is a dot pattern: this pattern won't trigger any splitting but will be checked for equality after all splitting is complete and as patterns have been bound. * User pattern is an absurd pattern: emptiness of the type will be checked after splitting is complete. * User pattern is an annotated wildcard: type annotation will be checked after splitting is complete.

Instances

Instances details
KillRange ProblemEq Source # 
Instance details

Defined in Agda.Syntax.Abstract

PrettyTCM ProblemEq Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Subst ProblemEq Source # 
Instance details

Defined in Agda.TypeChecking.Substitute

Associated Types

type SubstArg ProblemEq Source #

Generic ProblemEq Source # 
Instance details

Defined in Agda.Syntax.Abstract

Associated Types

type Rep ProblemEq :: Type -> Type #

Show ProblemEq Source # 
Instance details

Defined in Agda.Syntax.Abstract

NFData ProblemEq Source # 
Instance details

Defined in Agda.Syntax.Abstract

Methods

rnf :: ProblemEq -> () #

Eq ProblemEq Source # 
Instance details

Defined in Agda.Syntax.Abstract

type SubstArg ProblemEq Source # 
Instance details

Defined in Agda.TypeChecking.Substitute

type Rep ProblemEq Source # 
Instance details

Defined in Agda.Syntax.Abstract

type Rep ProblemEq = D1 ('MetaData "ProblemEq" "Agda.Syntax.Abstract" "Agda-2.6.4.3-Ljl5wY0h7qEDjMk20qhhzf" 'False) (C1 ('MetaCons "ProblemEq" 'PrefixI 'True) (S1 ('MetaSel ('Just "problemInPat") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pattern) :*: (S1 ('MetaSel ('Just "problemInst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Term) :*: S1 ('MetaSel ('Just "problemType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Dom Type)))))

data Problem a Source #

The user patterns we still have to split on.

Constructors

Problem 

Fields

  • _problemEqs :: [ProblemEq]

    User patterns which are typed (including the ones generated from implicit arguments).

  • _problemRestPats :: [NamedArg Pattern]

    List of user patterns which could not yet be typed. Example: f : (b : Bool) -> if b then Nat else Nat -> Nat f true = zero f false zero = zero f false (suc n) = n In this sitation, for clause 2, we construct an initial problem problemEqs = [false = b] problemRestPats = [zero] As we instantiate b to false, the targetType reduces to Nat -> Nat and we can move pattern zero over to problemEqs.

  • _problemCont :: LHSState a -> TCM a

    The code that checks the RHS.

Instances

Instances details
Subst (Problem a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Associated Types

type SubstArg (Problem a) Source #

Show (Problem a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Methods

showsPrec :: Int -> Problem a -> ShowS #

show :: Problem a -> String #

showList :: [Problem a] -> ShowS #

type SubstArg (Problem a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

type SubstArg (Problem a) = Term

data AnnotationPattern Source #

Constructors

Ann Expr Type 

Instances

Instances details
PrettyTCM AnnotationPattern Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

data LHSState a Source #

State worked on during the main loop of checking a lhs. [Ulf Norell's PhD, page. 35]

Constructors

LHSState 

Fields

Instances

Instances details
PrettyTCM (LHSState a) Source # 
Instance details

Defined in Agda.TypeChecking.Rules.LHS.Problem

Methods

prettyTCM :: MonadPretty m => LHSState a -> m Doc Source #

getLeftoverPatterns :: forall m. PureTCM m => [ProblemEq] -> m LeftoverPatterns Source #

Classify remaining patterns after splitting is complete into pattern variables, as patterns, dot patterns, and absurd patterns. Precondition: there are no more constructor patterns.

getUserVariableNames Source #

Arguments

:: Telescope

The telescope of pattern variables

-> IntMap [(Name, PatVarPosition)]

The list of user names for each pattern variable

-> ([Maybe Name], [AsBinding]) 

Build a renaming for the internal patterns using variable names from the user patterns. If there are multiple user names for the same internal variable, the unused ones are returned as as-bindings. Names that are not also module parameters are preferred over those that are.

Orphan instances

PrettyTCM ProblemEq Source # 
Instance details