| Copyright | Guillaume Sabbagh 2023 |
|---|---|
| License | GPL-3 |
| Maintainer | guillaumesabbagh@protonmail.com |
| Stability | experimental |
| Portability | portable |
| Safe Haskell | Safe-Inferred |
| Language | Haskell2010 |
Math.FiniteCategories.DiscreteTwo
Description
The DiscreteTwo category contains two objects and their identities.
You can construct it using DiscreteCategory, it is defined as a standalone category because it is often used unlike other discrete categories.
Synopsis
- data DiscreteTwoOb
- type DiscreteTwoAr = DiscreteTwoOb
- data DiscreteTwo = DiscreteTwo
- twoDiagram :: (Category c m o, Morphism m o) => c -> o -> o -> Diagram DiscreteTwo DiscreteTwoAr DiscreteTwoOb c m o
- insertionDiscreteTwoInDiscreteCategory :: Eq t => DiscreteCategory t -> t -> t -> Diagram DiscreteTwo DiscreteTwoAr DiscreteTwoOb (DiscreteCategory t) (DiscreteMorphism t) t
Documentation
data DiscreteTwoOb Source #
DiscreteTwoOb is a datatype used as the object type and the morphism type.
Instances
type DiscreteTwoAr = DiscreteTwoOb Source #
data DiscreteTwo Source #
DiscreteTwo is a datatype used as category type.
Constructors
| DiscreteTwo |
Instances
twoDiagram :: (Category c m o, Morphism m o) => c -> o -> o -> Diagram DiscreteTwo DiscreteTwoAr DiscreteTwoOb c m o Source #
Constructs a diagram from DiscreteTwo to another category.
insertionDiscreteTwoInDiscreteCategory :: Eq t => DiscreteCategory t -> t -> t -> Diagram DiscreteTwo DiscreteTwoAr DiscreteTwoOb (DiscreteCategory t) (DiscreteMorphism t) t Source #
Return an insertion functor from DiscreteTwo to a DiscreteCategory given a DiscreteCategory and the image of A and B.