| Copyright | Guillaume Sabbagh 2022 | 
|---|---|
| License | GPL-3 | 
| Maintainer | guillaumesabbagh@protonmail.com | 
| Stability | experimental | 
| Portability | portable | 
| Safe Haskell | Safe-Inferred | 
| Language | Haskell2010 | 
Math.FiniteCategories.LimitCategory
Contents
Description
A LimitCategory is the category in which the limit of a diagram in FinCat lives. To compute limits in a usual category, see Math.CompleteCategory. To compute limits in a custom FiniteCategory, see limits in Math.ConeCategory.
Synopsis
- data LimitCategory cIndex mIndex oIndex c m o- = ProjectedCategory c
- | LimitCategory (Diagram cIndex mIndex oIndex (FinCat c m o) (FinFunctor c m o) c)
 
Limit category
data LimitCategory cIndex mIndex oIndex c m o Source #
A LimitCategory is either a ProjectedCategory (an original category) or a LimitCategory.
Constructors
| ProjectedCategory c | An original category in  | 
| LimitCategory (Diagram cIndex mIndex oIndex (FinCat c m o) (FinFunctor c m o) c) | The limit category of a given  | 
Instances
| (FiniteCategory c m o, Morphism m o, Eq c, Eq m, Eq o, FiniteCategory cIndex mIndex oIndex, Morphism mIndex oIndex, Eq cIndex, Eq mIndex, Eq oIndex) => CompleteCategory (FinCat c m o) (FinFunctor c m o) c (FinCat (LimitCategory cIndex mIndex oIndex c m o) (Limit oIndex m) (Limit oIndex o)) (FinFunctor (LimitCategory cIndex mIndex oIndex c m o) (Limit oIndex m) (Limit oIndex o)) (LimitCategory cIndex mIndex oIndex c m o) cIndex mIndex oIndex Source # | |
| Defined in Math.FiniteCategories.LimitCategory Methods limit :: Diagram cIndex mIndex oIndex (FinCat c m o) (FinFunctor c m o) c -> Cone cIndex mIndex oIndex (FinCat (LimitCategory cIndex mIndex oIndex c m o) (Limit oIndex m) (Limit oIndex o)) (FinFunctor (LimitCategory cIndex mIndex oIndex c m o) (Limit oIndex m) (Limit oIndex o)) (LimitCategory cIndex mIndex oIndex c m o) Source # projectBase :: Diagram cIndex mIndex oIndex (FinCat c m o) (FinFunctor c m o) c -> Diagram (FinCat c m o) (FinFunctor c m o) c (FinCat (LimitCategory cIndex mIndex oIndex c m o) (Limit oIndex m) (Limit oIndex o)) (FinFunctor (LimitCategory cIndex mIndex oIndex c m o) (Limit oIndex m) (Limit oIndex o)) (LimitCategory cIndex mIndex oIndex c m o) Source # | |
| (PrettyPrint c, PrettyPrint cIndex, PrettyPrint oIndex, PrettyPrint mIndex, PrettyPrint o, PrettyPrint m, Eq o, Eq m, Eq oIndex, Eq c, Eq mIndex, FiniteCategory c m o, Morphism m o) => PrettyPrint (LimitCategory cIndex mIndex oIndex c m o) Source # | |
| Defined in Math.FiniteCategories.LimitCategory Methods pprint :: Int -> LimitCategory cIndex mIndex oIndex c m o -> String Source # pprintWithIndentations :: Int -> Int -> String -> LimitCategory cIndex mIndex oIndex c m o -> String Source # pprintIndent :: Int -> LimitCategory cIndex mIndex oIndex c m o -> String Source # | |
| (Simplifiable c, Simplifiable cIndex, Simplifiable oIndex, Simplifiable mIndex, Simplifiable o, Simplifiable m, Eq o, Eq m, Eq oIndex, Eq mIndex) => Simplifiable (LimitCategory cIndex mIndex oIndex c m o) Source # | |
| Defined in Math.FiniteCategories.LimitCategory Methods simplify :: LimitCategory cIndex mIndex oIndex c m o -> LimitCategory cIndex mIndex oIndex c m o # | |
| Generic (LimitCategory cIndex mIndex oIndex c m o) Source # | |
| Defined in Math.FiniteCategories.LimitCategory Associated Types type Rep (LimitCategory cIndex mIndex oIndex c m o) :: Type -> Type Methods from :: LimitCategory cIndex mIndex oIndex c m o -> Rep (LimitCategory cIndex mIndex oIndex c m o) x to :: Rep (LimitCategory cIndex mIndex oIndex c m o) x -> LimitCategory cIndex mIndex oIndex c m o | |
| (Show c, Show cIndex, Show oIndex, Show mIndex, Show o, Show m) => Show (LimitCategory cIndex mIndex oIndex c m o) Source # | |
| Defined in Math.FiniteCategories.LimitCategory Methods showsPrec :: Int -> LimitCategory cIndex mIndex oIndex c m o -> ShowS show :: LimitCategory cIndex mIndex oIndex c m o -> String showList :: [LimitCategory cIndex mIndex oIndex c m o] -> ShowS | |
| (Eq c, Eq cIndex, Eq mIndex, Eq oIndex, Eq m, Eq o, FiniteCategory c m o, FiniteCategory cIndex mIndex oIndex, Morphism m o, Morphism mIndex oIndex) => Eq (LimitCategory cIndex mIndex oIndex c m o) Source # | |
| Defined in Math.FiniteCategories.LimitCategory Methods (==) :: LimitCategory cIndex mIndex oIndex c m o -> LimitCategory cIndex mIndex oIndex c m o -> Bool (/=) :: LimitCategory cIndex mIndex oIndex c m o -> LimitCategory cIndex mIndex oIndex c m o -> Bool | |
| (FiniteCategory cIndex mIndex oIndex, Morphism mIndex oIndex, Eq mIndex, Eq oIndex, Category c m o, Morphism m o, Eq m, Eq o) => Category (LimitCategory cIndex mIndex oIndex c m o) (Limit oIndex m) (Limit oIndex o) Source # | |
| Defined in Math.FiniteCategories.LimitCategory Methods identity :: LimitCategory cIndex mIndex oIndex c m o -> Limit oIndex o -> Limit oIndex m Source # ar :: LimitCategory cIndex mIndex oIndex c m o -> Limit oIndex o -> Limit oIndex o -> Set (Limit oIndex m) Source # genAr :: LimitCategory cIndex mIndex oIndex c m o -> Limit oIndex o -> Limit oIndex o -> Set (Limit oIndex m) Source # decompose :: LimitCategory cIndex mIndex oIndex c m o -> Limit oIndex m -> [Limit oIndex m] Source # | |
| (FiniteCategory cIndex mIndex oIndex, Morphism mIndex oIndex, Eq mIndex, Eq oIndex, FiniteCategory c m o, Morphism m o, Eq m, Eq o) => FiniteCategory (LimitCategory cIndex mIndex oIndex c m o) (Limit oIndex m) (Limit oIndex o) Source # | |
| Defined in Math.FiniteCategories.LimitCategory | |
| type Rep (LimitCategory cIndex mIndex oIndex c m o) Source # | |
| Defined in Math.FiniteCategories.LimitCategory type Rep (LimitCategory cIndex mIndex oIndex c m o) = D1 ('MetaData "LimitCategory" "Math.FiniteCategories.LimitCategory" "FiniteCategories-0.6.4.0-inplace" 'False) (C1 ('MetaCons "ProjectedCategory" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c)) :+: C1 ('MetaCons "LimitCategory" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Diagram cIndex mIndex oIndex (FinCat c m o) (FinFunctor c m o) c)))) | |