Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Synopsis
- data FqZech = FqZech !(ForeignPtr CFqZech)
- type CFqZech = CFlint FqZech
- newFqZech :: FqZechCtx -> IO FqZech
- withFqZech :: FqZech -> (Ptr CFqZech -> IO a) -> IO (FqZech, a)
- data FqZechCtx = FqZechCtx !(ForeignPtr CFqZechCtx)
- type CFqZechCtx = CFlint FqZechCtx
- newFqZechCtx :: Fmpz -> CLong -> String -> IO FqZechCtx
- newFqZechCtxConway :: Fmpz -> CLong -> String -> IO FqZechCtx
- newFqZechCtxRandom :: Fmpz -> CLong -> String -> IO FqZechCtx
- newFqZechCtxModulus :: p -> NModPoly -> String -> IO FqZechCtx
- newFqZechCtxModulusCheck :: p -> NModPoly -> String -> IO FqZechCtx
- newFqZechCtxFqNModCtx :: p -> FqNModCtx -> IO FqZechCtx
- newFqZechCtxFqNModCtxCheck :: p -> FqNModCtx -> IO FqZechCtx
- withFqZechCtx :: FqZechCtx -> (Ptr CFqZechCtx -> IO a) -> IO (FqZechCtx, a)
- fq_zech_ctx_init :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO ()
- _fq_zech_ctx_init_conway :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO CInt
- fq_zech_ctx_init_conway :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO ()
- fq_zech_ctx_init_random :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO ()
- fq_zech_ctx_init_modulus :: Ptr CFqZechCtx -> Ptr CNModPoly -> CString -> IO ()
- fq_zech_ctx_init_modulus_check :: Ptr CFqZechCtx -> Ptr CNModPoly -> CString -> IO CInt
- fq_zech_ctx_init_fq_nmod_ctx :: Ptr CFqZechCtx -> Ptr CFqNModCtx -> IO ()
- fq_zech_ctx_init_fq_nmod_ctx_check :: Ptr CFqZechCtx -> Ptr CFqNModCtx -> IO CInt
- fq_zech_ctx_clear :: Ptr CFqZechCtx -> IO ()
- fq_zech_ctx_modulus :: Ptr CFqZechCtx -> IO (Ptr (Ptr CNModPoly))
- fq_zech_ctx_degree :: Ptr CFqZechCtx -> IO CLong
- fq_zech_ctx_order :: Ptr CFmpz -> Ptr CFqZechCtx -> IO ()
- fq_zech_ctx_order_ui :: Ptr CFqZechCtx -> IO CMpLimb
- fq_zech_ctx_get_str :: Ptr CFqZechCtx -> IO CString
- fq_zech_ctx_fprint :: Ptr CFile -> Ptr CFqZechCtx -> IO CInt
- fq_zech_ctx_print :: Ptr CFqZechCtx -> IO ()
- fq_zech_ctx_randtest :: Ptr CFqZechCtx -> IO ()
- fq_zech_ctx_randtest_reducible :: Ptr CFqZechCtx -> IO ()
- fq_zech_init :: Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_init2 :: Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_clear :: Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_reduce :: Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_add :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_sub :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_sub_one :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_neg :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_mul :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_mul_fmpz :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZechCtx -> IO ()
- fq_zech_mul_si :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_mul_ui :: Ptr CFqZech -> Ptr CFqZech -> CULong -> Ptr CFqZechCtx -> IO ()
- fq_zech_sqr :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_div :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_inv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_gcdinv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_pow :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZechCtx -> IO ()
- fq_zech_pow_ui :: Ptr CFqZech -> Ptr CFqZech -> CULong -> Ptr CFqZechCtx -> IO ()
- fq_zech_sqrt :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_pth_root :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_is_square :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_fprint_pretty :: Ptr CFile -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_print_pretty :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_fprint :: Ptr CFile -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_print :: Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_get_str :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CString
- fq_zech_get_str_pretty :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CString
- fq_zech_randtest :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO ()
- fq_zech_randtest_not_zero :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO ()
- fq_zech_rand :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO ()
- fq_zech_rand_not_zero :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO ()
- fq_zech_set :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_set_si :: Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_set_ui :: Ptr CFqZech -> CULong -> Ptr CFqZechCtx -> IO ()
- fq_zech_set_fmpz :: Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZechCtx -> IO ()
- fq_zech_swap :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_zero :: Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_one :: Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_gen :: Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_get_fmpz :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_get_fq_nmod :: Ptr CFqNMod -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_set_fq_nmod :: Ptr CFqZech -> Ptr CFqNMod -> Ptr CFqZechCtx -> IO ()
- fq_zech_get_nmod_poly :: Ptr CNModPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_set_nmod_poly :: Ptr CFqZech -> Ptr CNModPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_get_nmod_mat :: Ptr CNModMat -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_set_nmod_mat :: Ptr CFqZech -> Ptr CNModMat -> Ptr CFqZechCtx -> IO ()
- fq_zech_is_zero :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_is_one :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_equal :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_is_invertible :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_is_invertible_f :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_trace :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_norm :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_frobenius :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_multiplicative_order :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_bit_pack :: Ptr CFmpz -> Ptr CFqZech -> CFBitCnt -> Ptr CFqZechCtx -> IO ()
- fq_zech_bit_unpack :: Ptr CFqZech -> Ptr CFmpz -> CFBitCnt -> Ptr CFqZechCtx -> IO ()
Finite fields (Zech logarithm representation)
Instances
Context
Instances
Storable CFqZechCtx Source # | |
Defined in Data.Number.Flint.Fq.Zech.FFI sizeOf :: CFqZechCtx -> Int # alignment :: CFqZechCtx -> Int # peekElemOff :: Ptr CFqZechCtx -> Int -> IO CFqZechCtx # pokeElemOff :: Ptr CFqZechCtx -> Int -> CFqZechCtx -> IO () # peekByteOff :: Ptr b -> Int -> IO CFqZechCtx # pokeByteOff :: Ptr b -> Int -> CFqZechCtx -> IO () # peek :: Ptr CFqZechCtx -> IO CFqZechCtx # poke :: Ptr CFqZechCtx -> CFqZechCtx -> IO () # |
type CFqZechCtx = CFlint FqZechCtx Source #
create new context
work with context
withFqZechCtx :: FqZechCtx -> (Ptr CFqZechCtx -> IO a) -> IO (FqZechCtx, a) Source #
Context Management
fq_zech_ctx_init :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO () Source #
fq_zech_ctx_init ctx p d var
Initialises the context for prime \(p\) and extension degree \(d\), with
name var
for the generator. By default, it will try use a Conway
polynomial; if one is not available, a random primitive polynomial will
be used.
Assumes that \(p\) is a prime and \(p^d < 2^{\mathtt{FLINT\_BITS}}\).
Assumes that the string var
is a null-terminated string of length at
least one.
_fq_zech_ctx_init_conway :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO CInt Source #
_fq_zech_ctx_init_conway ctx p d var
Attempts to initialise the context for prime \(p\) and extension degree
\(d\), with name var
for the generator using a Conway polynomial for
the modulus.
Returns \(1\) if the Conway polynomial is in the database for the given size and the initialization is successful; otherwise, returns \(0\).
Assumes that \(p\) is a prime and \(p^d < 2^\mathtt{FLINT\_BITS}\).
Assumes that the string var
is a null-terminated string of length at
least one.
fq_zech_ctx_init_conway :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO () Source #
fq_zech_ctx_init_conway ctx p d var
Initialises the context for prime \(p\) and extension degree \(d\), with
name var
for the generator using a Conway polynomial for the modulus.
Assumes that \(p\) is a prime and \(p^d < 2^\mathtt{FLINT\_BITS}\).
Assumes that the string var
is a null-terminated string of length at
least one.
fq_zech_ctx_init_random :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO () Source #
fq_zech_ctx_init_random ctx p d var
Initialises the context for prime \(p\) and extension degree \(d\), with
name var
for the generator using a random primitive polynomial.
Assumes that \(p\) is a prime and \(p^d < 2^\mathtt{FLINT\_BITS}\).
Assumes that the string var
is a null-terminated string of length at
least one.
fq_zech_ctx_init_modulus :: Ptr CFqZechCtx -> Ptr CNModPoly -> CString -> IO () Source #
fq_zech_ctx_init_modulus ctx modulus var
Initialises the context for given modulus
with name var
for the
generator.
Assumes that modulus
is an primitive polynomial over
\(\mathbf{F}_{p}\). An exception is raised if a non-primitive modulus is
detected.
Assumes that the string var
is a null-terminated string of length at
least one.
fq_zech_ctx_init_modulus_check :: Ptr CFqZechCtx -> Ptr CNModPoly -> CString -> IO CInt Source #
fq_zech_ctx_init_modulus_check ctx modulus var
As per the previous function, but returns \(0\) if the modulus was not primitive and \(1\) if the context was successfully initialised with the given modulus. No exception is raised.
fq_zech_ctx_init_fq_nmod_ctx :: Ptr CFqZechCtx -> Ptr CFqNModCtx -> IO () Source #
fq_zech_ctx_init_fq_nmod_ctx ctx ctxn
Initializes the context ctx
to be the Zech representation for the
finite field given by ctxn
.
fq_zech_ctx_init_fq_nmod_ctx_check :: Ptr CFqZechCtx -> Ptr CFqNModCtx -> IO CInt Source #
fq_zech_ctx_init_fq_nmod_ctx_check ctx ctxn
As per the previous function but returns \(0\) if a non-primitive modulus is detected. Returns \(0\) if the Zech representation was successfully initialised.
fq_zech_ctx_clear :: Ptr CFqZechCtx -> IO () Source #
fq_zech_ctx_clear ctx
Clears all memory that has been allocated as part of the context.
fq_zech_ctx_modulus :: Ptr CFqZechCtx -> IO (Ptr (Ptr CNModPoly)) Source #
fq_zech_ctx_modulus ctx
Returns a pointer to the modulus in the context.
fq_zech_ctx_degree :: Ptr CFqZechCtx -> IO CLong Source #
fq_zech_ctx_degree ctx
Returns the degree of the field extension \([\mathbf{F}_{q} : \mathbf{F}_{p}]\), which is equal to \(\log_{p} q\).
fq_zech_ctx_order :: Ptr CFmpz -> Ptr CFqZechCtx -> IO () Source #
fq_zech_ctx_order f ctx
Sets \(f\) to be the size of the finite field.
fq_zech_ctx_order_ui :: Ptr CFqZechCtx -> IO CMpLimb Source #
fq_zech_ctx_order_ui ctx
Returns the size of the finite field.
fq_zech_ctx_get_str :: Ptr CFqZechCtx -> IO CString Source #
fq_zech_ctx_fprint :: Ptr CFile -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_ctx_fprint file ctx
Prints the context information to {tt{file}}. Returns 1 for a success and a negative number for an error.
fq_zech_ctx_print :: Ptr CFqZechCtx -> IO () Source #
fq_zech_ctx_print ctx
Prints the context information to {tt{stdout}}.
fq_zech_ctx_randtest :: Ptr CFqZechCtx -> IO () Source #
fq_zech_ctx_randtest ctx
Initializes ctx
to a random finite field. Assumes that
fq_zech_ctx_init
has not been called on ctx
already.
fq_zech_ctx_randtest_reducible :: Ptr CFqZechCtx -> IO () Source #
fq_zech_ctx_randtest_reducible ctx
Since the Zech logarithm representation does not work with a
non-irreducible modulus, does the same as fq_zech_ctx_randtest
.
Memory management
fq_zech_init :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_init rop ctx
Initialises the element rop
, setting its value to \(0\).
fq_zech_init2 :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_init2 rop ctx
Initialises poly
with at least enough space for it to be an element of
ctx
and sets it to \(0\).
fq_zech_clear :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_clear rop ctx
Clears the element rop
.
fq_zech_reduce :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_reduce rop ctx
Reduces the polynomial rop
as an element of
\(\mathbf{F}_p[X] / (f(X))\).
Basic arithmetic
fq_zech_add :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_add rop op1 op2 ctx
Sets rop
to the sum of op1
and op2
.
fq_zech_sub :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_sub rop op1 op2 ctx
Sets rop
to the difference of op1
and op2
.
fq_zech_sub_one :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_sub_one rop op1 ctx
Sets rop
to the difference of op1
and \(1\).
fq_zech_neg :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_neg rop op ctx
Sets rop
to the negative of op
.
fq_zech_mul :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_mul rop op1 op2 ctx
Sets rop
to the product of op1
and op2
, reducing the output in the
given context.
fq_zech_mul_fmpz :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZechCtx -> IO () Source #
fq_zech_mul_fmpz rop op x ctx
Sets rop
to the product of op
and \(x\), reducing the output in the
given context.
fq_zech_mul_si :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_mul_si rop op x ctx
Sets rop
to the product of op
and \(x\), reducing the output in the
given context.
fq_zech_mul_ui :: Ptr CFqZech -> Ptr CFqZech -> CULong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_mul_ui rop op x ctx
Sets rop
to the product of op
and \(x\), reducing the output in the
given context.
fq_zech_sqr :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_sqr rop op ctx
Sets rop
to the square of op
, reducing the output in the given
context.
fq_zech_div :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_div rop op1 op2 ctx
Sets rop
to the quotient of op1
and op2
, reducing the output in
the given context.
fq_zech_inv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_inv rop op ctx
Sets rop
to the inverse of the non-zero element op
.
fq_zech_gcdinv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_gcdinv f inv op ctx
Sets inv
to be the inverse of op
modulo the modulus of ctx
and
sets f
to one. Since the modulus for ctx
is always irreducible, op
is always invertible.
fq_zech_pow :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZechCtx -> IO () Source #
fq_zech_pow rop op e ctx
Sets rop
the op
raised to the power \(e\).
Currently assumes that \(e \geq 0\).
Note that for any input op
, rop
is set to \(1\) whenever \(e = 0\).
fq_zech_pow_ui :: Ptr CFqZech -> Ptr CFqZech -> CULong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_pow_ui rop op e ctx
Sets rop
the op
raised to the power \(e\).
Currently assumes that \(e \geq 0\).
Note that for any input op
, rop
is set to \(1\) whenever \(e = 0\).
Roots
fq_zech_sqrt :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_sqrt rop op1 ctx
Sets rop
to the square root of op1
if it is a square, and return
\(1\), otherwise return \(0\).
fq_zech_pth_root :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_pth_root rop op1 ctx
Sets rop
to a \(p^{th}\) root root of op1
. Currently, this computes
the root by raising op1
to \(p^{d-1}\) where \(d\) is the degree of
the extension.
fq_zech_is_square :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_is_square op ctx
Return 1
if op
is a square.
Output
fq_zech_fprint_pretty :: Ptr CFile -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_fprint_pretty file op ctx
Prints a pretty representation of op
to file
.
In the current implementation, always returns \(1\). The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code.
fq_zech_print_pretty :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_print_pretty op ctx
Prints a pretty representation of op
to stdout
.
In the current implementation, always returns \(1\). The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code.
fq_zech_fprint :: Ptr CFile -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_fprint file op ctx
Prints a representation of op
to file
.
fq_zech_print :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_print op ctx
Prints a representation of op
to stdout
.
fq_zech_get_str :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CString Source #
fq_zech_get_str op ctx
Returns the plain FLINT string representation of the element op
.
fq_zech_get_str_pretty :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CString Source #
fq_zech_get_str_pretty op ctx
Returns a pretty representation of the element op
using the
null-terminated string x
as the variable name.
Randomisation
fq_zech_randtest :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO () Source #
fq_zech_randtest rop state ctx
Generates a random element of \(\mathbf{F}_q\).
fq_zech_randtest_not_zero :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO () Source #
fq_zech_randtest_not_zero rop state ctx
Generates a random non-zero element of \(\mathbf{F}_q\).
fq_zech_rand :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO () Source #
fq_zech_rand rop state ctx
Generates a high quality random element of \(\mathbf{F}_q\).
fq_zech_rand_not_zero :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO () Source #
fq_zech_rand_not_zero rop state ctx
Generates a high quality non-zero random element of \(\mathbf{F}_q\).
Assignments and conversions
fq_zech_set :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_set rop op ctx
Sets rop
to op
.
fq_zech_set_si :: Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_set_si rop x ctx
Sets rop
to x
, considered as an element of \(\mathbf{F}_p\).
fq_zech_set_ui :: Ptr CFqZech -> CULong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_set_ui rop x ctx
Sets rop
to x
, considered as an element of \(\mathbf{F}_p\).
fq_zech_set_fmpz :: Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZechCtx -> IO () Source #
fq_zech_set_fmpz rop x ctx
Sets rop
to x
, considered as an element of \(\mathbf{F}_p\).
fq_zech_swap :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_swap op1 op2 ctx
Swaps the two elements op1
and op2
.
fq_zech_zero :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_zero rop ctx
Sets rop
to zero.
fq_zech_one :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_one rop ctx
Sets rop
to one, reduced in the given context.
fq_zech_gen :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_gen rop ctx
Sets rop
to a generator for the finite field. There is no guarantee
this is a multiplicative generator of the finite field.
fq_zech_get_fmpz :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_get_fmpz rop op ctx
If op
has a lift to the integers, return \(1\) and set rop
to the
lift in \([0,p)\). Otherwise, return \(0\) and leave \(rop\) undefined.
fq_zech_get_fq_nmod :: Ptr CFqNMod -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_get_fq_nmod rop op ctx
Sets rop
to the fq_nmod_t
element corresponding to op
.
fq_zech_set_fq_nmod :: Ptr CFqZech -> Ptr CFqNMod -> Ptr CFqZechCtx -> IO () Source #
fq_zech_set_fq_nmod rop op ctx
Sets rop
to the fq_zech_t
element corresponding to op
.
fq_zech_get_nmod_poly :: Ptr CNModPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_get_nmod_poly a b ctx
Set a
to a representative of b
in ctx
. The representatives are
taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where \(h(x)\) is the
defining polynomial in ctx
.
fq_zech_set_nmod_poly :: Ptr CFqZech -> Ptr CNModPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_set_nmod_poly a b ctx
Set a
to the element in ctx
with representative b
. The
representatives are taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where
\(h(x)\) is the defining polynomial in ctx
.
fq_zech_get_nmod_mat :: Ptr CNModMat -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_get_nmod_mat col a ctx
Convert a
to a column vector of length degree(ctx)
.
fq_zech_set_nmod_mat :: Ptr CFqZech -> Ptr CNModMat -> Ptr CFqZechCtx -> IO () Source #
fq_zech_set_nmod_mat a col ctx
Convert a column vector col
of length degree(ctx)
to an element of
ctx
.
Comparison
fq_zech_is_zero :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_is_zero op ctx
Returns whether op
is equal to zero.
fq_zech_is_one :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_is_one op ctx
Returns whether op
is equal to one.
fq_zech_equal :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_equal op1 op2 ctx
Returns whether op1
and op2
are equal.
fq_zech_is_invertible :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_is_invertible op ctx
Returns whether op
is an invertible element.
fq_zech_is_invertible_f :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_is_invertible_f f op ctx
Returns whether op
is an invertible element. If it is not, then f
is
set of a factor of the modulus. Since the modulus for an fq_zech_ctx_t
is always irreducible, then any non-zero op
will be invertible.
Special functions
fq_zech_trace :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_trace rop op ctx
Sets rop
to the trace of op
.
For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the trace of \(a\) as the trace of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\sum_{i=0}^{d-1} \Sigma^i (a)\), where (d = log_{p} q).
fq_zech_norm :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_norm rop op ctx
Computes the norm of op
.
For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the norm of \(a\) as the determinant of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\prod_{i=0}^{d-1} \Sigma^i (a)\), where \(d = \text{dim}_{\mathbf{F}_p}(\mathbf{F}_q)\).
Algorithm selection is automatic depending on the input.
fq_zech_frobenius :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_frobenius rop op e ctx
Evaluates the homomorphism \(\Sigma^e\) at op
.
Recall that \(\mathbf{F}_q / \mathbf{F}_p\) is Galois with Galois group \(\langle \sigma \rangle\), which is also isomorphic to \(\mathbf{Z}/d\mathbf{Z}\), where \(\sigma \in \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)\) is the Frobenius element \(\sigma \colon x \mapsto x^p\).
fq_zech_multiplicative_order :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_multiplicative_order ord op ctx
Computes the order of op
as an element of the multiplicative group of
ctx
.
Returns 0 if op
is 0, otherwise it returns 1 if op
is a generator of
the multiplicative group, and -1 if it is not.
Note that ctx
must already correspond to a finite field defined by a
primitive polynomial and so this function cannot be used to check
primitivity of the generator, but can be used to check that other
elements are primitive.
Bit packing
fq_zech_bit_pack :: Ptr CFmpz -> Ptr CFqZech -> CFBitCnt -> Ptr CFqZechCtx -> IO () Source #
fq_zech_bit_pack f op bit_size ctx
Packs op
into bitfields of size bit_size
, writing the result to f
.
fq_zech_bit_unpack :: Ptr CFqZech -> Ptr CFmpz -> CFBitCnt -> Ptr CFqZechCtx -> IO () Source #
fq_zech_bit_unpack rop f bit_size ctx
Unpacks into rop
the element with coefficients packed into fields of
size bit_size
as represented by the integer f
.