Flint2-0.1.0.1: Haskell bindings for the flint library for number theory
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Number.Flint.Fq.Zech

Description

 
Synopsis

Finite fields (Zech logarithm representation)

data FqZech Source #

Constructors

FqZech !(ForeignPtr CFqZech) 

Instances

Instances details
Storable CFqZech Source # 
Instance details

Defined in Data.Number.Flint.Fq.Zech.FFI

type CFqZech = CFlint FqZech Source #

withFqZech :: FqZech -> (Ptr CFqZech -> IO a) -> IO (FqZech, a) Source #

Context

create new context

work with context

Context Management

fq_zech_ctx_init :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO () Source #

fq_zech_ctx_init ctx p d var

Initialises the context for prime \(p\) and extension degree \(d\), with name var for the generator. By default, it will try use a Conway polynomial; if one is not available, a random primitive polynomial will be used.

Assumes that \(p\) is a prime and \(p^d < 2^{\mathtt{FLINT\_BITS}}\).

Assumes that the string var is a null-terminated string of length at least one.

_fq_zech_ctx_init_conway :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO CInt Source #

_fq_zech_ctx_init_conway ctx p d var

Attempts to initialise the context for prime \(p\) and extension degree \(d\), with name var for the generator using a Conway polynomial for the modulus.

Returns \(1\) if the Conway polynomial is in the database for the given size and the initialization is successful; otherwise, returns \(0\).

Assumes that \(p\) is a prime and \(p^d < 2^\mathtt{FLINT\_BITS}\).

Assumes that the string var is a null-terminated string of length at least one.

fq_zech_ctx_init_conway :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO () Source #

fq_zech_ctx_init_conway ctx p d var

Initialises the context for prime \(p\) and extension degree \(d\), with name var for the generator using a Conway polynomial for the modulus.

Assumes that \(p\) is a prime and \(p^d < 2^\mathtt{FLINT\_BITS}\).

Assumes that the string var is a null-terminated string of length at least one.

fq_zech_ctx_init_random :: Ptr CFqZechCtx -> Ptr CFmpz -> CLong -> CString -> IO () Source #

fq_zech_ctx_init_random ctx p d var

Initialises the context for prime \(p\) and extension degree \(d\), with name var for the generator using a random primitive polynomial.

Assumes that \(p\) is a prime and \(p^d < 2^\mathtt{FLINT\_BITS}\).

Assumes that the string var is a null-terminated string of length at least one.

fq_zech_ctx_init_modulus :: Ptr CFqZechCtx -> Ptr CNModPoly -> CString -> IO () Source #

fq_zech_ctx_init_modulus ctx modulus var

Initialises the context for given modulus with name var for the generator.

Assumes that modulus is an primitive polynomial over \(\mathbf{F}_{p}\). An exception is raised if a non-primitive modulus is detected.

Assumes that the string var is a null-terminated string of length at least one.

fq_zech_ctx_init_modulus_check :: Ptr CFqZechCtx -> Ptr CNModPoly -> CString -> IO CInt Source #

fq_zech_ctx_init_modulus_check ctx modulus var

As per the previous function, but returns \(0\) if the modulus was not primitive and \(1\) if the context was successfully initialised with the given modulus. No exception is raised.

fq_zech_ctx_init_fq_nmod_ctx :: Ptr CFqZechCtx -> Ptr CFqNModCtx -> IO () Source #

fq_zech_ctx_init_fq_nmod_ctx ctx ctxn

Initializes the context ctx to be the Zech representation for the finite field given by ctxn.

fq_zech_ctx_init_fq_nmod_ctx_check :: Ptr CFqZechCtx -> Ptr CFqNModCtx -> IO CInt Source #

fq_zech_ctx_init_fq_nmod_ctx_check ctx ctxn

As per the previous function but returns \(0\) if a non-primitive modulus is detected. Returns \(0\) if the Zech representation was successfully initialised.

fq_zech_ctx_clear :: Ptr CFqZechCtx -> IO () Source #

fq_zech_ctx_clear ctx

Clears all memory that has been allocated as part of the context.

fq_zech_ctx_modulus :: Ptr CFqZechCtx -> IO (Ptr (Ptr CNModPoly)) Source #

fq_zech_ctx_modulus ctx

Returns a pointer to the modulus in the context.

fq_zech_ctx_degree :: Ptr CFqZechCtx -> IO CLong Source #

fq_zech_ctx_degree ctx

Returns the degree of the field extension \([\mathbf{F}_{q} : \mathbf{F}_{p}]\), which is equal to \(\log_{p} q\).

fq_zech_ctx_order :: Ptr CFmpz -> Ptr CFqZechCtx -> IO () Source #

fq_zech_ctx_order f ctx

Sets \(f\) to be the size of the finite field.

fq_zech_ctx_order_ui :: Ptr CFqZechCtx -> IO CMpLimb Source #

fq_zech_ctx_order_ui ctx

Returns the size of the finite field.

fq_zech_ctx_fprint :: Ptr CFile -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_ctx_fprint file ctx

Prints the context information to {tt{file}}. Returns 1 for a success and a negative number for an error.

fq_zech_ctx_print :: Ptr CFqZechCtx -> IO () Source #

fq_zech_ctx_print ctx

Prints the context information to {tt{stdout}}.

fq_zech_ctx_randtest :: Ptr CFqZechCtx -> IO () Source #

fq_zech_ctx_randtest ctx

Initializes ctx to a random finite field. Assumes that fq_zech_ctx_init has not been called on ctx already.

fq_zech_ctx_randtest_reducible :: Ptr CFqZechCtx -> IO () Source #

fq_zech_ctx_randtest_reducible ctx

Since the Zech logarithm representation does not work with a non-irreducible modulus, does the same as fq_zech_ctx_randtest.

Memory management

fq_zech_init :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_init rop ctx

Initialises the element rop, setting its value to \(0\).

fq_zech_init2 :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_init2 rop ctx

Initialises poly with at least enough space for it to be an element of ctx and sets it to \(0\).

fq_zech_clear :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_clear rop ctx

Clears the element rop.

fq_zech_reduce :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_reduce rop ctx

Reduces the polynomial rop as an element of \(\mathbf{F}_p[X] / (f(X))\).

Basic arithmetic

fq_zech_add :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_add rop op1 op2 ctx

Sets rop to the sum of op1 and op2.

fq_zech_sub :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_sub rop op1 op2 ctx

Sets rop to the difference of op1 and op2.

fq_zech_sub_one :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_sub_one rop op1 ctx

Sets rop to the difference of op1 and \(1\).

fq_zech_neg :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_neg rop op ctx

Sets rop to the negative of op.

fq_zech_mul :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_mul rop op1 op2 ctx

Sets rop to the product of op1 and op2, reducing the output in the given context.

fq_zech_mul_fmpz :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZechCtx -> IO () Source #

fq_zech_mul_fmpz rop op x ctx

Sets rop to the product of op and \(x\), reducing the output in the given context.

fq_zech_mul_si :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #

fq_zech_mul_si rop op x ctx

Sets rop to the product of op and \(x\), reducing the output in the given context.

fq_zech_mul_ui :: Ptr CFqZech -> Ptr CFqZech -> CULong -> Ptr CFqZechCtx -> IO () Source #

fq_zech_mul_ui rop op x ctx

Sets rop to the product of op and \(x\), reducing the output in the given context.

fq_zech_sqr :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_sqr rop op ctx

Sets rop to the square of op, reducing the output in the given context.

fq_zech_div :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_div rop op1 op2 ctx

Sets rop to the quotient of op1 and op2, reducing the output in the given context.

fq_zech_inv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_inv rop op ctx

Sets rop to the inverse of the non-zero element op.

fq_zech_gcdinv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_gcdinv f inv op ctx

Sets inv to be the inverse of op modulo the modulus of ctx and sets f to one. Since the modulus for ctx is always irreducible, op is always invertible.

fq_zech_pow :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZechCtx -> IO () Source #

fq_zech_pow rop op e ctx

Sets rop the op raised to the power \(e\).

Currently assumes that \(e \geq 0\).

Note that for any input op, rop is set to \(1\) whenever \(e = 0\).

fq_zech_pow_ui :: Ptr CFqZech -> Ptr CFqZech -> CULong -> Ptr CFqZechCtx -> IO () Source #

fq_zech_pow_ui rop op e ctx

Sets rop the op raised to the power \(e\).

Currently assumes that \(e \geq 0\).

Note that for any input op, rop is set to \(1\) whenever \(e = 0\).

Roots

fq_zech_sqrt :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_sqrt rop op1 ctx

Sets rop to the square root of op1 if it is a square, and return \(1\), otherwise return \(0\).

fq_zech_pth_root :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_pth_root rop op1 ctx

Sets rop to a \(p^{th}\) root root of op1. Currently, this computes the root by raising op1 to \(p^{d-1}\) where \(d\) is the degree of the extension.

fq_zech_is_square :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_is_square op ctx

Return 1 if op is a square.

Output

fq_zech_fprint_pretty :: Ptr CFile -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_fprint_pretty file op ctx

Prints a pretty representation of op to file.

In the current implementation, always returns \(1\). The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code.

fq_zech_print_pretty :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_print_pretty op ctx

Prints a pretty representation of op to stdout.

In the current implementation, always returns \(1\). The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code.

fq_zech_fprint :: Ptr CFile -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_fprint file op ctx

Prints a representation of op to file.

fq_zech_print :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_print op ctx

Prints a representation of op to stdout.

fq_zech_get_str :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CString Source #

fq_zech_get_str op ctx

Returns the plain FLINT string representation of the element op.

fq_zech_get_str_pretty :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CString Source #

fq_zech_get_str_pretty op ctx

Returns a pretty representation of the element op using the null-terminated string x as the variable name.

Randomisation

fq_zech_randtest :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO () Source #

fq_zech_randtest rop state ctx

Generates a random element of \(\mathbf{F}_q\).

fq_zech_randtest_not_zero :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO () Source #

fq_zech_randtest_not_zero rop state ctx

Generates a random non-zero element of \(\mathbf{F}_q\).

fq_zech_rand :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO () Source #

fq_zech_rand rop state ctx

Generates a high quality random element of \(\mathbf{F}_q\).

fq_zech_rand_not_zero :: Ptr CFqZech -> Ptr CFRandState -> Ptr CFqZechCtx -> IO () Source #

fq_zech_rand_not_zero rop state ctx

Generates a high quality non-zero random element of \(\mathbf{F}_q\).

Assignments and conversions

fq_zech_set :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_set rop op ctx

Sets rop to op.

fq_zech_set_si :: Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #

fq_zech_set_si rop x ctx

Sets rop to x, considered as an element of \(\mathbf{F}_p\).

fq_zech_set_ui :: Ptr CFqZech -> CULong -> Ptr CFqZechCtx -> IO () Source #

fq_zech_set_ui rop x ctx

Sets rop to x, considered as an element of \(\mathbf{F}_p\).

fq_zech_set_fmpz :: Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZechCtx -> IO () Source #

fq_zech_set_fmpz rop x ctx

Sets rop to x, considered as an element of \(\mathbf{F}_p\).

fq_zech_swap :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_swap op1 op2 ctx

Swaps the two elements op1 and op2.

fq_zech_zero :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_zero rop ctx

Sets rop to zero.

fq_zech_one :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_one rop ctx

Sets rop to one, reduced in the given context.

fq_zech_gen :: Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_gen rop ctx

Sets rop to a generator for the finite field. There is no guarantee this is a multiplicative generator of the finite field.

fq_zech_get_fmpz :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_get_fmpz rop op ctx

If op has a lift to the integers, return \(1\) and set rop to the lift in \([0,p)\). Otherwise, return \(0\) and leave \(rop\) undefined.

fq_zech_get_fq_nmod :: Ptr CFqNMod -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_get_fq_nmod rop op ctx

Sets rop to the fq_nmod_t element corresponding to op.

fq_zech_set_fq_nmod :: Ptr CFqZech -> Ptr CFqNMod -> Ptr CFqZechCtx -> IO () Source #

fq_zech_set_fq_nmod rop op ctx

Sets rop to the fq_zech_t element corresponding to op.

fq_zech_get_nmod_poly :: Ptr CNModPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_get_nmod_poly a b ctx

Set a to a representative of b in ctx. The representatives are taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where \(h(x)\) is the defining polynomial in ctx.

fq_zech_set_nmod_poly :: Ptr CFqZech -> Ptr CNModPoly -> Ptr CFqZechCtx -> IO () Source #

fq_zech_set_nmod_poly a b ctx

Set a to the element in ctx with representative b. The representatives are taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where \(h(x)\) is the defining polynomial in ctx.

fq_zech_get_nmod_mat :: Ptr CNModMat -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_get_nmod_mat col a ctx

Convert a to a column vector of length degree(ctx).

fq_zech_set_nmod_mat :: Ptr CFqZech -> Ptr CNModMat -> Ptr CFqZechCtx -> IO () Source #

fq_zech_set_nmod_mat a col ctx

Convert a column vector col of length degree(ctx) to an element of ctx.

Comparison

fq_zech_is_zero :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_is_zero op ctx

Returns whether op is equal to zero.

fq_zech_is_one :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_is_one op ctx

Returns whether op is equal to one.

fq_zech_equal :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_equal op1 op2 ctx

Returns whether op1 and op2 are equal.

fq_zech_is_invertible :: Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_is_invertible op ctx

Returns whether op is an invertible element.

fq_zech_is_invertible_f :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_is_invertible_f f op ctx

Returns whether op is an invertible element. If it is not, then f is set of a factor of the modulus. Since the modulus for an fq_zech_ctx_t is always irreducible, then any non-zero op will be invertible.

Special functions

fq_zech_trace :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_trace rop op ctx

Sets rop to the trace of op.

For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the trace of \(a\) as the trace of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\sum_{i=0}^{d-1} \Sigma^i (a)\), where (d = log_{p} q).

fq_zech_norm :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #

fq_zech_norm rop op ctx

Computes the norm of op.

For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the norm of \(a\) as the determinant of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\prod_{i=0}^{d-1} \Sigma^i (a)\), where \(d = \text{dim}_{\mathbf{F}_p}(\mathbf{F}_q)\).

Algorithm selection is automatic depending on the input.

fq_zech_frobenius :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #

fq_zech_frobenius rop op e ctx

Evaluates the homomorphism \(\Sigma^e\) at op.

Recall that \(\mathbf{F}_q / \mathbf{F}_p\) is Galois with Galois group \(\langle \sigma \rangle\), which is also isomorphic to \(\mathbf{Z}/d\mathbf{Z}\), where \(\sigma \in \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)\) is the Frobenius element \(\sigma \colon x \mapsto x^p\).

fq_zech_multiplicative_order :: Ptr CFmpz -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #

fq_zech_multiplicative_order ord op ctx

Computes the order of op as an element of the multiplicative group of ctx.

Returns 0 if op is 0, otherwise it returns 1 if op is a generator of the multiplicative group, and -1 if it is not.

Note that ctx must already correspond to a finite field defined by a primitive polynomial and so this function cannot be used to check primitivity of the generator, but can be used to check that other elements are primitive.

Bit packing

fq_zech_bit_pack :: Ptr CFmpz -> Ptr CFqZech -> CFBitCnt -> Ptr CFqZechCtx -> IO () Source #

fq_zech_bit_pack f op bit_size ctx

Packs op into bitfields of size bit_size, writing the result to f.

fq_zech_bit_unpack :: Ptr CFqZech -> Ptr CFmpz -> CFBitCnt -> Ptr CFqZechCtx -> IO () Source #

fq_zech_bit_unpack rop f bit_size ctx

Unpacks into rop the element with coefficients packed into fields of size bit_size as represented by the integer f.