{-# LINE 1 "src/Data/Number/Flint/Acb/FFI.hsc" #-} {-| module : Data.Number.Flint.Acb.FFI copyright : (c) 2022 Hartmut Monien license : GNU GPL, version 2 or above (see LICENSE) maintainer : hmonien@uni-bonn.de -} module Data.Number.Flint.Acb.FFI ( -- * Complex numbers -- * Types Acb (..) , CAcb (..) , newAcb , withAcb , withNewAcb , withAcbRe , withAcbIm , acb_realref , acb_imagref -- * Memory management , acb_init , acb_clear , _acb_vec_init , _acb_vec_clear , acb_allocated_bytes , _acb_vec_allocated_bytes , _acb_vec_estimate_allocated_bytes -- * Basic manipulation , acb_zero , acb_one , acb_onei , acb_set , acb_set_ui , acb_set_si , acb_set_d , acb_set_fmpz , acb_set_arb , acb_set_si_si , acb_set_d_d , acb_set_fmpz_fmpz , acb_set_arb_arb , acb_set_fmpq , acb_set_round , acb_set_round_fmpz , acb_set_round_arb , acb_swap , acb_add_error_arf , acb_add_error_mag , acb_add_error_arb , acb_get_mid -- * Input and output , acb_get_str , acb_get_strd , acb_get_strn , acb_print , acb_fprint , acb_printd , acb_fprintd , acb_printn , acb_fprintn -- * Random number generation , acb_randtest , acb_randtest_special , acb_randtest_precise , acb_randtest_param -- * Precision and comparisons , acb_is_zero , acb_is_one , acb_is_finite , acb_is_exact , acb_is_int , acb_is_int_2exp_si , acb_equal , acb_equal_si , acb_eq , acb_ne , acb_overlaps , acb_union , acb_get_abs_ubound_arf , acb_get_abs_lbound_arf , acb_get_rad_ubound_arf , acb_get_mag , acb_get_mag_lower , acb_contains_fmpq , acb_contains_fmpz , acb_contains , acb_contains_zero , acb_contains_int , acb_contains_interior , acb_rel_error_bits , acb_rel_accuracy_bits , acb_rel_one_accuracy_bits , acb_bits , acb_indeterminate , acb_trim , acb_is_real , acb_get_unique_fmpz -- * Complex parts , acb_get_real , acb_get_imag , acb_arg , acb_abs , acb_sgn , acb_csgn -- * Arithmetic , acb_neg , acb_neg_round , acb_conj , acb_add_ui , acb_add_si , acb_add_fmpz , acb_add_arb , acb_add , acb_sub_ui , acb_sub_si , acb_sub_fmpz , acb_sub_arb , acb_sub , acb_mul_onei , acb_div_onei , acb_mul_ui , acb_mul_si , acb_mul_fmpz , acb_mul_arb , acb_mul , acb_mul_2exp_si , acb_mul_2exp_fmpz , acb_sqr , acb_cube , acb_addmul , acb_addmul_ui , acb_addmul_si , acb_addmul_fmpz , acb_addmul_arb , acb_submul , acb_submul_ui , acb_submul_si , acb_submul_fmpz , acb_submul_arb , acb_inv , acb_div_ui , acb_div_si , acb_div_fmpz , acb_div_arb , acb_div -- * Dot product , acb_dot_precise , acb_approx_dot , acb_dot_ui -- * Mathematical constants , acb_const_pi -- * Powers and roots , acb_sqrt , acb_sqrt_analytic , acb_rsqrt , acb_rsqrt_analytic , acb_quadratic_roots_fmpz , acb_root_ui , acb_pow_fmpz , acb_pow_ui , acb_pow_si , acb_pow_arb , acb_pow , acb_pow_analytic , acb_unit_root -- * Exponentials and logarithms , acb_exp , acb_exp_pi_i , acb_exp_invexp , acb_expm1 , acb_log , acb_log_analytic , acb_log1p -- * Trigonometric functions , acb_sin , acb_cos , acb_sin_cos , acb_tan , acb_cot , acb_sin_pi , acb_cos_pi , acb_sin_cos_pi , acb_tan_pi , acb_cot_pi , acb_sec , acb_csc , acb_csc_pi , acb_sinc , acb_sinc_pi -- * Inverse trigonometric functions , acb_asin , acb_acos , acb_atan -- * Hyperbolic functions , acb_sinh , acb_cosh , acb_sinh_cosh , acb_tanh , acb_coth , acb_sech , acb_csch -- * Inverse hyperbolic functions , acb_asinh , acb_acosh , acb_atanh -- * Lambert W function , acb_lambertw_asymp , acb_lambertw_check_branch , acb_lambertw_bound_deriv , acb_lambertw -- * Rising factorials , acb_rising_ui -- * Gamma function , acb_gamma , acb_rgamma , acb_lgamma , acb_digamma , acb_log_sin_pi , acb_polygamma , acb_barnes_g , acb_log_barnes_g -- * Zeta function , acb_zeta , acb_hurwitz_zeta , acb_bernoulli_poly_ui -- * Polylogarithms , acb_polylog , acb_polylog_si -- * Arithmetic-geometric mean , acb_agm1 , acb_agm1_cpx , acb_agm -- * Other special functions , acb_chebyshev_t_ui , acb_chebyshev_u_ui , acb_chebyshev_t2_ui , acb_chebyshev_u2_ui -- * Piecewise real functions , acb_real_abs , acb_real_sgn , acb_real_heaviside , acb_real_floor , acb_real_ceil , acb_real_max , acb_real_min , acb_real_sqrtpos -- * Vector functions , _acb_vec_zero , _acb_vec_is_zero , _acb_vec_is_real , _acb_vec_set , _acb_vec_set_round , _acb_vec_swap , _acb_vec_neg , _acb_vec_add , _acb_vec_sub , _acb_vec_scalar_submul , _acb_vec_scalar_addmul , _acb_vec_scalar_mul , _acb_vec_scalar_mul_ui , _acb_vec_scalar_mul_2exp_si , _acb_vec_scalar_mul_onei , _acb_vec_scalar_div_ui , _acb_vec_scalar_div , _acb_vec_scalar_mul_arb , _acb_vec_scalar_div_arb , _acb_vec_scalar_mul_fmpz , _acb_vec_scalar_div_fmpz , _acb_vec_bits , _acb_vec_set_powers , _acb_vec_unit_roots , _acb_vec_add_error_arf_vec , _acb_vec_add_error_mag_vec , _acb_vec_indeterminate , _acb_vec_trim , _acb_vec_get_unique_fmpz_vec , _acb_vec_sort_pretty ) where -- Complex numbers ------------------------------------------------------------- import Foreign.Ptr import Foreign.ForeignPtr import Foreign.C.Types import Foreign.C.String import Foreign.Storable import Foreign.Marshal.Alloc (free) import Foreign.Marshal.Array (advancePtr) import Data.Typeable import Data.Number.Flint.Flint import Data.Number.Flint.Fmpz import Data.Number.Flint.Fmpq import Data.Number.Flint.Arb.Types import Data.Number.Flint.Acb.Types -- Types ----------------------------------------------------------------------- -- | Create new `Acb` newAcb :: IO Acb newAcb = do ForeignPtr CAcb x <- forall a. Storable a => IO (ForeignPtr a) mallocForeignPtr forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CAcb x Ptr CAcb -> IO () acb_init forall a. FinalizerPtr a -> ForeignPtr a -> IO () addForeignPtrFinalizer FunPtr (Ptr CAcb -> IO ()) p_acb_clear ForeignPtr CAcb x forall (m :: * -> *) a. Monad m => a -> m a return forall a b. (a -> b) -> a -> b $ ForeignPtr CAcb -> Acb Acb ForeignPtr CAcb x -- | Apply function `f` to `Acb` withAcb :: Acb -> (Ptr CAcb -> IO a) -> IO (Acb, a) withAcb (Acb ForeignPtr CAcb p) Ptr CAcb -> IO a f = do forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CAcb p forall a b. (a -> b) -> a -> b $ \Ptr CAcb fp -> (ForeignPtr CAcb -> Acb Acb ForeignPtr CAcb p,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Ptr CAcb -> IO a f Ptr CAcb fp -- | Apply function `f` to new `Acb` withNewAcb :: (Ptr CAcb -> IO a) -> IO (Acb, a) withNewAcb Ptr CAcb -> IO a f = do Acb x <- IO Acb newAcb forall {a}. Acb -> (Ptr CAcb -> IO a) -> IO (Acb, a) withAcb Acb x Ptr CAcb -> IO a f -- | Apply function `f` to real part of `Acb` withAcbRe :: Acb -> (Ptr CArb -> IO t) -> IO (Acb, t) withAcbRe :: forall t. Acb -> (Ptr CArb -> IO t) -> IO (Acb, t) withAcbRe (Acb ForeignPtr CAcb p) Ptr CArb -> IO t f = do forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CAcb p forall a b. (a -> b) -> a -> b $ \Ptr CAcb fp -> do forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CAcb p forall a b. (a -> b) -> a -> b $ \Ptr CAcb fp -> (ForeignPtr CAcb -> Acb Acb ForeignPtr CAcb p,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Ptr CArb -> IO t f (Ptr CAcb -> Ptr CArb acb_realref Ptr CAcb fp) -- | Apply function `f` to imaginary part of `Acb` withAcbIm :: Acb -> (Ptr CArb -> IO t) -> IO (Acb, t) withAcbIm :: forall t. Acb -> (Ptr CArb -> IO t) -> IO (Acb, t) withAcbIm (Acb ForeignPtr CAcb p) Ptr CArb -> IO t f = do forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CAcb p forall a b. (a -> b) -> a -> b $ \Ptr CAcb fp -> do forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CAcb p forall a b. (a -> b) -> a -> b $ \Ptr CAcb fp -> (ForeignPtr CAcb -> Acb Acb ForeignPtr CAcb p,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Ptr CArb -> IO t f (Ptr CAcb -> Ptr CArb acb_imagref Ptr CAcb fp) instance Storable CAcb where sizeOf :: CAcb -> Int sizeOf CAcb _ = (Int 96) {-# LINE 332 "src/Data/Number/Flint/Acb/FFI.hsc" #-} alignment _ = 8 {-# LINE 333 "src/Data/Number/Flint/Acb/FFI.hsc" #-} peek = error "CAcb.peek not defined." poke :: Ptr CAcb -> CAcb -> IO () poke = forall a. HasCallStack => [Char] -> a error [Char] "CAcb.poke not defined." -- Access to real and imaginary part ------------------------------------------- -- | /acb_realref/ /z/ -- -- /acb_realref/ returns a `CArb` pointer to the real part of /z/. acb_realref :: Ptr CAcb -> Ptr CArb acb_realref :: Ptr CAcb -> Ptr CArb acb_realref Ptr CAcb z = forall a b. Ptr a -> Ptr b castPtr Ptr CAcb z -- | /acb_imagref/ /z/ -- -- /acb_imagref/ returns a `CArb` pointer to the imaginary part of /z/. acb_imagref :: Ptr CAcb -> Ptr CArb acb_imagref :: Ptr CAcb -> Ptr CArb acb_imagref Ptr CAcb z = forall a b. Ptr a -> Ptr b castPtr Ptr CAcb z forall a. Storable a => Ptr a -> Int -> Ptr a `advancePtr` Int 1 -- Memory management ----------------------------------------------------------- -- | /acb_init/ /x/ -- -- Initializes the variable /x/ for use, and sets its value to zero. foreign import ccall "acb.h acb_init" acb_init :: Ptr CAcb -> IO () -- | /acb_clear/ /x/ -- -- Clears the variable /x/, freeing or recycling its allocated memory. foreign import ccall "acb.h acb_clear" acb_clear :: Ptr CAcb -> IO () foreign import ccall "acb.h &acb_clear" p_acb_clear :: FunPtr (Ptr CAcb -> IO ()) -- | /_acb_vec_init/ /n/ -- -- Returns a pointer to an array of /n/ initialized /acb_struct/:s. foreign import ccall "acb.h _acb_vec_init" _acb_vec_init :: CLong -> IO (Ptr CAcb) -- | /_acb_vec_clear/ /v/ /n/ -- -- Clears an array of /n/ initialized /acb_struct/:s. foreign import ccall "acb.h _acb_vec_clear" _acb_vec_clear :: Ptr CAcb -> CLong -> IO () -- | /acb_allocated_bytes/ /x/ -- -- Returns the total number of bytes heap-allocated internally by this -- object. The count excludes the size of the structure itself. Add -- @sizeof(acb_struct)@ to get the size of the object as a whole. foreign import ccall "acb.h acb_allocated_bytes" acb_allocated_bytes :: Ptr CAcb -> IO CLong -- | /_acb_vec_allocated_bytes/ /vec/ /len/ -- -- Returns the total number of bytes allocated for this vector, i.e. the -- space taken up by the vector itself plus the sum of the internal heap -- allocation sizes for all its member elements. foreign import ccall "acb.h _acb_vec_allocated_bytes" _acb_vec_allocated_bytes :: Ptr CAcb -> CLong -> IO CLong -- | /_acb_vec_estimate_allocated_bytes/ /len/ /prec/ -- -- Estimates the number of bytes that need to be allocated for a vector of -- /len/ elements with /prec/ bits of precision, including the space for -- internal limb data. See comments for -- @_arb_vec_estimate_allocated_bytes@. foreign import ccall "acb.h _acb_vec_estimate_allocated_bytes" _acb_vec_estimate_allocated_bytes :: CLong -> CLong -> IO CDouble -- Basic manipulation ---------------------------------------------------------- foreign import ccall "acb.h acb_zero" acb_zero :: Ptr CAcb -> IO () foreign import ccall "acb.h acb_one" acb_one :: Ptr CAcb -> IO () -- | /acb_onei/ /z/ -- -- Sets /z/ respectively to 0, 1, \(i = \sqrt{-1}\). foreign import ccall "acb.h acb_onei" acb_onei :: Ptr CAcb -> IO () foreign import ccall "acb.h acb_set" acb_set :: Ptr CAcb -> Ptr CAcb -> IO () foreign import ccall "acb.h acb_set_ui" acb_set_ui :: Ptr CAcb -> CULong -> IO () foreign import ccall "acb.h acb_set_si" acb_set_si :: Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_set_d" acb_set_d :: Ptr CAcb -> CDouble -> IO () foreign import ccall "acb.h acb_set_fmpz" acb_set_fmpz :: Ptr CAcb -> Ptr CFmpz -> IO () -- | /acb_set_arb/ /z/ /c/ -- -- Sets /z/ to the value of /x/. foreign import ccall "acb.h acb_set_arb" acb_set_arb :: Ptr CAcb -> Ptr CArb -> IO () foreign import ccall "acb.h acb_set_si_si" acb_set_si_si :: Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h acb_set_d_d" acb_set_d_d :: Ptr CAcb -> CDouble -> CDouble -> IO () foreign import ccall "acb.h acb_set_fmpz_fmpz" acb_set_fmpz_fmpz :: Ptr CAcb -> Ptr CFmpz -> Ptr CFmpz -> IO () -- | /acb_set_arb_arb/ /z/ /x/ /y/ -- -- Sets the real and imaginary part of /z/ to the values /x/ and /y/ -- respectively foreign import ccall "acb.h acb_set_arb_arb" acb_set_arb_arb :: Ptr CAcb -> Ptr CArb -> Ptr CArb -> IO () foreign import ccall "acb.h acb_set_fmpq" acb_set_fmpq :: Ptr CAcb -> Ptr CFmpq -> CLong -> IO () foreign import ccall "acb.h acb_set_round" acb_set_round :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_set_round_fmpz" acb_set_round_fmpz :: Ptr CAcb -> Ptr CFmpz -> CLong -> IO () -- | /acb_set_round_arb/ /z/ /x/ /prec/ -- -- Sets /z/ to /x/, rounded to /prec/ bits. foreign import ccall "acb.h acb_set_round_arb" acb_set_round_arb :: Ptr CAcb -> Ptr CArb -> CLong -> IO () -- | /acb_swap/ /z/ /x/ -- -- Swaps /z/ and /x/ efficiently. foreign import ccall "acb.h acb_swap" acb_swap :: Ptr CAcb -> Ptr CAcb -> IO () foreign import ccall "acb.h acb_add_error_arf" acb_add_error_arf :: Ptr CAcb -> Ptr CArf -> IO () foreign import ccall "acb.h acb_add_error_mag" acb_add_error_mag :: Ptr CAcb -> Ptr CMag -> IO () -- | /acb_add_error_arb/ /x/ /err/ -- -- Adds /err/ to the error bounds of both the real and imaginary parts of -- /x/, modifying /x/ in-place. foreign import ccall "acb.h acb_add_error_arb" acb_add_error_arb :: Ptr CAcb -> Ptr CArb -> IO () -- | /acb_get_mid/ /m/ /x/ -- -- Sets /m/ to the midpoint of /x/. foreign import ccall "acb.h acb_get_mid" acb_get_mid :: Ptr CAcb -> Ptr CAcb -> IO () -- Input and output ------------------------------------------------------------ foreign import ccall "acb.h acb_get_str" acb_get_str :: Ptr CAcb -> IO CString foreign import ccall "acb.h acb_get_strd" acb_get_strd :: Ptr CAcb -> CLong -> IO CString foreign import ccall "acb.h acb_get_strn" acb_get_strn :: Ptr CAcb -> CLong -> ArbStrOption -> IO CString -- The /acb_print.../ functions print to standard output, while -- /acb_fprint.../ functions print to the stream /file/. -- acb_print :: Ptr CAcb -> IO () acb_print :: Ptr CAcb -> IO () acb_print Ptr CAcb x = do CString cstr <- Ptr CAcb -> IO CString acb_get_str Ptr CAcb x [Char] str <- CString -> IO [Char] peekCString CString cstr forall a. Ptr a -> IO () free CString cstr [Char] -> IO () putStr [Char] str -- | /acb_fprint/ /file/ /x/ -- -- Prints the internal representation of /x/. foreign import ccall "acb.h acb_fprint" acb_fprint :: Ptr CFile -> Ptr CAcb -> IO () -- | /acb_printd/ /file/ /x/ /digits/ -- -- Prints /x/ in decimal to stdout. The printed value of the radius is -- not adjusted to compensate for the fact that the binary-to-decimal -- conversion of both the midpoint and the radius introduces -- additional error. acb_printd :: Ptr CAcb -> CLong -> IO () acb_printd :: Ptr CAcb -> CLong -> IO () acb_printd Ptr CAcb x CLong prec = do CString cstr <- Ptr CAcb -> CLong -> IO CString acb_get_strd Ptr CAcb x CLong prec [Char] str <- CString -> IO [Char] peekCString CString cstr forall a. Ptr a -> IO () free CString cstr [Char] -> IO () putStr [Char] str -- | /acb_fprintd/ /file/ /x/ /digits/ -- -- Prints /x/ in decimal to stream /file/. The printed value of the -- radius is not adjusted to compensate for the fact that the -- binary-to-decimal conversion of both the midpoint and the radius -- introduces additional error. foreign import ccall "acb.h acb_fprintd" acb_fprintd :: Ptr CFile -> Ptr CAcb -> CLong -> IO () acb_printn :: Ptr CAcb -> CLong -> ArbStrOption -> IO () acb_printn :: Ptr CAcb -> CLong -> ArbStrOption -> IO () acb_printn Ptr CAcb x CLong prec ArbStrOption opts = do CString cstr <- Ptr CAcb -> CLong -> ArbStrOption -> IO CString acb_get_strn Ptr CAcb x CLong prec ArbStrOption opts [Char] str <- CString -> IO [Char] peekCString CString cstr forall a. Ptr a -> IO () free CString cstr [Char] -> IO () putStr [Char] str -- | /acb_fprintn/ /file/ /x/ /digits/ /flags/ -- -- Prints a nice decimal representation of /x/, using the format of -- @arb_get_str@ (or the corresponding @arb_printn@) for the real and -- imaginary parts. -- -- By default, the output shows the midpoint of both the real and imaginary -- parts with a guaranteed error of at most one unit in the last decimal -- place. In addition, explicit error bounds are printed so that the -- displayed decimal interval is guaranteed to enclose /x/. -- -- Any flags understood by @arb_get_str@ can be passed via /flags/ to -- control the format of the real and imaginary parts. foreign import ccall "acb.h acb_fprintn" acb_fprintn :: Ptr CFile -> Ptr CAcb -> CLong -> ArbStrOption -> IO () -- Random number generation ---------------------------------------------------- -- | /acb_randtest/ /z/ /state/ /prec/ /mag_bits/ -- -- Generates a random complex number by generating separate random real and -- imaginary parts. foreign import ccall "acb.h acb_randtest" acb_randtest :: Ptr CAcb -> Ptr CFRandState -> CLong -> CLong -> IO () -- | /acb_randtest_special/ /z/ /state/ /prec/ /mag_bits/ -- -- Generates a random complex number by generating separate random real and -- imaginary parts. Also generates NaNs and infinities. foreign import ccall "acb.h acb_randtest_special" acb_randtest_special :: Ptr CAcb -> Ptr CFRandState -> CLong -> CLong -> IO () -- | /acb_randtest_precise/ /z/ /state/ /prec/ /mag_bits/ -- -- Generates a random complex number with precise real and imaginary parts. foreign import ccall "acb.h acb_randtest_precise" acb_randtest_precise :: Ptr CAcb -> Ptr CFRandState -> CLong -> CLong -> IO () -- | /acb_randtest_param/ /z/ /state/ /prec/ /mag_bits/ -- -- Generates a random complex number, with very high probability of -- generating integers and half-integers. foreign import ccall "acb.h acb_randtest_param" acb_randtest_param :: Ptr CAcb -> Ptr CFRandState -> CLong -> CLong -> IO () -- Precision and comparisons --------------------------------------------------- -- | /acb_is_zero/ /z/ -- -- Returns nonzero iff /z/ is zero. foreign import ccall "acb.h acb_is_zero" acb_is_zero :: Ptr CAcb -> IO CInt -- | /acb_is_one/ /z/ -- -- Returns nonzero iff /z/ is exactly 1. foreign import ccall "acb.h acb_is_one" acb_is_one :: Ptr CAcb -> IO CInt -- | /acb_is_finite/ /z/ -- -- Returns nonzero iff /z/ certainly is finite. foreign import ccall "acb.h acb_is_finite" acb_is_finite :: Ptr CAcb -> IO CInt -- | /acb_is_exact/ /z/ -- -- Returns nonzero iff /z/ is exact. foreign import ccall "acb.h acb_is_exact" acb_is_exact :: Ptr CAcb -> IO CInt -- | /acb_is_int/ /z/ -- -- Returns nonzero iff /z/ is an exact integer. foreign import ccall "acb.h acb_is_int" acb_is_int :: Ptr CAcb -> IO CInt -- | /acb_is_int_2exp_si/ /x/ /e/ -- -- Returns nonzero iff /z/ exactly equals \(n 2^e\) for some integer /n/. foreign import ccall "acb.h acb_is_int_2exp_si" acb_is_int_2exp_si :: Ptr CAcb -> CLong -> IO CInt -- | /acb_equal/ /x/ /y/ -- -- Returns nonzero iff /x/ and /y/ are identical as sets, i.e. if the real -- and imaginary parts are equal as balls. -- -- Note that this is not the same thing as testing whether both /x/ and /y/ -- certainly represent the same complex number, unless either /x/ or /y/ is -- exact (and neither contains NaN). To test whether both operands /might/ -- represent the same mathematical quantity, use @acb_overlaps@ or -- @acb_contains@, depending on the circumstance. foreign import ccall "acb.h acb_equal" acb_equal :: Ptr CAcb -> Ptr CAcb -> IO CInt -- | /acb_equal_si/ /x/ /y/ -- -- Returns nonzero iff /x/ is equal to the integer /y/. foreign import ccall "acb.h acb_equal_si" acb_equal_si :: Ptr CAcb -> CLong -> IO CInt -- | /acb_eq/ /x/ /y/ -- -- Returns nonzero iff /x/ and /y/ are certainly equal, as determined by -- testing that @arb_eq@ holds for both the real and imaginary parts. foreign import ccall "acb.h acb_eq" acb_eq :: Ptr CAcb -> Ptr CAcb -> IO CInt -- | /acb_ne/ /x/ /y/ -- -- Returns nonzero iff /x/ and /y/ are certainly not equal, as determined -- by testing that @arb_ne@ holds for either the real or imaginary parts. foreign import ccall "acb.h acb_ne" acb_ne :: Ptr CAcb -> Ptr CAcb -> IO CInt -- | /acb_overlaps/ /x/ /y/ -- -- Returns nonzero iff /x/ and /y/ have some point in common. foreign import ccall "acb.h acb_overlaps" acb_overlaps :: Ptr CAcb -> Ptr CAcb -> IO CInt -- | /acb_union/ /z/ /x/ /y/ /prec/ -- -- Sets /z/ to a complex interval containing both /x/ and /y/. foreign import ccall "acb.h acb_union" acb_union :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_get_abs_ubound_arf/ /u/ /z/ /prec/ -- -- Sets /u/ to an upper bound for the absolute value of /z/, computed using -- a working precision of /prec/ bits. foreign import ccall "acb.h acb_get_abs_ubound_arf" acb_get_abs_ubound_arf :: Ptr CArf -> Ptr CAcb -> CLong -> IO () -- | /acb_get_abs_lbound_arf/ /u/ /z/ /prec/ -- -- Sets /u/ to a lower bound for the absolute value of /z/, computed using -- a working precision of /prec/ bits. foreign import ccall "acb.h acb_get_abs_lbound_arf" acb_get_abs_lbound_arf :: Ptr CArf -> Ptr CAcb -> CLong -> IO () -- | /acb_get_rad_ubound_arf/ /u/ /z/ /prec/ -- -- Sets /u/ to an upper bound for the error radius of /z/ (the value is -- currently not computed tightly). foreign import ccall "acb.h acb_get_rad_ubound_arf" acb_get_rad_ubound_arf :: Ptr CArf -> Ptr CAcb -> CLong -> IO () -- | /acb_get_mag/ /u/ /x/ -- -- Sets /u/ to an upper bound for the absolute value of /x/. foreign import ccall "acb.h acb_get_mag" acb_get_mag :: Ptr CMag -> Ptr CAcb -> IO () -- | /acb_get_mag_lower/ /u/ /x/ -- -- Sets /u/ to a lower bound for the absolute value of /x/. foreign import ccall "acb.h acb_get_mag_lower" acb_get_mag_lower :: Ptr CMag -> Ptr CAcb -> IO () foreign import ccall "acb.h acb_contains_fmpq" acb_contains_fmpq :: Ptr CAcb -> Ptr CFmpq -> IO CInt foreign import ccall "acb.h acb_contains_fmpz" acb_contains_fmpz :: Ptr CAcb -> Ptr CFmpz -> IO CInt -- | /acb_contains/ /x/ /y/ -- -- Returns nonzero iff /y/ is contained in /x/. foreign import ccall "acb.h acb_contains" acb_contains :: Ptr CAcb -> Ptr CAcb -> IO CInt -- | /acb_contains_zero/ /x/ -- -- Returns nonzero iff zero is contained in /x/. foreign import ccall "acb.h acb_contains_zero" acb_contains_zero :: Ptr CAcb -> IO CInt -- | /acb_contains_int/ /x/ -- -- Returns nonzero iff the complex interval represented by /x/ contains an -- integer. foreign import ccall "acb.h acb_contains_int" acb_contains_int :: Ptr CAcb -> IO CInt -- | /acb_contains_interior/ /x/ /y/ -- -- Tests if /y/ is contained in the interior of /x/. This predicate always -- evaluates to false if /x/ and /y/ are both real-valued, since an -- imaginary part of 0 is not considered contained in the interior of the -- point interval 0. More generally, the same problem occurs for intervals -- with an exact real or imaginary part. Such intervals must be handled -- specially by the user where a different interpretation is intended. foreign import ccall "acb.h acb_contains_interior" acb_contains_interior :: Ptr CAcb -> Ptr CAcb -> IO CInt -- | /acb_rel_error_bits/ /x/ -- -- Returns the effective relative error of /x/ measured in bits. This is -- computed as if calling @arb_rel_error_bits@ on the real ball whose -- midpoint is the larger out of the real and imaginary midpoints of /x/, -- and whose radius is the larger out of the real and imaginary radiuses of -- /x/. foreign import ccall "acb.h acb_rel_error_bits" acb_rel_error_bits :: Ptr CAcb -> IO CLong -- | /acb_rel_accuracy_bits/ /x/ -- -- Returns the effective relative accuracy of /x/ measured in bits, equal -- to the negative of the return value from @acb_rel_error_bits@. foreign import ccall "acb.h acb_rel_accuracy_bits" acb_rel_accuracy_bits :: Ptr CAcb -> IO CLong -- | /acb_rel_one_accuracy_bits/ /x/ -- -- Given a ball with midpoint /m/ and radius /r/, returns an approximation -- of the relative accuracy of \([\max(1,|m|) \pm r]\) measured in bits. foreign import ccall "acb.h acb_rel_one_accuracy_bits" acb_rel_one_accuracy_bits :: Ptr CAcb -> IO CLong -- | /acb_bits/ /x/ -- -- Returns the maximum of /arb_bits/ applied to the real and imaginary -- parts of /x/, i.e. the minimum precision sufficient to represent /x/ -- exactly. foreign import ccall "acb.h acb_bits" acb_bits :: Ptr CAcb -> IO CLong -- | /acb_indeterminate/ /x/ -- -- Sets /x/ to -- \([\operatorname{NaN} \pm \infty] + [\operatorname{NaN} \pm \infty]i\), -- representing an indeterminate result. foreign import ccall "acb.h acb_indeterminate" acb_indeterminate :: Ptr CAcb -> IO () -- | /acb_trim/ /y/ /x/ -- -- Sets /y/ to a a copy of /x/ with both the real and imaginary parts -- trimmed (see @arb_trim@). foreign import ccall "acb.h acb_trim" acb_trim :: Ptr CAcb -> Ptr CAcb -> IO () -- | /acb_is_real/ /x/ -- -- Returns nonzero iff the imaginary part of /x/ is zero. It does not test -- whether the real part of /x/ also is finite. foreign import ccall "acb.h acb_is_real" acb_is_real :: Ptr CAcb -> IO CInt -- | /acb_get_unique_fmpz/ /z/ /x/ -- -- If /x/ contains a unique integer, sets /z/ to that value and returns -- nonzero. Otherwise (if /x/ represents no integers or more than one -- integer), returns zero. foreign import ccall "acb.h acb_get_unique_fmpz" acb_get_unique_fmpz :: Ptr CFmpz -> Ptr CAcb -> IO CInt -- Complex parts --------------------------------------------------------------- -- | /acb_get_real/ /re/ /z/ -- -- Sets /re/ to the real part of /z/. foreign import ccall "acb.h acb_get_real" acb_get_real :: Ptr CArb -> Ptr CAcb -> IO () -- | /acb_get_imag/ /im/ /z/ -- -- Sets /im/ to the imaginary part of /z/. foreign import ccall "acb.h acb_get_imag" acb_get_imag :: Ptr CArb -> Ptr CAcb -> IO () -- | /acb_arg/ /r/ /z/ /prec/ -- -- Sets /r/ to a real interval containing the complex argument (phase) of -- /z/. We define the complex argument have a discontinuity on -- \((-\infty,0]\), with the special value \(\operatorname{arg}(0) = 0\), -- and \(\operatorname{arg}(a+0i) = \pi\) for \(a < 0\). Equivalently, if -- \(z = a+bi\), the argument is given by \(\operatorname{atan2}(b,a)\) -- (see @arb_atan2@). foreign import ccall "acb.h acb_arg" acb_arg :: Ptr CArb -> Ptr CAcb -> CLong -> IO () -- | /acb_abs/ /r/ /z/ /prec/ -- -- Sets /r/ to the absolute value of /z/. foreign import ccall "acb.h acb_abs" acb_abs :: Ptr CArb -> Ptr CAcb -> CLong -> IO () -- | /acb_sgn/ /r/ /z/ /prec/ -- -- Sets /r/ to the complex sign of /z/, defined as 0 if /z/ is exactly zero -- and the projection onto the unit circle \(z / |z| = \exp(i \arg(z))\) -- otherwise. foreign import ccall "acb.h acb_sgn" acb_sgn :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_csgn/ /r/ /z/ -- -- Sets /r/ to the extension of the real sign function taking the value 1 -- for /z/ strictly in the right half plane, -1 for /z/ strictly in the -- left half plane, and the sign of the imaginary part when /z/ is on the -- imaginary axis. Equivalently, -- \(\operatorname{csgn}(z) = z / \sqrt{z^2}\) except that the value is 0 -- when /z/ is exactly zero. foreign import ccall "acb.h acb_csgn" acb_csgn :: Ptr CArb -> Ptr CAcb -> IO () -- Arithmetic ------------------------------------------------------------------ foreign import ccall "acb.h acb_neg" acb_neg :: Ptr CAcb -> Ptr CAcb -> IO () -- | /acb_neg_round/ /z/ /x/ /prec/ -- -- Sets /z/ to the negation of /x/. foreign import ccall "acb.h acb_neg_round" acb_neg_round :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_conj/ /z/ /x/ -- -- Sets /z/ to the complex conjugate of /x/. foreign import ccall "acb.h acb_conj" acb_conj :: Ptr CAcb -> Ptr CAcb -> IO () foreign import ccall "acb.h acb_add_ui" acb_add_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () foreign import ccall "acb.h acb_add_si" acb_add_si :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h acb_add_fmpz" acb_add_fmpz :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> CLong -> IO () foreign import ccall "acb.h acb_add_arb" acb_add_arb :: Ptr CAcb -> Ptr CAcb -> Ptr CArb -> CLong -> IO () -- | /acb_add/ /z/ /x/ /y/ /prec/ -- -- Sets /z/ to the sum of /x/ and /y/. foreign import ccall "acb.h acb_add" acb_add :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_sub_ui" acb_sub_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () foreign import ccall "acb.h acb_sub_si" acb_sub_si :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h acb_sub_fmpz" acb_sub_fmpz :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> CLong -> IO () foreign import ccall "acb.h acb_sub_arb" acb_sub_arb :: Ptr CAcb -> Ptr CAcb -> Ptr CArb -> CLong -> IO () -- | /acb_sub/ /z/ /x/ /y/ /prec/ -- -- Sets /z/ to the difference of /x/ and /y/. foreign import ccall "acb.h acb_sub" acb_sub :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_mul_onei/ /z/ /x/ -- -- Sets /z/ to /x/ multiplied by the imaginary unit. foreign import ccall "acb.h acb_mul_onei" acb_mul_onei :: Ptr CAcb -> Ptr CAcb -> IO () -- | /acb_div_onei/ /z/ /x/ -- -- Sets /z/ to /x/ divided by the imaginary unit. foreign import ccall "acb.h acb_div_onei" acb_div_onei :: Ptr CAcb -> Ptr CAcb -> IO () foreign import ccall "acb.h acb_mul_ui" acb_mul_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () foreign import ccall "acb.h acb_mul_si" acb_mul_si :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h acb_mul_fmpz" acb_mul_fmpz :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> CLong -> IO () -- | /acb_mul_arb/ /z/ /x/ /y/ /prec/ -- -- Sets /z/ to the product of /x/ and /y/. foreign import ccall "acb.h acb_mul_arb" acb_mul_arb :: Ptr CAcb -> Ptr CAcb -> Ptr CArb -> CLong -> IO () -- | /acb_mul/ /z/ /x/ /y/ /prec/ -- -- Sets /z/ to the product of /x/ and /y/. If at least one part of /x/ or -- /y/ is zero, the operations is reduced to two real multiplications. If -- /x/ and /y/ are the same pointers, they are assumed to represent the -- same mathematical quantity and the squaring formula is used. foreign import ccall "acb.h acb_mul" acb_mul :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_mul_2exp_si" acb_mul_2exp_si :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_mul_2exp_fmpz/ /z/ /x/ /e/ -- -- Sets /z/ to /x/ multiplied by \(2^e\), without rounding. foreign import ccall "acb.h acb_mul_2exp_fmpz" acb_mul_2exp_fmpz :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> IO () -- | /acb_sqr/ /z/ /x/ /prec/ -- -- Sets /z/ to /x/ squared. foreign import ccall "acb.h acb_sqr" acb_sqr :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_cube/ /z/ /x/ /prec/ -- -- Sets /z/ to /x/ cubed, computed efficiently using two real squarings, -- two real multiplications, and scalar operations. foreign import ccall "acb.h acb_cube" acb_cube :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_addmul" acb_addmul :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_addmul_ui" acb_addmul_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () foreign import ccall "acb.h acb_addmul_si" acb_addmul_si :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h acb_addmul_fmpz" acb_addmul_fmpz :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> CLong -> IO () -- | /acb_addmul_arb/ /z/ /x/ /y/ /prec/ -- -- Sets /z/ to /z/ plus the product of /x/ and /y/. foreign import ccall "acb.h acb_addmul_arb" acb_addmul_arb :: Ptr CAcb -> Ptr CAcb -> Ptr CArb -> CLong -> IO () foreign import ccall "acb.h acb_submul" acb_submul :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_submul_ui" acb_submul_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () foreign import ccall "acb.h acb_submul_si" acb_submul_si :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h acb_submul_fmpz" acb_submul_fmpz :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> CLong -> IO () -- | /acb_submul_arb/ /z/ /x/ /y/ /prec/ -- -- Sets /z/ to /z/ minus the product of /x/ and /y/. foreign import ccall "acb.h acb_submul_arb" acb_submul_arb :: Ptr CAcb -> Ptr CAcb -> Ptr CArb -> CLong -> IO () -- | /acb_inv/ /z/ /x/ /prec/ -- -- Sets /z/ to the multiplicative inverse of /x/. foreign import ccall "acb.h acb_inv" acb_inv :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_div_ui" acb_div_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () foreign import ccall "acb.h acb_div_si" acb_div_si :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h acb_div_fmpz" acb_div_fmpz :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> CLong -> IO () foreign import ccall "acb.h acb_div_arb" acb_div_arb :: Ptr CAcb -> Ptr CAcb -> Ptr CArb -> CLong -> IO () -- | /acb_div/ /z/ /x/ /y/ /prec/ -- -- Sets /z/ to the quotient of /x/ and /y/. foreign import ccall "acb.h acb_div" acb_div :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Dot product ----------------------------------------------------------------- -- | /acb_dot_precise/ /res/ /s/ /subtract/ /x/ /xstep/ /y/ /ystep/ /len/ /prec/ -- -- Computes the dot product of the vectors /x/ and /y/, setting /res/ to -- \(s + (-1)^{subtract} \sum_{i=0}^{len-1} x_i y_i\). -- -- The initial term /s/ is optional and can be omitted by passing /NULL/ -- (equivalently, \(s = 0\)). The parameter /subtract/ must be 0 or 1. The -- length /len/ is allowed to be negative, which is equivalent to a length -- of zero. The parameters /xstep/ or /ystep/ specify a step length for -- traversing subsequences of the vectors /x/ and /y/; either can be -- negative to step in the reverse direction starting from the initial -- pointer. Aliasing is allowed between /res/ and /s/ but not between /res/ -- and the entries of /x/ and /y/. -- -- The default version determines the optimal precision for each term and -- performs all internal calculations using mpn arithmetic with minimal -- overhead. This is the preferred way to compute a dot product; it is -- generally much faster and more precise than a simple loop. -- -- The /simple/ version performs fused multiply-add operations in a simple -- loop. This can be used for testing purposes and is also used as a -- fallback by the default version when the exponents are out of range for -- the optimized code. -- -- The /precise/ version computes the dot product exactly up to the final -- rounding. This can be extremely slow and is only intended for testing. foreign import ccall "acb.h acb_dot_precise" acb_dot_precise :: Ptr CAcb -> Ptr CAcb -> CInt -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_approx_dot/ /res/ /s/ /subtract/ /x/ /xstep/ /y/ /ystep/ /len/ /prec/ -- -- Computes an approximate dot product /without error bounds/. The radii of -- the inputs are ignored (only the midpoints are read) and only the -- midpoint of the output is written. foreign import ccall "acb.h acb_approx_dot" acb_approx_dot :: Ptr CAcb -> Ptr CAcb -> CInt -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_dot_ui/ /res/ /initial/ /subtract/ /x/ /xstep/ /y/ /ystep/ /len/ /prec/ -- -- Equivalent to @acb_dot@, but with integers in the array /y/. The /uiui/ -- and /siui/ versions take an array of double-limb integers as input; the -- /siui/ version assumes that these represent signed integers in two\'s -- complement form. foreign import ccall "acb.h acb_dot_ui" acb_dot_ui :: Ptr CAcb -> Ptr CAcb -> CInt -> Ptr CAcb -> CLong -> Ptr CULong -> CLong -> CLong -> CLong -> IO () -- Mathematical constants ------------------------------------------------------ -- | /acb_const_pi/ /y/ /prec/ -- -- Sets /y/ to the constant \(\pi\). foreign import ccall "acb.h acb_const_pi" acb_const_pi :: Ptr CAcb -> CLong -> IO () -- Powers and roots ------------------------------------------------------------ -- | /acb_sqrt/ /r/ /z/ /prec/ -- -- Sets /r/ to the square root of /z/. If either the real or imaginary part -- is exactly zero, only a single real square root is needed. Generally, we -- use the formula \(\sqrt{a+bi} = u/2 + ib/u, u = \sqrt{2(|a+bi|+a)}\), -- requiring two real square root extractions. foreign import ccall "acb.h acb_sqrt" acb_sqrt :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_sqrt_analytic/ /r/ /z/ /analytic/ /prec/ -- -- Computes the square root. If /analytic/ is set, gives a NaN-containing -- result if /z/ touches the branch cut. foreign import ccall "acb.h acb_sqrt_analytic" acb_sqrt_analytic :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_rsqrt/ /r/ /z/ /prec/ -- -- Sets /r/ to the reciprocal square root of /z/. If either the real or -- imaginary part is exactly zero, only a single real reciprocal square -- root is needed. Generally, we use the formula -- \(1/\sqrt{a+bi} = ((a+r) - bi)/v, r = |a+bi|, v = \sqrt{r |a+bi+r|^2}\), -- requiring one real square root and one real reciprocal square root. foreign import ccall "acb.h acb_rsqrt" acb_rsqrt :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_rsqrt_analytic/ /r/ /z/ /analytic/ /prec/ -- -- Computes the reciprocal square root. If /analytic/ is set, gives a -- NaN-containing result if /z/ touches the branch cut. foreign import ccall "acb.h acb_rsqrt_analytic" acb_rsqrt_analytic :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_quadratic_roots_fmpz/ /r1/ /r2/ /a/ /b/ /c/ /prec/ -- -- Sets /r1/ and /r2/ to the roots of the quadratic polynomial -- \(ax^2 + bx + c\). Requires that /a/ is nonzero. This function is -- implemented so that both roots are computed accurately even when direct -- use of the quadratic formula would lose accuracy. foreign import ccall "acb.h acb_quadratic_roots_fmpz" acb_quadratic_roots_fmpz :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> Ptr CFmpz -> Ptr CFmpz -> CLong -> IO () -- | /acb_root_ui/ /r/ /z/ /k/ /prec/ -- -- Sets /r/ to the principal /k/-th root of /z/. foreign import ccall "acb.h acb_root_ui" acb_root_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () foreign import ccall "acb.h acb_pow_fmpz" acb_pow_fmpz :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> CLong -> IO () foreign import ccall "acb.h acb_pow_ui" acb_pow_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () -- | /acb_pow_si/ /y/ /b/ /e/ /prec/ -- -- Sets \(y = b^e\) using binary exponentiation (with an initial division -- if \(e < 0\)). Note that these functions can get slow if the exponent is -- extremely large (in such cases @acb_pow@ may be superior). foreign import ccall "acb.h acb_pow_si" acb_pow_si :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h acb_pow_arb" acb_pow_arb :: Ptr CAcb -> Ptr CAcb -> Ptr CArb -> CLong -> IO () -- | /acb_pow/ /z/ /x/ /y/ /prec/ -- -- Sets \(z = x^y\), computed using binary exponentiation if \(y\) if a -- small exact integer, as \(z = (x^{1/2})^{2y}\) if \(y\) is a small exact -- half-integer, and generally as \(z = \exp(y \log x)\). foreign import ccall "acb.h acb_pow" acb_pow :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_pow_analytic/ /r/ /x/ /y/ /analytic/ /prec/ -- -- Computes the power \(x^y\). If /analytic/ is set, gives a NaN-containing -- result if /x/ touches the branch cut (unless /y/ is an integer). foreign import ccall "acb.h acb_pow_analytic" acb_pow_analytic :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_unit_root/ /res/ /order/ /prec/ -- -- Sets /res/ to \(\exp(\frac{2i\pi}{\mathrm{order}})\) to precision -- /prec/. foreign import ccall "acb.h acb_unit_root" acb_unit_root :: Ptr CAcb -> CULong -> CLong -> IO () -- Exponentials and logarithms ------------------------------------------------- -- | /acb_exp/ /y/ /z/ /prec/ -- -- Sets /y/ to the exponential function of /z/, computed as -- \(\exp(a+bi) = \exp(a) \left( \cos(b) + \sin(b) i \right)\). foreign import ccall "acb.h acb_exp" acb_exp :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_exp_pi_i/ /y/ /z/ /prec/ -- -- Sets /y/ to \(\exp(\pi i z)\). foreign import ccall "acb.h acb_exp_pi_i" acb_exp_pi_i :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_exp_invexp/ /s/ /t/ /z/ /prec/ -- -- Sets \(s = \exp(z)\) and \(t = \exp(-z)\). foreign import ccall "acb.h acb_exp_invexp" acb_exp_invexp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_expm1/ /res/ /z/ /prec/ -- -- Sets /res/ to \(\exp(z)-1\), using a more accurate method when -- \(z \approx 0\). foreign import ccall "acb.h acb_expm1" acb_expm1 :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_log/ /y/ /z/ /prec/ -- -- Sets /y/ to the principal branch of the natural logarithm of /z/, -- computed as -- \(\log(a+bi) = \frac{1}{2} \log(a^2 + b^2) + i \operatorname{arg}(a+bi)\). foreign import ccall "acb.h acb_log" acb_log :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_log_analytic/ /r/ /z/ /analytic/ /prec/ -- -- Computes the natural logarithm. If /analytic/ is set, gives a -- NaN-containing result if /z/ touches the branch cut. foreign import ccall "acb.h acb_log_analytic" acb_log_analytic :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_log1p/ /z/ /x/ /prec/ -- -- Sets \(z = \log(1+x)\), computed accurately when \(x \approx 0\). foreign import ccall "acb.h acb_log1p" acb_log1p :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Trigonometric functions ----------------------------------------------------- foreign import ccall "acb.h acb_sin" acb_sin :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_cos" acb_cos :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_sin_cos/ /s/ /c/ /z/ /prec/ -- -- Sets \(s = \sin(z)\), \(c = \cos(z)\), evaluated as -- \(\sin(a+bi) = \sin(a)\cosh(b) + i \cos(a)\sinh(b)\), -- \(\cos(a+bi) = \cos(a)\cosh(b) - i \sin(a)\sinh(b)\). foreign import ccall "acb.h acb_sin_cos" acb_sin_cos :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_tan/ /s/ /z/ /prec/ -- -- Sets \(s = \tan(z) = \sin(z) / \cos(z)\). For large imaginary parts, the -- function is evaluated in a numerically stable way as \(\pm i\) plus a -- decreasing exponential factor. foreign import ccall "acb.h acb_tan" acb_tan :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_cot/ /s/ /z/ /prec/ -- -- Sets \(s = \cot(z) = \cos(z) / \sin(z)\). For large imaginary parts, the -- function is evaluated in a numerically stable way as \(\pm i\) plus a -- decreasing exponential factor. foreign import ccall "acb.h acb_cot" acb_cot :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_sin_pi" acb_sin_pi :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_cos_pi" acb_cos_pi :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_sin_cos_pi/ /s/ /c/ /z/ /prec/ -- -- Sets \(s = \sin(\pi z)\), \(c = \cos(\pi z)\), evaluating the -- trigonometric factors of the real and imaginary part accurately via -- @arb_sin_cos_pi@. foreign import ccall "acb.h acb_sin_cos_pi" acb_sin_cos_pi :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_tan_pi/ /s/ /z/ /prec/ -- -- Sets \(s = \tan(\pi z)\). Uses the same algorithm as @acb_tan@, but -- evaluates the sine and cosine accurately via @arb_sin_cos_pi@. foreign import ccall "acb.h acb_tan_pi" acb_tan_pi :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_cot_pi/ /s/ /z/ /prec/ -- -- Sets \(s = \cot(\pi z)\). Uses the same algorithm as @acb_cot@, but -- evaluates the sine and cosine accurately via @arb_sin_cos_pi@. foreign import ccall "acb.h acb_cot_pi" acb_cot_pi :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_sec/ /res/ /z/ /prec/ -- -- Computes \(\sec(z) = 1 / \cos(z)\). foreign import ccall "acb.h acb_sec" acb_sec :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_csc/ /res/ /z/ /prec/ -- -- Computes \(\csc(x) = 1 / \sin(z)\). foreign import ccall "acb.h acb_csc" acb_csc :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_csc_pi/ /res/ /z/ /prec/ -- -- Computes \(\csc(\pi x) = 1 / \sin(\pi z)\). Evaluates the sine -- accurately via @acb_sin_pi@. foreign import ccall "acb.h acb_csc_pi" acb_csc_pi :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_sinc/ /s/ /z/ /prec/ -- -- Sets \(s = \operatorname{sinc}(x) = \sin(z) / z\). foreign import ccall "acb.h acb_sinc" acb_sinc :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_sinc_pi/ /s/ /z/ /prec/ -- -- Sets \(s = \operatorname{sinc}(\pi x) = \sin(\pi z) / (\pi z)\). foreign import ccall "acb.h acb_sinc_pi" acb_sinc_pi :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Inverse trigonometric functions --------------------------------------------- -- | /acb_asin/ /res/ /z/ /prec/ -- -- Sets /res/ to \(\operatorname{asin}(z) = -i \log(iz + \sqrt{1-z^2})\). foreign import ccall "acb.h acb_asin" acb_asin :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_acos/ /res/ /z/ /prec/ -- -- Sets /res/ to -- \(\operatorname{acos}(z) = \tfrac{1}{2} \pi - \operatorname{asin}(z)\). foreign import ccall "acb.h acb_acos" acb_acos :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_atan/ /res/ /z/ /prec/ -- -- Sets /res/ to -- \(\operatorname{atan}(z) = \tfrac{1}{2} i (\log(1-iz)-\log(1+iz))\). foreign import ccall "acb.h acb_atan" acb_atan :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Hyperbolic functions -------------------------------------------------------- foreign import ccall "acb.h acb_sinh" acb_sinh :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_cosh" acb_cosh :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_sinh_cosh" acb_sinh_cosh :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_tanh" acb_tanh :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_coth/ /s/ /z/ /prec/ -- -- Respectively computes \(\sinh(z) = -i\sin(iz)\), -- \(\cosh(z) = \cos(iz)\), \(\tanh(z) = -i\tan(iz)\), -- \(\coth(z) = i\cot(iz)\). foreign import ccall "acb.h acb_coth" acb_coth :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_sech/ /res/ /z/ /prec/ -- -- Computes \(\operatorname{sech}(z) = 1 / \cosh(z)\). foreign import ccall "acb.h acb_sech" acb_sech :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_csch/ /res/ /z/ /prec/ -- -- Computes \(\operatorname{csch}(z) = 1 / \sinh(z)\). foreign import ccall "acb.h acb_csch" acb_csch :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Inverse hyperbolic functions ------------------------------------------------ -- | /acb_asinh/ /res/ /z/ /prec/ -- -- Sets /res/ to \(\operatorname{asinh}(z) = -i \operatorname{asin}(iz)\). foreign import ccall "acb.h acb_asinh" acb_asinh :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_acosh/ /res/ /z/ /prec/ -- -- Sets /res/ to -- \(\operatorname{acosh}(z) = \log(z + \sqrt{z+1} \sqrt{z-1})\). foreign import ccall "acb.h acb_acosh" acb_acosh :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_atanh/ /res/ /z/ /prec/ -- -- Sets /res/ to \(\operatorname{atanh}(z) = -i \operatorname{atan}(iz)\). foreign import ccall "acb.h acb_atanh" acb_atanh :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Lambert W function ---------------------------------------------------------- -- | /acb_lambertw_asymp/ /res/ /z/ /k/ /L/ /M/ /prec/ -- -- Sets /res/ to the Lambert W function \(W_k(z)\) computed using /L/ and -- /M/ terms in the bivariate series giving the asymptotic expansion at -- zero or infinity. This algorithm is valid everywhere, but the error -- bound is only finite when \(|\log(z)|\) is sufficiently large. foreign import ccall "acb.h acb_lambertw_asymp" acb_lambertw_asymp :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> CLong -> CLong -> CLong -> IO () -- | /acb_lambertw_check_branch/ /w/ /k/ /prec/ -- -- Tests if /w/ definitely lies in the image of the branch \(W_k(z)\). This -- function is used internally to verify that a computed approximation of -- the Lambert W function lies on the intended branch. Note that this will -- necessarily evaluate to false for points exactly on (or overlapping) the -- branch cuts, where a different algorithm has to be used. foreign import ccall "acb.h acb_lambertw_check_branch" acb_lambertw_check_branch :: Ptr CAcb -> Ptr CFmpz -> CLong -> IO CInt -- | /acb_lambertw_bound_deriv/ /res/ /z/ /ez1/ /k/ -- -- Sets /res/ to an upper bound for \(|W_k'(z)|\). The input /ez1/ should -- contain the precomputed value of \(ez+1\). -- -- Along the real line, the directional derivative of \(W_k(z)\) is -- understood to be taken. As a result, the user must handle the branch cut -- discontinuity separately when using this function to bound perturbations -- in the value of \(W_k(z)\). foreign import ccall "acb.h acb_lambertw_bound_deriv" acb_lambertw_bound_deriv :: Ptr CMag -> Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> IO () -- | /acb_lambertw/ /res/ /z/ /k/ /flags/ /prec/ -- -- Sets /res/ to the Lambert W function \(W_k(z)\) where the index /k/ -- selects the branch (with \(k = 0\) giving the principal branch). The -- placement of branch cuts follows < [CGHJK1996]>. -- -- If /flags/ is nonzero, nonstandard branch cuts are used. -- -- If /flags/ is set to /ACB_LAMBERTW_LEFT/, computes -- \(W_{\mathrm{left}|k}(z)\) which corresponds to \(W_k(z)\) in the upper -- half plane and \(W_{k+1}(z)\) in the lower half plane, connected -- continuously to the left of the branch points. In other words, the -- branch cut on \((-\infty,0)\) is rotated counterclockwise to -- \((0,+\infty)\). (For \(k = -1\) and \(k = 0\), there is also a branch -- cut on \((-1/e,0)\), continuous from below instead of from above to -- maintain counterclockwise continuity.) -- -- If /flags/ is set to /ACB_LAMBERTW_MIDDLE/, computes -- \(W_{\mathrm{middle}}(z)\) which corresponds to \(W_{-1}(z)\) in the -- upper half plane and \(W_{1}(z)\) in the lower half plane, connected -- continuously through \((-1/e,0)\) with branch cuts on \((-\infty,-1/e)\) -- and \((0,+\infty)\). \(W_{\mathrm{middle}}(z)\) extends the real -- analytic function \(W_{-1}(x)\) defined on \((-1/e,0)\) to a complex -- analytic function, whereas the standard branch \(W_{-1}(z)\) has a -- branch cut along the real segment. -- -- The algorithm used to compute the Lambert W function is described in -- < [Joh2017b]>. foreign import ccall "acb.h acb_lambertw" acb_lambertw :: Ptr CAcb -> Ptr CAcb -> Ptr CFmpz -> CInt -> CLong -> IO () -- Rising factorials ----------------------------------------------------------- -- | /acb_rising_ui/ /z/ /x/ /n/ /prec/ -- -- Computes the rising factorial \(z = x (x+1) (x+2) \cdots (x+n-1)\). -- These functions are aliases for @acb_hypgeom_rising_ui@ and -- @acb_hypgeom_rising@. foreign import ccall "acb.h acb_rising_ui" acb_rising_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () -- Gamma function -------------------------------------------------------------- -- | /acb_gamma/ /y/ /x/ /prec/ -- -- Computes the gamma function \(y = \Gamma(x)\). This is an alias for -- @acb_hypgeom_gamma@. foreign import ccall "acb.h acb_gamma" acb_gamma :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_rgamma/ /y/ /x/ /prec/ -- -- Computes the reciprocal gamma function \(y = 1/\Gamma(x)\), avoiding -- division by zero at the poles of the gamma function. This is an alias -- for @acb_hypgeom_rgamma@. foreign import ccall "acb.h acb_rgamma" acb_rgamma :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_lgamma/ /y/ /x/ /prec/ -- -- Computes the logarithmic gamma function \(y = \log \Gamma(x)\). This is -- an alias for @acb_hypgeom_lgamma@. -- -- The branch cut of the logarithmic gamma function is placed on the -- negative half-axis, which means that -- \(\log \Gamma(z) + \log z = \log \Gamma(z+1)\) holds for all \(z\), -- whereas \(\log \Gamma(z) \ne \log(\Gamma(z))\) in general. In the left -- half plane, the reflection formula with correct branch structure is -- evaluated via @acb_log_sin_pi@. foreign import ccall "acb.h acb_lgamma" acb_lgamma :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_digamma/ /y/ /x/ /prec/ -- -- Computes the digamma function -- \(y = \psi(x) = (\log \Gamma(x))' = \Gamma'(x) / \Gamma(x)\). foreign import ccall "acb.h acb_digamma" acb_digamma :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_log_sin_pi/ /res/ /z/ /prec/ -- -- Computes the logarithmic sine function defined by -- -- \[`\] -- \[S(z) = \log(\pi) - \log \Gamma(z) + \log \Gamma(1-z)\] -- -- which is equal to -- -- \[`\] -- \[S(z) = \int_{1/2}^z \pi \cot(\pi t) dt\] -- -- where the path of integration goes through the upper half plane if -- \(0 < \arg(z) \le \pi\) and through the lower half plane if -- \(-\pi < \arg(z) \le 0\). Equivalently, -- -- \[`\] -- \[S(z) = \log(\sin(\pi(z-n))) \mp n \pi i, \quad n = \lfloor \operatorname{re}(z) \rfloor\] -- -- where the negative sign is taken if \(0 < \arg(z) \le \pi\) and the -- positive sign is taken otherwise (if the interval \(\arg(z)\) does not -- certainly satisfy either condition, the union of both cases is -- computed). After subtracting /n/, we have -- \(0 \le \operatorname{re}(z) < 1\). In this strip, we use use -- \(S(z) = \log(\sin(\pi(z)))\) if the imaginary part of /z/ is small. -- Otherwise, we use \(S(z) = i \pi (z-1/2) + \log((1+e^{-2i\pi z})/2)\) in -- the lower half-plane and the conjugated expression in the upper -- half-plane to avoid exponent overflow. -- -- The function is evaluated at the midpoint and the propagated error is -- computed from \(S'(z)\) to get a continuous change when \(z\) is -- non-real and \(n\) spans more than one possible integer value. foreign import ccall "acb.h acb_log_sin_pi" acb_log_sin_pi :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_polygamma/ /res/ /s/ /z/ /prec/ -- -- Sets /res/ to the value of the generalized polygamma function -- \(\psi(s,z)\). -- -- If /s/ is a nonnegative order, this is simply the /s/-order derivative -- of the digamma function. If \(s = 0\), this function simply calls the -- digamma function internally. For integers \(s \ge 1\), it calls the -- Hurwitz zeta function. Note that for small integers \(s \ge 1\), it can -- be faster to use @acb_poly_digamma_series@ and read off the -- coefficients. -- -- The generalization to other values of /s/ is due to Espinosa and Moll -- < [EM2004]>: -- -- \[`\] -- \[\psi(s,z) = \frac{\zeta'(s+1,z) + (\gamma + \psi(-s)) \zeta(s+1,z)}{\Gamma(-s)}\] foreign import ccall "acb.h acb_polygamma" acb_polygamma :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_barnes_g" acb_barnes_g :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_log_barnes_g/ /res/ /z/ /prec/ -- -- Computes Barnes /G/-function or the logarithmic Barnes /G/-function, -- respectively. The logarithmic version has branch cuts on the negative -- real axis and is continuous elsewhere in the complex plane, in analogy -- with the logarithmic gamma function. The functional equation -- -- \[`\] -- \[\log G(z+1) = \log \Gamma(z) + \log G(z).\] -- -- holds for all /z/. -- -- For small integers, we directly use the recurrence relation -- \(G(z+1) = \Gamma(z) G(z)\) together with the initial value -- \(G(1) = 1\). For general /z/, we use the formula -- -- \[`\] -- \[\log G(z) = (z-1) \log \Gamma(z) - \zeta'(-1,z) + \zeta'(-1).\] foreign import ccall "acb.h acb_log_barnes_g" acb_log_barnes_g :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Zeta function --------------------------------------------------------------- -- | /acb_zeta/ /z/ /s/ /prec/ -- -- Sets /z/ to the value of the Riemann zeta function \(\zeta(s)\). Note: -- for computing derivatives with respect to \(s\), use -- @acb_poly_zeta_series@ or related methods. -- -- This is a wrapper of @acb_dirichlet_zeta@. foreign import ccall "acb.h acb_zeta" acb_zeta :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hurwitz_zeta/ /z/ /s/ /a/ /prec/ -- -- Sets /z/ to the value of the Hurwitz zeta function \(\zeta(s, a)\). -- Note: for computing derivatives with respect to \(s\), use -- @acb_poly_zeta_series@ or related methods. -- -- This is a wrapper of @acb_dirichlet_hurwitz@. foreign import ccall "acb.h acb_hurwitz_zeta" acb_hurwitz_zeta :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_bernoulli_poly_ui/ /res/ /n/ /x/ /prec/ -- -- Sets /res/ to the value of the Bernoulli polynomial \(B_n(x)\). -- -- Warning: this function is only fast if either /n/ or /x/ is a small -- integer. -- -- This function reads Bernoulli numbers from the global cache if they are -- already cached, but does not automatically extend the cache by itself. foreign import ccall "acb.h acb_bernoulli_poly_ui" acb_bernoulli_poly_ui :: Ptr CAcb -> CULong -> Ptr CAcb -> CLong -> IO () -- Polylogarithms -------------------------------------------------------------- foreign import ccall "acb.h acb_polylog" acb_polylog :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_polylog_si/ /w/ /s/ /z/ /prec/ -- -- Sets /w/ to the polylogarithm \(\operatorname{Li}_s(z)\). foreign import ccall "acb.h acb_polylog_si" acb_polylog_si :: Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> IO () -- Arithmetic-geometric mean --------------------------------------------------- -- See @algorithms_agm@ for implementation details. -- -- | /acb_agm1/ /m/ /z/ /prec/ -- -- Sets /m/ to the arithmetic-geometric mean -- \(M(z) = \operatorname{agm}(1,z)\), defined such that the function is -- continuous in the complex plane except for a branch cut along the -- negative half axis (where it is continuous from above). This corresponds -- to always choosing an \"optimal\" branch for the square root in the -- arithmetic-geometric mean iteration. foreign import ccall "acb.h acb_agm1" acb_agm1 :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_agm1_cpx/ /m/ /z/ /len/ /prec/ -- -- Sets the coefficients in the array /m/ to the power series expansion of -- the arithmetic-geometric mean at the point /z/ truncated to length -- /len/, i.e. \(M(z+x) \in \mathbb{C}[[x]]\). foreign import ccall "acb.h acb_agm1_cpx" acb_agm1_cpx :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_agm/ /m/ /x/ /y/ /prec/ -- -- Sets /m/ to the arithmetic-geometric mean of /x/ and /y/. The square -- roots in the AGM iteration are chosen so as to form the \"optimal\" AGM -- sequence. This gives a well-defined function of /x/ and /y/ except when -- \(x / y\) is a negative real number, in which case there are two optimal -- AGM sequences. In that case, an arbitrary but consistent choice is made -- (if a decision cannot be made due to inexact arithmetic, the union of -- both choices is returned). foreign import ccall "acb.h acb_agm" acb_agm :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Other special functions ----------------------------------------------------- foreign import ccall "acb.h acb_chebyshev_t_ui" acb_chebyshev_t_ui :: Ptr CAcb -> CULong -> Ptr CAcb -> CLong -> IO () -- | /acb_chebyshev_u_ui/ /a/ /n/ /x/ /prec/ -- -- Evaluates the Chebyshev polynomial of the first kind \(a = T_n(x)\) or -- the Chebyshev polynomial of the second kind \(a = U_n(x)\). foreign import ccall "acb.h acb_chebyshev_u_ui" acb_chebyshev_u_ui :: Ptr CAcb -> CULong -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h acb_chebyshev_t2_ui" acb_chebyshev_t2_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> Ptr CAcb -> CLong -> IO () -- | /acb_chebyshev_u2_ui/ /a/ /b/ /n/ /x/ /prec/ -- -- Simultaneously evaluates \(a = T_n(x), b = T_{n-1}(x)\) or -- \(a = U_n(x), b = U_{n-1}(x)\). Aliasing between /a/, /b/ and /x/ is not -- permitted. foreign import ccall "acb.h acb_chebyshev_u2_ui" acb_chebyshev_u2_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> Ptr CAcb -> CLong -> IO () -- Piecewise real functions ---------------------------------------------------- -- The following methods extend common piecewise real functions to -- piecewise complex analytic functions, useful together with the -- @acb_calc.h \<acb-calc>@ module. If /analytic/ is set, evaluation on a -- discontinuity or non-analytic point gives a NaN result. -- -- | /acb_real_abs/ /res/ /z/ /analytic/ /prec/ -- -- The absolute value is extended to \(+z\) in the right half plane and -- \(-z\) in the left half plane, with a discontinuity on the vertical line -- \(\operatorname{Re}(z) = 0\). foreign import ccall "acb.h acb_real_abs" acb_real_abs :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_real_sgn/ /res/ /z/ /analytic/ /prec/ -- -- The sign function is extended to \(+1\) in the right half plane and -- \(-1\) in the left half plane, with a discontinuity on the vertical line -- \(\operatorname{Re}(z) = 0\). If /analytic/ is not set, this is -- effectively the same function as @acb_csgn@. foreign import ccall "acb.h acb_real_sgn" acb_real_sgn :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_real_heaviside/ /res/ /z/ /analytic/ /prec/ -- -- The Heaviside step function (or unit step function) is extended to -- \(+1\) in the right half plane and \(0\) in the left half plane, with a -- discontinuity on the vertical line \(\operatorname{Re}(z) = 0\). foreign import ccall "acb.h acb_real_heaviside" acb_real_heaviside :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_real_floor/ /res/ /z/ /analytic/ /prec/ -- -- The floor function is extended to a piecewise constant function equal to -- \(n\) in the strips with real part \((n,n+1)\), with discontinuities on -- the vertical lines \(\operatorname{Re}(z) = n\). foreign import ccall "acb.h acb_real_floor" acb_real_floor :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_real_ceil/ /res/ /z/ /analytic/ /prec/ -- -- The ceiling function is extended to a piecewise constant function equal -- to \(n+1\) in the strips with real part \((n,n+1)\), with -- discontinuities on the vertical lines \(\operatorname{Re}(z) = n\). foreign import ccall "acb.h acb_real_ceil" acb_real_ceil :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_real_max/ /res/ /x/ /y/ /analytic/ /prec/ -- -- The real function \(\max(x,y)\) is extended to a piecewise analytic -- function of two variables by returning \(x\) when -- \(\operatorname{Re}(x) \ge \operatorname{Re}(y)\) and returning \(y\) -- when \(\operatorname{Re}(x) < \operatorname{Re}(y)\), with -- discontinuities where \(\operatorname{Re}(x) = \operatorname{Re}(y)\). foreign import ccall "acb.h acb_real_max" acb_real_max :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_real_min/ /res/ /x/ /y/ /analytic/ /prec/ -- -- The real function \(\min(x,y)\) is extended to a piecewise analytic -- function of two variables by returning \(x\) when -- \(\operatorname{Re}(x) \le \operatorname{Re}(y)\) and returning \(y\) -- when \(\operatorname{Re}(x) > \operatorname{Re}(y)\), with -- discontinuities where \(\operatorname{Re}(x) = \operatorname{Re}(y)\). foreign import ccall "acb.h acb_real_min" acb_real_min :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_real_sqrtpos/ /res/ /z/ /analytic/ /prec/ -- -- Extends the real square root function on \([0,+\infty)\) to the usual -- complex square root on the cut plane. Like @arb_sqrtpos@, only the -- nonnegative part of /z/ is considered if /z/ is purely real and -- /analytic/ is not set. This is useful for integrating \(\sqrt{f(x)}\) -- where it is known that \(f(x) \ge 0\): unlike @acb_sqrt_analytic@, no -- spurious imaginary terms \([\pm \varepsilon] i\) are created when the -- balls computed for \(f(x)\) straddle zero. foreign import ccall "acb.h acb_real_sqrtpos" acb_real_sqrtpos :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- Vector functions ------------------------------------------------------------ -- | /_acb_vec_zero/ /A/ /n/ -- -- Sets all entries in /vec/ to zero. foreign import ccall "acb.h _acb_vec_zero" _acb_vec_zero :: Ptr CAcb -> CLong -> IO () -- | /_acb_vec_is_zero/ /vec/ /len/ -- -- Returns nonzero iff all entries in /x/ are zero. foreign import ccall "acb.h _acb_vec_is_zero" _acb_vec_is_zero :: Ptr CAcb -> CLong -> IO CInt -- | /_acb_vec_is_real/ /v/ /len/ -- -- Returns nonzero iff all entries in /x/ have zero imaginary part. foreign import ccall "acb.h _acb_vec_is_real" _acb_vec_is_real :: Ptr CAcb -> CLong -> IO CInt -- | /_acb_vec_set/ /res/ /vec/ /len/ -- -- Sets /res/ to a copy of /vec/. foreign import ccall "acb.h _acb_vec_set" _acb_vec_set :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /_acb_vec_set_round/ /res/ /vec/ /len/ /prec/ -- -- Sets /res/ to a copy of /vec/, rounding each entry to /prec/ bits. foreign import ccall "acb.h _acb_vec_set_round" _acb_vec_set_round :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /_acb_vec_swap/ /vec1/ /vec2/ /len/ -- -- Swaps the entries of /vec1/ and /vec2/. foreign import ccall "acb.h _acb_vec_swap" _acb_vec_swap :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h _acb_vec_neg" _acb_vec_neg :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h _acb_vec_add" _acb_vec_add :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h _acb_vec_sub" _acb_vec_sub :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_submul" _acb_vec_scalar_submul :: Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_addmul" _acb_vec_scalar_addmul :: Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_mul" _acb_vec_scalar_mul :: Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_mul_ui" _acb_vec_scalar_mul_ui :: Ptr CAcb -> Ptr CAcb -> CLong -> CULong -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_mul_2exp_si" _acb_vec_scalar_mul_2exp_si :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_mul_onei" _acb_vec_scalar_mul_onei :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_div_ui" _acb_vec_scalar_div_ui :: Ptr CAcb -> Ptr CAcb -> CLong -> CULong -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_div" _acb_vec_scalar_div :: Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_mul_arb" _acb_vec_scalar_mul_arb :: Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CArb -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_div_arb" _acb_vec_scalar_div_arb :: Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CArb -> CLong -> IO () foreign import ccall "acb.h _acb_vec_scalar_mul_fmpz" _acb_vec_scalar_mul_fmpz :: Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CFmpz -> CLong -> IO () -- | /_acb_vec_scalar_div_fmpz/ /res/ /vec/ /len/ /c/ /prec/ -- -- Performs the respective scalar operation elementwise. foreign import ccall "acb.h _acb_vec_scalar_div_fmpz" _acb_vec_scalar_div_fmpz :: Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CFmpz -> CLong -> IO () -- | /_acb_vec_bits/ /vec/ /len/ -- -- Returns the maximum of @arb_bits@ for all entries in /vec/. foreign import ccall "acb.h _acb_vec_bits" _acb_vec_bits :: Ptr CAcb -> CLong -> IO CLong -- | /_acb_vec_set_powers/ /xs/ /x/ /len/ /prec/ -- -- Sets /xs/ to the powers \(1, x, x^2, \ldots, x^{len-1}\). foreign import ccall "acb.h _acb_vec_set_powers" _acb_vec_set_powers :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /_acb_vec_unit_roots/ /z/ /order/ /len/ /prec/ -- -- Sets /z/ to the powers \(1,z,z^2,\dots z^{\mathrm{len}-1}\) where -- \(z=\exp(\frac{2i\pi}{\mathrm{order}})\) to precision /prec/. /order/ -- can be taken negative. -- -- In order to avoid precision loss, this function does not simply compute -- powers of a primitive root. foreign import ccall "acb.h _acb_vec_unit_roots" _acb_vec_unit_roots :: Ptr CAcb -> CLong -> CLong -> CLong -> IO () foreign import ccall "acb.h _acb_vec_add_error_arf_vec" _acb_vec_add_error_arf_vec :: Ptr CAcb -> Ptr CArf -> CLong -> IO () -- | /_acb_vec_add_error_mag_vec/ /res/ /err/ /len/ -- -- Adds the magnitude of each entry in /err/ to the radius of the -- corresponding entry in /res/. foreign import ccall "acb.h _acb_vec_add_error_mag_vec" _acb_vec_add_error_mag_vec :: Ptr CAcb -> Ptr CMag -> CLong -> IO () -- | /_acb_vec_indeterminate/ /vec/ /len/ -- -- Applies @acb_indeterminate@ elementwise. foreign import ccall "acb.h _acb_vec_indeterminate" _acb_vec_indeterminate :: Ptr CAcb -> CLong -> IO () -- | /_acb_vec_trim/ /res/ /vec/ /len/ -- -- Applies @acb_trim@ elementwise. foreign import ccall "acb.h _acb_vec_trim" _acb_vec_trim :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /_acb_vec_get_unique_fmpz_vec/ /res/ /vec/ /len/ -- -- Calls @acb_get_unique_fmpz@ elementwise and returns nonzero if all -- entries can be rounded uniquely to integers. If any entry in /vec/ -- cannot be rounded uniquely to an integer, returns zero. foreign import ccall "acb.h _acb_vec_get_unique_fmpz_vec" _acb_vec_get_unique_fmpz_vec :: Ptr CFmpz -> Ptr CAcb -> CLong -> IO CInt -- | /_acb_vec_sort_pretty/ /vec/ /len/ -- -- Sorts the vector of complex numbers based on the real and imaginary -- parts. This is intended to reveal structure when printing a set of -- complex numbers, not to apply an order relation in a rigorous way. foreign import ccall "acb.h _acb_vec_sort_pretty" _acb_vec_sort_pretty :: Ptr CAcb -> CLong -> IO ()