Flint2-0.1.0.3: Haskell bindings for the flint library for number theory
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Number.Flint.NF.Elem

Synopsis

nf_elem.h -- number field elements

data NFElem Source #

Constructors

NFElem !(ForeignPtr CNFElem) 

Instances

Instances details
Storable CNFElem Source # 
Instance details

Defined in Data.Number.Flint.NF.Elem.FFI

withNFElem :: NFElem -> (Ptr CNFElem -> IO a) -> IO (NFElem, a) Source #

Use number-field element.

withNewNFElem :: NF -> (Ptr CNFElem -> IO a) -> IO (NFElem, a) Source #

Initialisation

nf_elem_init :: Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_init a nf

Initialise a number field element to belong to the given number field code{nf}. The element is set to zero.

nf_elem_clear :: Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_clear a nf

Clear resources allocated by the given number field element in the given number field.

nf_elem_randtest :: Ptr CNFElem -> Ptr CFRandState -> CMpBitCnt -> Ptr CNF -> IO () Source #

nf_elem_randtest a state bits nf

Generate a random number field element \(a\) in the number field code{nf} whose coefficients have up to the given number of bits.

nf_elem_canonicalise :: Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_canonicalise a nf

Canonicalise a number field element, i.e. reduce numerator and denominator to lowest terms. If the numerator is \(0\), set the denominator to \(1\).

_nf_elem_reduce :: Ptr CNFElem -> Ptr CNF -> IO () Source #

_nf_elem_reduce a nf

Reduce a number field element modulo the defining polynomial. This is used with functions such as code{nf_elem_mul_red} which allow reduction to be delayed. Does not canonicalise.

nf_elem_reduce :: Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_reduce a nf

Reduce a number field element modulo the defining polynomial. This is used with functions such as code{nf_elem_mul_red} which allow reduction to be delayed.

_nf_elem_invertible_check :: Ptr CNFElem -> Ptr CNF -> IO CInt Source #

_nf_elem_invertible_check a nf

Whilst the defining polynomial for a number field should by definition be irreducible, it is not enforced. Thus in test code, it is convenient to be able to check that a given number field element is invertible modulo the defining polynomial of the number field. This function does precisely this.

If \(a\) is invertible modulo the defining polynomial of code{nf} the value \(1\) is returned, otherwise \(0\) is returned.

The function is only intended to be used in test code.

Conversion

nf_elem_set_fmpz_mat_row :: Ptr CNFElem -> Ptr CFmpzMat -> CInt -> Ptr CFmpz -> Ptr CNF -> IO () Source #

nf_elem_set_fmpz_mat_row b M i den nf

Set \(b\) to the element specified by row \(i\) of the matrix \(M\) and with the given denominator \(d\). Column \(0\) of the matrix corresponds to the constant coefficient of the number field element.

nf_elem_get_fmpz_mat_row :: Ptr CFmpzMat -> CInt -> Ptr CFmpz -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_get_fmpz_mat_row M i den b nf

Set the row \(i\) of the matrix \(M\) to the coefficients of the numerator of the element \(b\) and \(d\) to the denominator of \(b\). Column \(0\) of the matrix corresponds to the constant coefficient of the number field element.

nf_elem_set_fmpq_poly :: Ptr CNFElem -> Ptr CFmpqPoly -> Ptr CNF -> IO () Source #

nf_elem_set_fmpq_poly a pol nf

Set \(a\) to the element corresponding to the polynomial code{pol}.

nf_elem_get_fmpq_poly :: Ptr CFmpqPoly -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_get_fmpq_poly pol a nf

Set code{pol} to a polynomial corresponding to \(a\), reduced modulo the defining polynomial of code{nf}.

nf_elem_get_nmod_poly_den :: Ptr CNModPoly -> Ptr CNFElem -> Ptr CNF -> CInt -> IO () Source #

nf_elem_get_nmod_poly_den pol a nf den

Set code{pol} to the reduction of the polynomial corresponding to the numerator of \(a\). If code{den == 1}, the result is multiplied by the inverse of the denominator of \(a\). In this case it is assumed that the reduction of the denominator of \(a\) is invertible.

nf_elem_get_nmod_poly :: Ptr CNModPoly -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_get_nmod_poly pol a nf

Set code{pol} to the reduction of the polynomial corresponding to the numerator of \(a\). The result is multiplied by the inverse of the denominator of \(a\). It is assumed that the reduction of the denominator of \(a\) is invertible.

nf_elem_get_fmpz_mod_poly_den :: Ptr CFmpzModPoly -> Ptr CNFElem -> Ptr CNF -> CInt -> IO () Source #

nf_elem_get_fmpz_mod_poly_den pol a nf den

Set code{pol} to the reduction of the polynomial corresponding to the numerator of \(a\). If code{den == 1}, the result is multiplied by the inverse of the denominator of \(a\). In this case it is assumed that the reduction of the denominator of \(a\) is invertible.

nf_elem_get_fmpz_mod_poly :: Ptr CFmpzModPoly -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_get_fmpz_mod_poly pol a nf

Set code{pol} to the reduction of the polynomial corresponding to the numerator of \(a\). The result is multiplied by the inverse of the denominator of \(a\). It is assumed that the reduction of the denominator of \(a\) is invertible.

Basic manipulation

nf_elem_set_den :: Ptr CNFElem -> Ptr CFmpz -> Ptr CNF -> IO () Source #

nf_elem_set_den b d nf

Set the denominator of the code{nf_elem_t b} to the given integer \(d\). Assumes \(d > 0\).

nf_elem_get_den :: Ptr CFmpz -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_get_den d b nf

Set \(d\) to the denominator of the code{nf_elem_t b}.

_nf_elem_set_coeff_num_fmpz :: Ptr CNFElem -> CLong -> Ptr CFmpz -> Ptr CNF -> IO () Source #

_nf_elem_set_coeff_num_fmpz a i d nf

Set the \(i`th coefficient of the denominator of :math:`a\) to the given integer \(d\).

Comparison

_nf_elem_equal :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO CInt Source #

_nf_elem_equal a b nf

Return \(1\) if the given number field elements are equal in the given number field code{nf}. This function does emph{not} assume \(a\) and \(b\) are canonicalised.

nf_elem_equal :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO CInt Source #

nf_elem_equal a b nf

Return \(1\) if the given number field elements are equal in the given number field code{nf}. This function assumes \(a\) and \(b\) emph{are} canonicalised.

nf_elem_is_zero :: Ptr CNFElem -> Ptr CNF -> IO CInt Source #

nf_elem_is_zero a nf

Return \(1\) if the given number field element is equal to zero, otherwise return \(0\).

nf_elem_is_one :: Ptr CNFElem -> Ptr CNF -> IO CInt Source #

nf_elem_is_one a nf

Return \(1\) if the given number field element is equal to one, otherwise return \(0\).

I/O

nf_elem_print_pretty :: Ptr CNFElem -> Ptr CNF -> CString -> IO () Source #

nf_elem_print_pretty a nf var

Print the given number field element to code{stdout} using the null-terminated string code{var} not equal to code{"0"} as the name of the primitive element. foreign import ccall "nf_elem.h nf_elem_print_pretty"

Arithmetic

nf_elem_zero :: Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_zero a nf

Set the given number field element to zero.

nf_elem_one :: Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_one a nf

Set the given number field element to one.

nf_elem_set :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_set a b nf

Set the number field element \(a\) to equal the number field element \(b\), i.e. set \(a = b\).

nf_elem_neg :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_neg a b nf

Set the number field element \(a\) to minus the number field element \(b\), i.e. set \(a = -b\).

nf_elem_swap :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_swap a b nf

Efficiently swap the two number field elements \(a\) and \(b\).

nf_elem_mul_gen :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_mul_gen a b nf

Multiply the element \(b\) with the generator of the number field.

_nf_elem_add :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

_nf_elem_add r a b nf

Add two elements of a number field code{nf}, i.e. set \(r = a + b\). Canonicalisation is not performed.

nf_elem_add :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_add r a b nf

Add two elements of a number field code{nf}, i.e. set \(r = a + b\).

_nf_elem_sub :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

_nf_elem_sub r a b nf

Subtract two elements of a number field code{nf}, i.e. set \(r = a - b\). Canonicalisation is not performed.

nf_elem_sub :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_sub r a b nf

Subtract two elements of a number field code{nf}, i.e. set \(r = a - b\).

_nf_elem_mul :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

_nf_elem_mul a b c nf

Multiply two elements of a number field code{nf}, i.e. set \(r = a * b\). Does not canonicalise. Aliasing of inputs with output is not supported.

_nf_elem_mul_red :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> CInt -> IO () Source #

_nf_elem_mul_red a b c nf red

As per code{_nf_elem_mul}, but reduction modulo the defining polynomial of the number field is only carried out if code{red == 1}. Assumes both inputs are reduced.

nf_elem_mul :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_mul a b c nf

Multiply two elements of a number field code{nf}, i.e. set \(r = a * b\).

nf_elem_mul_red :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> CInt -> IO () Source #

nf_elem_mul_red a b c nf red

As per code{nf_elem_mul}, but reduction modulo the defining polynomial of the number field is only carried out if code{red == 1}. Assumes both inputs are reduced.

_nf_elem_inv :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

_nf_elem_inv r a nf

Invert an element of a number field code{nf}, i.e. set \(r = a^{-1}\). Aliasing of the input with the output is not supported.

nf_elem_inv :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_inv r a nf

Invert an element of a number field code{nf}, i.e. set \(r = a^{-1}\).

_nf_elem_div :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

_nf_elem_div a b c nf

Set \(a\) to \(b/c\) in the given number field. Aliasing of \(a\) and \(b\) is not permitted.

nf_elem_div :: Ptr CNFElem -> Ptr CNFElem -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_div a b c nf

Set \(a\) to \(b/c\) in the given number field.

_nf_elem_pow :: Ptr CNFElem -> Ptr CNFElem -> CULong -> Ptr CNF -> IO () Source #

_nf_elem_pow res a e nf

Set code{res} to \(a^e\) using left-to-right binary exponentiation as described in~citep[p.~461]{Knu1997}.

Assumes that \(a \neq 0\) and \(e > 1\). Does not support aliasing.

nf_elem_pow :: Ptr CNFElem -> Ptr CNFElem -> CULong -> Ptr CNF -> IO () Source #

nf_elem_pow res a e nf

Set code{res} = code{a^e} using the binary exponentiation algorithm. If \(e\) is zero, returns one, so that in particular code{0^0 = 1}.

_nf_elem_norm :: Ptr CFmpz -> Ptr CFmpz -> Ptr CNFElem -> Ptr CNF -> IO () Source #

_nf_elem_norm rnum rden a nf

Set code{{rnum, rden}} to the absolute norm of the given number field element \(a\).

nf_elem_norm :: Ptr CFmpq -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_norm res a nf

Set code{res} to the absolute norm of the given number field element \(a\).

nf_elem_norm_div :: Ptr CFmpq -> Ptr CNFElem -> Ptr CNF -> Ptr CFmpz -> CLong -> IO () Source #

nf_elem_norm_div res a nf div nbits

Set code{res} to the absolute norm of the given number field element \(a\), divided by code{div} . Assumes the result to be an integer and having at most code{nbits} bits.

_nf_elem_norm_div :: Ptr CFmpz -> Ptr CFmpz -> Ptr CNFElem -> Ptr CNF -> Ptr CFmpz -> CLong -> IO () Source #

_nf_elem_norm_div rnum rden a nf divisor nbits

Set code{{rnum, rden}} to the absolute norm of the given number field element \(a\), divided by code{div} . Assumes the result to be an integer and having at most code{nbits} bits.

_nf_elem_trace :: Ptr CFmpz -> Ptr CFmpz -> Ptr CNFElem -> Ptr CNF -> IO () Source #

_nf_elem_trace rnum rden a nf

Set code{{rnum, rden}} to the absolute trace of the given number field element \(a\).

nf_elem_trace :: Ptr CFmpq -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_trace res a nf

Set code{res} to the absolute trace of the given number field element \(a\).

Representation matrix

nf_elem_rep_mat :: Ptr CFmpqMat -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_rep_mat res a nf

Set code{res} to the matrix representing the multiplication with \(a\) with respect to the basis \(1, a, \dotsc, a^{d - 1}\), where \(a\) is the generator of the number field of \(d\) is its degree.

nf_elem_rep_mat_fmpz_mat_den :: Ptr CFmpzMat -> Ptr CFmpz -> Ptr CNFElem -> Ptr CNF -> IO () Source #

nf_elem_rep_mat_fmpz_mat_den res den a nf

Return a tuple \(M, d\) such that \(M/d\) is the matrix representing the multiplication with \(a\) with respect to the basis \(1, a, \dotsc, a^{d - 1}\), where \(a\) is the generator of the number field of \(d\) is its degree. The integral matrix \(M\) is primitive.

Modular reduction

nf_elem_mod_fmpz_den :: Ptr CNFElem -> Ptr CNFElem -> Ptr CFmpz -> Ptr CNF -> IO () Source #

nf_elem_mod_fmpz_den z a mod nf

If code{den == 0}, return an element \(z\) with denominator \(1\), such that the coefficients of \(z - da\) are divisble by code{mod}, where \(d\) is the denominator of \(a\). The coefficients of \(z\) are reduced modulo code{mod}.

If code{den == 1}, return an element \(z\), such that \(z - a\) has denominator \(1\) and the coefficients of \(z - a\) are divisble by code{mod}. The coefficients of \(z\) are reduced modulo code{mod * d}, where \(d\) is the denominator of \(a\).

Reduction takes place with respect to the positive residue system.

nf_elem_smod_fmpz_den :: Ptr CNFElem -> Ptr CNFElem -> Ptr CFmpz -> Ptr CNF -> IO () Source #

nf_elem_smod_fmpz_den z a mod nf

If code{den == 0}, return an element \(z\) with denominator \(1\), such that the coefficients of \(z - da\) are divisble by code{mod}, where \(d\) is the denominator of \(a\). The coefficients of \(z\) are reduced modulo code{mod}.

If code{den == 1}, return an element \(z\), such that \(z - a\) has denominator \(1\) and the coefficients of \(z - a\) are divisble by code{mod}. The coefficients of \(z\) are reduced modulo code{mod * d}, where \(d\) is the denominator of \(a\).

Reduction takes place with respect to the symmetric residue system.

nf_elem_mod_fmpz :: Ptr CNFElem -> Ptr CNFElem -> Ptr CFmpz -> Ptr CNF -> IO () Source #

nf_elem_mod_fmpz res a mod nf

Return an element \(z\) such that \(z - a\) has denominator \(1\) and the coefficients of \(z - a\) are divisible by code{mod}. The coefficients of \(z\) are reduced modulo code{mod * d}, where \(d\) is the denominator of \(b\).

Reduction takes place with respect to the positive residue system.

nf_elem_smod_fmpz :: Ptr CNFElem -> Ptr CNFElem -> Ptr CFmpz -> Ptr CNF -> IO () Source #

nf_elem_smod_fmpz res a mod nf

Return an element \(z\) such that \(z - a\) has denominator \(1\) and the coefficients of \(z - a\) are divisible by code{mod}. The coefficients of \(z\) are reduced modulo code{mod * d}, where \(d\) is the denominator of \(b\).

Reduction takes place with respect to the symmetric residue system.

nf_elem_coprime_den :: Ptr CNFElem -> Ptr CNFElem -> Ptr CFmpz -> Ptr CNF -> IO () Source #

nf_elem_coprime_den res a mod nf

Return an element \(z\) such that the denominator of \(z - a\) is coprime to code{mod}.

Reduction takes place with respect to the positive residue system.

nf_elem_coprime_den_signed :: Ptr CNFElem -> Ptr CNFElem -> Ptr CFmpz -> Ptr CNF -> IO () Source #

nf_elem_coprime_den_signed res a mod nf

Return an element \(z\) such that the denominator of \(z - a\) is coprime to code{mod}.

Reduction takes place with respect to the symmetric residue system.