Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
- Univariate polynomials over finite fields (Zech logarithm representation)
- Memory management
- Polynomial parameters
- Randomisation
- Assignment and basic manipulation
- Getting and setting coefficients
- Comparison
- Addition and subtraction
- Scalar multiplication and division
- Multiplication
- Squaring
- Powering
- Shifting
- Norms
- Euclidean division
- Greatest common divisor
- Divisibility testing
- Derivative
- Square root
- Evaluation
- Composition
- Output
- Inflation and deflation
Synopsis
- data FqZechPoly = FqZechPoly !(ForeignPtr CFqZechPoly)
- type CFqZechPoly = CFlint FqZechPoly
- newFqZechPoly :: FqZechCtx -> IO FqZechPoly
- withFqZechPoly :: FqZechPoly -> (Ptr CFqZechPoly -> IO a) -> IO (FqZechPoly, a)
- fq_zech_poly_init :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_init2 :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_realloc :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_fit_length :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_set_length :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_clear :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_normalise :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_normalise2 :: Ptr CFqZech -> Ptr CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_truncate :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_set_trunc :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqCtx -> IO ()
- _fq_zech_poly_reverse :: Ptr CFqZech -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_reverse :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_degree :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CLong
- fq_zech_poly_length :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CLong
- fq_zech_poly_lead :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO (Ptr CFqZech)
- fq_zech_poly_randtest :: Ptr CFqZechPoly -> Ptr CFRandState -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_randtest_not_zero :: Ptr CFqZechPoly -> Ptr CFRandState -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_randtest_monic :: Ptr CFqZechPoly -> Ptr CFRandState -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_randtest_irreducible :: Ptr CFqZechPoly -> Ptr CFRandState -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_set :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_set :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_set_fq_zech :: Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_set_fmpz_mod_poly :: Ptr CFqZechPoly -> Ptr CFmpzModPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_set_nmod_poly :: Ptr CFqZechPoly -> Ptr CNModPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_swap :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_zero :: Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_zero :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_one :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_gen :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_make_monic :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_make_monic :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_get_coeff :: Ptr CFqZech -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_set_coeff :: Ptr CFqZechPoly -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_set_coeff_fmpz :: Ptr CFqZechPoly -> CLong -> Ptr CFmpz -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_equal :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt
- fq_zech_poly_equal_trunc :: Ptr CFqPoly -> Ptr CFqPoly -> CLong -> Ptr CFqCtx -> IO CInt
- fq_zech_poly_is_zero :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt
- fq_zech_poly_is_one :: Ptr CFqZechPoly -> IO CInt
- fq_zech_poly_is_gen :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt
- fq_zech_poly_is_unit :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt
- fq_zech_poly_equal_fq_zech :: Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- _fq_zech_poly_add :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_add :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_add_si :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_add_series :: Ptr CFqPoly -> Ptr CFqPoly -> Ptr CFqPoly -> CLong -> Ptr CFqCtx -> IO ()
- _fq_zech_poly_sub :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_sub :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_sub_series :: Ptr CFqPoly -> Ptr CFqPoly -> Ptr CFqPoly -> CLong -> Ptr CFqCtx -> IO ()
- _fq_zech_poly_neg :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_neg :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_scalar_mul_fq_zech :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_scalar_mul_fq_zech :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_scalar_addmul_fq_zech :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_scalar_addmul_fq_zech :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_scalar_submul_fq_zech :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_scalar_submul_fq_zech :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_mul_classical :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_mul_classical :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_mul_KS :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_mul_KS :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_mul :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_mul :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_mullow_classical :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_mullow_classical :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_mullow_KS :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_mullow_KS :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_mullow :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_mullow :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_mulhigh_classical :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_mulhigh_classical :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_mulhigh :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_mulhigh :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_mulmod :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_mulmod :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_mulmod_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_mulmod_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_sqr_classical :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_sqr_classical :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_sqr_KS :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_sqr_KS :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_sqr :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_sqr :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_pow :: Ptr CFqZech -> Ptr CFqZech -> CLong -> CULong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_pow :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_powmod_ui_binexp :: Ptr CFqZech -> Ptr CFqZech -> CULong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_powmod_ui_binexp :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_powmod_ui_binexp_preinv :: Ptr CFqZech -> Ptr CFqZech -> CULong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_powmod_ui_binexp_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_powmod_fmpz_binexp :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_powmod_fmpz_binexp :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFmpz -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_powmod_fmpz_binexp_preinv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_powmod_fmpz_binexp_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFmpz -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_powmod_fmpz_sliding_preinv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> CULong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_powmod_fmpz_sliding_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFmpz -> CULong -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_powmod_x_fmpz_preinv :: Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_powmod_x_fmpz_preinv :: Ptr CFqZechPoly -> Ptr CFmpz -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_pow_trunc_binexp :: Ptr CFqZech -> Ptr CFqZech -> CULong -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_pow_trunc_binexp :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_pow_trunc :: Ptr CFqZech -> Ptr CFqZech -> CULong -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_pow_trunc :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_shift_left :: Ptr CFqZech -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_shift_left :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_shift_right :: Ptr CFqZech -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_shift_right :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_hamming_weight :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO CLong
- fq_zech_poly_hamming_weight :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CLong
- _fq_zech_poly_divrem :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_divrem :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_divrem_f :: Ptr CFqZech -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_rem :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_rem :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_div :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_div :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_div_newton_n_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> IO ()
- fq_zech_poly_div_newton_n_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_divrem_newton_n_preinv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_divrem_newton_n_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_inv_series_newton :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_inv_series_newton :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_inv_series :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_inv_series :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_div_series :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFmpz -> CLong -> CLong -> Ptr CFqCtx -> IO ()
- fq_zech_poly_div_series :: Ptr CFmpzModPoly -> Ptr CFmpzModPoly -> Ptr CFmpzModPoly -> CLong -> Ptr CFqCtx -> IO ()
- fq_zech_poly_gcd :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_gcd :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CLong
- _fq_zech_poly_gcd_euclidean_f :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CLong
- fq_zech_poly_gcd_euclidean_f :: Ptr CFqZech -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_xgcd :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFmpz -> Ptr CFqZechCtx -> IO CLong
- fq_zech_poly_xgcd :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_xgcd_euclidean_f :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFmpz -> Ptr CFqZechCtx -> IO CLong
- fq_zech_poly_xgcd_euclidean_f :: Ptr CFqZech -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_divides :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt
- fq_zech_poly_divides :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt
- _fq_zech_poly_derivative :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_derivative :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_invsqrt_series :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_invsqrt_series :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_sqrt_series :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_sqrt_series :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_sqrt :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CInt
- fq_zech_poly_sqrt :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt
- _fq_zech_poly_evaluate_fq_zech :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_evaluate_fq_zech :: Ptr CFqZech -> Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_compose :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_compose :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_compose_mod_horner :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_compose_mod_horner :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_compose_mod_horner_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_compose_mod_horner_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_compose_mod_brent_kung :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_compose_mod_brent_kung :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_compose_mod_brent_kung_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_compose_mod_brent_kung_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_compose_mod :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_compose_mod :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_compose_mod_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_compose_mod_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_reduce_matrix_mod_poly :: Ptr CFqZechMat -> Ptr CFqZechMat -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_precompute_matrix :: Ptr CFqZechMat -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_precompute_matrix :: Ptr CFqZechMat -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_compose_mod_brent_kung_precomp_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechMat -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_compose_mod_brent_kung_precomp_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechMat -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO ()
- _fq_zech_poly_fprint_pretty :: Ptr CFile -> Ptr CFqZech -> CLong -> CString -> Ptr CFqZechCtx -> IO CInt
- fq_zech_poly_fprint_pretty :: Ptr CFile -> Ptr CFqZechPoly -> CString -> Ptr CFqZechCtx -> IO CInt
- _fq_zech_poly_print_pretty :: Ptr CFqZech -> CLong -> CString -> Ptr CFqZechCtx -> IO CInt
- fq_zech_poly_print_pretty :: Ptr CFqZechPoly -> CString -> Ptr CFqZechCtx -> IO CInt
- _fq_zech_poly_fprint :: Ptr CFile -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CInt
- fq_zech_poly_fprint :: Ptr CFile -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt
- _fq_zech_poly_print :: Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CInt
- fq_zech_poly_print :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt
- _fq_zech_poly_get_str :: Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CString
- fq_zech_poly_get_str :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CString
- _fq_zech_poly_get_str_pretty :: Ptr CFqZech -> CLong -> CString -> Ptr CFqZechCtx -> IO CString
- fq_zech_poly_get_str_pretty :: Ptr CFqZechPoly -> CString -> Ptr CFqZechCtx -> IO CString
- fq_zech_poly_inflate :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_deflate :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> Ptr CFqZechCtx -> IO ()
- fq_zech_poly_deflation :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CULong
Univariate polynomials over finite fields (Zech logarithm representation)
data FqZechPoly Source #
Instances
Storable CFqZechPoly Source # | |
Defined in Data.Number.Flint.Fq.Zech.Poly.FFI sizeOf :: CFqZechPoly -> Int # alignment :: CFqZechPoly -> Int # peekElemOff :: Ptr CFqZechPoly -> Int -> IO CFqZechPoly # pokeElemOff :: Ptr CFqZechPoly -> Int -> CFqZechPoly -> IO () # peekByteOff :: Ptr b -> Int -> IO CFqZechPoly # pokeByteOff :: Ptr b -> Int -> CFqZechPoly -> IO () # peek :: Ptr CFqZechPoly -> IO CFqZechPoly # poke :: Ptr CFqZechPoly -> CFqZechPoly -> IO () # |
type CFqZechPoly = CFlint FqZechPoly Source #
newFqZechPoly :: FqZechCtx -> IO FqZechPoly Source #
withFqZechPoly :: FqZechPoly -> (Ptr CFqZechPoly -> IO a) -> IO (FqZechPoly, a) Source #
Memory management
fq_zech_poly_init :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_init poly ctx
Initialises poly
for use, with context ctx, and setting its length to
zero. A corresponding call to fq_zech_poly_clear
must be made after
finishing with the fq_zech_poly_t
to free the memory used by the
polynomial.
fq_zech_poly_init2 :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_init2 poly alloc ctx
Initialises poly
with space for at least alloc
coefficients and sets
the length to zero. The allocated coefficients are all set to zero. A
corresponding call to fq_zech_poly_clear
must be made after finishing
with the fq_zech_poly_t
to free the memory used by the polynomial.
fq_zech_poly_realloc :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_realloc poly alloc ctx
Reallocates the given polynomial to have space for alloc
coefficients.
If alloc
is zero the polynomial is cleared and then reinitialised. If
the current length is greater than alloc
the polynomial is first
truncated to length alloc
.
fq_zech_poly_fit_length :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_fit_length poly len ctx
If len
is greater than the number of coefficients currently allocated,
then the polynomial is reallocated to have space for at least len
coefficients. No data is lost when calling this function.
The function efficiently deals with the case where fit_length
is
called many times in small increments by at least doubling the number of
allocated coefficients when length is larger than the number of
coefficients currently allocated.
_fq_zech_poly_set_length :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_set_length poly newlen ctx
Sets the coefficients of poly
beyond len
to zero and sets the length
of poly
to len
.
fq_zech_poly_clear :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_clear poly ctx
Clears the given polynomial, releasing any memory used. It must be reinitialised in order to be used again.
_fq_zech_poly_normalise :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_normalise poly ctx
Sets the length of poly
so that the top coefficient is non-zero. If
all coefficients are zero, the length is set to zero. This function is
mainly used internally, as all functions guarantee normalisation.
_fq_zech_poly_normalise2 :: Ptr CFqZech -> Ptr CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_normalise2 poly length ctx
Sets the length length
of (poly,length)
so that the top coefficient
is non-zero. If all coefficients are zero, the length is set to zero.
This function is mainly used internally, as all functions guarantee
normalisation.
fq_zech_poly_truncate :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_truncate poly newlen ctx
Truncates the polynomial to length at most \(n\).
fq_zech_poly_set_trunc :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqCtx -> IO () Source #
fq_zech_poly_set_trunc poly1 poly2 newlen ctx
Sets poly1
to poly2
truncated to length \(n\).
_fq_zech_poly_reverse :: Ptr CFqZech -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_reverse output input len m ctx
Sets output
to the reverse of input
, which is of length len
, but
thinking of it as a polynomial of length m
, notionally zero-padded if
necessary. The length m
must be non-negative, but there are no other
restrictions. The polynomial output
must have space for m
coefficients.
fq_zech_poly_reverse :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_reverse output input m ctx
Sets output
to the reverse of input
, thinking of it as a polynomial
of length m
, notionally zero-padded if necessary). The length m
must
be non-negative, but there are no other restrictions. The output
polynomial will be set to length m
and then normalised.
Polynomial parameters
fq_zech_poly_degree :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CLong Source #
fq_zech_poly_degree poly ctx
Returns the degree of the polynomial poly
.
fq_zech_poly_length :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CLong Source #
fq_zech_poly_length poly ctx
Returns the length of the polynomial poly
.
fq_zech_poly_lead :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO (Ptr CFqZech) Source #
fq_zech_poly_lead poly ctx
Returns a pointer to the leading coefficient of poly
, or NULL
if
poly
is the zero polynomial.
Randomisation
fq_zech_poly_randtest :: Ptr CFqZechPoly -> Ptr CFRandState -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_randtest f state len ctx
Sets \(f\) to a random polynomial of length at most len
with entries
in the field described by ctx
.
fq_zech_poly_randtest_not_zero :: Ptr CFqZechPoly -> Ptr CFRandState -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_randtest_not_zero f state len ctx
Same as fq_zech_poly_randtest
but guarantees that the polynomial is
not zero.
fq_zech_poly_randtest_monic :: Ptr CFqZechPoly -> Ptr CFRandState -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_randtest_monic f state len ctx
Sets \(f\) to a random monic polynomial of length len
with entries in
the field described by ctx
.
fq_zech_poly_randtest_irreducible :: Ptr CFqZechPoly -> Ptr CFRandState -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_randtest_irreducible f state len ctx
Sets \(f\) to a random monic, irreducible polynomial of length len
with entries in the field described by ctx
.
Assignment and basic manipulation
_fq_zech_poly_set :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_set rop op len ctx
Sets (rop, len
) to (op, len)
.
fq_zech_poly_set :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_set poly1 poly2 ctx
Sets the polynomial poly1
to the polynomial poly2
.
fq_zech_poly_set_fq_zech :: Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_set_fq_zech poly c ctx
Sets the polynomial poly
to c
.
fq_zech_poly_set_fmpz_mod_poly :: Ptr CFqZechPoly -> Ptr CFmpzModPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_set_fmpz_mod_poly rop op ctx
Sets the polynomial rop
to the polynomial op
fq_zech_poly_set_nmod_poly :: Ptr CFqZechPoly -> Ptr CNModPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_set_nmod_poly rop op ctx
Sets the polynomial rop
to the polynomial op
fq_zech_poly_swap :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_swap op1 op2 ctx
Swaps the two polynomials op1
and op2
.
_fq_zech_poly_zero :: Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_zero rop len ctx
Sets (rop, len)
to the zero polynomial.
fq_zech_poly_zero :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_zero poly ctx
Sets poly
to the zero polynomial.
fq_zech_poly_one :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_one poly ctx
Sets poly
to the constant polynomial \(1\).
fq_zech_poly_gen :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_gen poly ctx
Sets poly
to the polynomial \(x\).
fq_zech_poly_make_monic :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_make_monic rop op ctx
Sets rop
to op
, normed to have leading coefficient 1.
_fq_zech_poly_make_monic :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_make_monic rop op length ctx
Sets rop
to (op,length)
, normed to have leading coefficient 1.
Assumes that rop
has enough space for the polynomial, assumes that
op
is not zero (and thus has an invertible leading coefficient).
Getting and setting coefficients
fq_zech_poly_get_coeff :: Ptr CFqZech -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_get_coeff x poly n ctx
Sets \(x\) to the coefficient of \(X^n\) in poly
.
fq_zech_poly_set_coeff :: Ptr CFqZechPoly -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_set_coeff poly n x ctx
Sets the coefficient of \(X^n\) in poly
to \(x\).
fq_zech_poly_set_coeff_fmpz :: Ptr CFqZechPoly -> CLong -> Ptr CFmpz -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_set_coeff_fmpz poly n x ctx
Sets the coefficient of \(X^n\) in the polynomial to \(x\), assuming \(n \geq 0\).
Comparison
fq_zech_poly_equal :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_equal poly1 poly2 ctx
Returns nonzero if the two polynomials poly1
and poly2
are equal,
otherwise return zero.
fq_zech_poly_equal_trunc :: Ptr CFqPoly -> Ptr CFqPoly -> CLong -> Ptr CFqCtx -> IO CInt Source #
fq_zech_poly_equal_trunc poly1 poly2 n ctx
Notionally truncate poly1
and poly2
to length \(n\) and return
nonzero if they are equal, otherwise return zero.
fq_zech_poly_is_zero :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_is_zero poly ctx
Returns whether the polynomial poly
is the zero polynomial.
fq_zech_poly_is_one :: Ptr CFqZechPoly -> IO CInt Source #
fq_zech_poly_is_one op
Returns whether the polynomial poly
is equal to the constant
polynomial \(1\).
fq_zech_poly_is_gen :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_is_gen op ctx
Returns whether the polynomial poly
is equal to the polynomial \(x\).
fq_zech_poly_is_unit :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_is_unit op ctx
Returns whether the polynomial poly
is a unit in the polynomial ring
\(\mathbf{F}_q[X]\), i.e. if it has degree \(0\) and is non-zero.
fq_zech_poly_equal_fq_zech :: Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_equal_fq_zech poly c ctx
Returns whether the polynomial poly
is equal the (constant)
\(\mathbf{F}_q\) element c
Addition and subtraction
_fq_zech_poly_add :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_add res poly1 len1 poly2 len2 ctx
Sets res
to the sum of (poly1,len1)
and (poly2,len2)
.
fq_zech_poly_add :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_add res poly1 poly2 ctx
Sets res
to the sum of poly1
and poly2
.
fq_zech_poly_add_si :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_add_si res poly1 c ctx
Sets res
to the sum of poly1
and c
.
fq_zech_poly_add_series :: Ptr CFqPoly -> Ptr CFqPoly -> Ptr CFqPoly -> CLong -> Ptr CFqCtx -> IO () Source #
fq_zech_poly_add_series res poly1 poly2 n ctx
Notionally truncate poly1
and poly2
to length n
and set res
to
the sum.
_fq_zech_poly_sub :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_sub res poly1 len1 poly2 len2 ctx
Sets res
to the difference of (poly1,len1)
and (poly2,len2)
.
fq_zech_poly_sub :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_sub res poly1 poly2 ctx
Sets res
to the difference of poly1
and poly2
.
fq_zech_poly_sub_series :: Ptr CFqPoly -> Ptr CFqPoly -> Ptr CFqPoly -> CLong -> Ptr CFqCtx -> IO () Source #
fq_zech_poly_sub_series res poly1 poly2 n ctx
Notionally truncate poly1
and poly2
to length n
and set res
to
the difference.
_fq_zech_poly_neg :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_neg rop op len ctx
Sets rop
to the additive inverse of (op,len)
.
fq_zech_poly_neg :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_neg res poly ctx
Sets res
to the additive inverse of poly
.
Scalar multiplication and division
_fq_zech_poly_scalar_mul_fq_zech :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_scalar_mul_fq_zech rop op len x ctx
Sets (rop,len)
to the product of (op,len)
by the scalar x
, in the
context defined by ctx
.
fq_zech_poly_scalar_mul_fq_zech :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_scalar_mul_fq_zech rop op x ctx
Sets rop
to the product of op
by the scalar x
, in the context
defined by ctx
.
_fq_zech_poly_scalar_addmul_fq_zech :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_scalar_addmul_fq_zech rop op len x ctx
Adds to (rop,len)
the product of (op,len)
by the scalar x
, in the
context defined by ctx
. In particular, assumes the same length for
op
and rop
.
fq_zech_poly_scalar_addmul_fq_zech :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_scalar_addmul_fq_zech rop op x ctx
Adds to rop
the product of op
by the scalar x
, in the context
defined by ctx
.
_fq_zech_poly_scalar_submul_fq_zech :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_scalar_submul_fq_zech rop op len x ctx
Subtracts from (rop,len)
the product of (op,len)
by the scalar x
,
in the context defined by ctx
. In particular, assumes the same length
for op
and rop
.
fq_zech_poly_scalar_submul_fq_zech :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_scalar_submul_fq_zech rop op x ctx
Subtracts from rop
the product of op
by the scalar x
, in the
context defined by ctx
.
Multiplication
_fq_zech_poly_mul_classical :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_mul_classical rop op1 len1 op2 len2 ctx
Sets (rop, len1 + len2 - 1)
to the product of (op1, len1)
and
(op2, len2)
, assuming that len1
is at least len2
and neither is
zero.
Permits zero padding. Does not support aliasing of rop
with either
op1
or op2
.
fq_zech_poly_mul_classical :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_mul_classical rop op1 op2 ctx
Sets rop
to the product of op1
and op2
using classical polynomial
multiplication.
_fq_zech_poly_mul_KS :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_mul_KS rop op1 len1 op2 len2 ctx
Sets (rop, len1 + len2 - 1)
to the product of (op1, len1)
and
(op2, len2)
.
Permits zero padding and places no assumptions on the lengths len1
and
len2
. Supports aliasing.
fq_zech_poly_mul_KS :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_mul_KS rop op1 op2 ctx
Sets rop
to the product of op1
and op2
using Kronecker
substitution, that is, by encoding each coefficient in
\(\mathbf{F}_{q}\) as an integer and reducing this problem to
multiplying two polynomials over the integers.
_fq_zech_poly_mul :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_mul rop op1 len1 op2 len2 ctx
Sets (rop, len1 + len2 - 1)
to the product of (op1, len1)
and
(op2, len2)
, choosing an appropriate algorithm.
Permits zero padding. Does not support aliasing.
fq_zech_poly_mul :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_mul rop op1 op2 ctx
Sets rop
to the product of op1
and op2
, choosing an appropriate
algorithm.
_fq_zech_poly_mullow_classical :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_mullow_classical rop op1 len1 op2 len2 n ctx
Sets (rop, n)
to the first \(n\) coefficients of (op1, len1)
multiplied by (op2, len2)
.
Assumes 0 < n <= len1 + len2 - 1
. Assumes neither len1
nor len2
is zero.
fq_zech_poly_mullow_classical :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_mullow_classical rop op1 op2 n ctx
Sets rop
to the product of op1
and op2
, computed using the
classical or schoolbook method.
_fq_zech_poly_mullow_KS :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_mullow_KS rop op1 len1 op2 len2 n ctx
Sets (rop, n)
to the lowest \(n\) coefficients of the product of
(op1, len1)
and (op2, len2)
.
Assumes that len1
and len2
are positive, but does allow for the
polynomials to be zero-padded. The polynomials may be zero, too. Assumes
\(n\) is positive. Supports aliasing between rop
, op1
and op2
.
fq_zech_poly_mullow_KS :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_mullow_KS rop op1 op2 n ctx
Sets rop
to the product of op1
and op2
.
_fq_zech_poly_mullow :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_mullow rop op1 len1 op2 len2 n ctx
Sets (rop, n)
to the lowest \(n\) coefficients of the product of
(op1, len1)
and (op2, len2)
.
Assumes 0 < n <= len1 + len2 - 1
. Allows for zero-padding in the
inputs. Does not support aliasing between the inputs and the output.
fq_zech_poly_mullow :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_mullow rop op1 op2 n ctx
Sets rop
to the lowest \(n\) coefficients of the product of op1
and
op2
.
_fq_zech_poly_mulhigh_classical :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_mulhigh_classical res poly1 len1 poly2 len2 start ctx
Computes the product of (poly1, len1)
and (poly2, len2)
and writes
the coefficients from start
onwards into the high coefficients of
res
, the remaining coefficients being arbitrary but reduced. Assumes
that len1 >= len2 > 0
. Aliasing of inputs and output is not permitted.
Algorithm is classical multiplication.
fq_zech_poly_mulhigh_classical :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_mulhigh_classical res poly1 poly2 start ctx
Computes the product of poly1
and poly2
and writes the coefficients
from start
onwards into the high coefficients of res
, the remaining
coefficients being arbitrary but reduced. Algorithm is classical
multiplication.
_fq_zech_poly_mulhigh :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_mulhigh res poly1 len1 poly2 len2 start ctx
Computes the product of (poly1, len1)
and (poly2, len2)
and writes
the coefficients from start
onwards into the high coefficients of
res
, the remaining coefficients being arbitrary but reduced. Assumes
that len1 >= len2 > 0
. Aliasing of inputs and output is not permitted.
fq_zech_poly_mulhigh :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_mulhigh res poly1 poly2 start ctx
Computes the product of poly1
and poly2
and writes the coefficients
from start
onwards into the high coefficients of res
, the remaining
coefficients being arbitrary but reduced.
_fq_zech_poly_mulmod :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_mulmod res poly1 len1 poly2 len2 f lenf ctx
Sets res
to the remainder of the product of poly1
and poly2
upon
polynomial division by f
.
It is required that len1 + len2 - lenf > 0
, which is equivalent to
requiring that the result will actually be reduced. Otherwise, simply
use _fq_zech_poly_mul
instead.
Aliasing of f
and res
is not permitted.
fq_zech_poly_mulmod :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_mulmod res poly1 poly2 f ctx
Sets res
to the remainder of the product of poly1
and poly2
upon
polynomial division by f
.
_fq_zech_poly_mulmod_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_mulmod_preinv res poly1 len1 poly2 len2 f lenf finv lenfinv ctx
Sets res
to the remainder of the product of poly1
and poly2
upon
polynomial division by f
.
It is required that finv
is the inverse of the reverse of f
mod
x^lenf
.
Aliasing of res
with any of the inputs is not permitted.
fq_zech_poly_mulmod_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_mulmod_preinv res poly1 poly2 f finv ctx
Sets res
to the remainder of the product of poly1
and poly2
upon
polynomial division by f
. finv
is the inverse of the reverse of f
.
Squaring
_fq_zech_poly_sqr_classical :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_sqr_classical rop op len ctx
Sets (rop, 2*len - 1)
to the square of (op, len)
, assuming that
(op,len)
is not zero and using classical polynomial multiplication.
Permits zero padding. Does not support aliasing of rop
with either
op1
or op2
.
fq_zech_poly_sqr_classical :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_sqr_classical rop op ctx
Sets rop
to the square of op
using classical polynomial
multiplication.
_fq_zech_poly_sqr_KS :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_sqr_KS rop op len ctx
Sets (rop, 2*len - 1)
to the square of (op, len)
.
Permits zero padding and places no assumptions on the lengths len1
and
len2
. Supports aliasing.
fq_zech_poly_sqr_KS :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_sqr_KS rop op ctx
Sets rop
to the square op
using Kronecker substitution, that is, by
encoding each coefficient in \(\mathbf{F}_{q}\) as an integer and
reducing this problem to multiplying two polynomials over the integers.
_fq_zech_poly_sqr :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_sqr rop op len ctx
Sets (rop, 2* len - 1)
to the square of (op, len)
, choosing an
appropriate algorithm.
Permits zero padding. Does not support aliasing.
fq_zech_poly_sqr :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_sqr rop op ctx
Sets rop
to the square of op
, choosing an appropriate algorithm.
Powering
_fq_zech_poly_pow :: Ptr CFqZech -> Ptr CFqZech -> CLong -> CULong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_pow rop op len e ctx
Sets rop = op^e
, assuming that e, len > 0
and that res
has space
for e*(len - 1) + 1
coefficients. Does not support aliasing.
fq_zech_poly_pow :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_pow rop op e ctx
Computes rop = op^e
. If \(e\) is zero, returns one, so that in
particular 0^0 = 1
.
_fq_zech_poly_powmod_ui_binexp :: Ptr CFqZech -> Ptr CFqZech -> CULong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_powmod_ui_binexp res poly e f lenf ctx
Sets res
to poly
raised to the power e
modulo f
, using binary
exponentiation. We require e > 0
.
We require lenf > 1
. It is assumed that poly
is already reduced
modulo f
and zero-padded as necessary to have length exactly
lenf - 1
. The output res
must have room for lenf - 1
coefficients.
fq_zech_poly_powmod_ui_binexp :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_powmod_ui_binexp res poly e f ctx
Sets res
to poly
raised to the power e
modulo f
, using binary
exponentiation. We require e >= 0
.
_fq_zech_poly_powmod_ui_binexp_preinv :: Ptr CFqZech -> Ptr CFqZech -> CULong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_powmod_ui_binexp_preinv res poly e f lenf finv lenfinv ctx
Sets res
to poly
raised to the power e
modulo f
, using binary
exponentiation. We require e > 0
. We require finv
to be the inverse
of the reverse of f
.
We require lenf > 1
. It is assumed that poly
is already reduced
modulo f
and zero-padded as necessary to have length exactly
lenf - 1
. The output res
must have room for lenf - 1
coefficients.
fq_zech_poly_powmod_ui_binexp_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_powmod_ui_binexp_preinv res poly e f finv ctx
Sets res
to poly
raised to the power e
modulo f
, using binary
exponentiation. We require e >= 0
. We require finv
to be the inverse
of the reverse of f
.
_fq_zech_poly_powmod_fmpz_binexp :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_powmod_fmpz_binexp res poly e f lenf ctx
Sets res
to poly
raised to the power e
modulo f
, using binary
exponentiation. We require e > 0
.
We require lenf > 1
. It is assumed that poly
is already reduced
modulo f
and zero-padded as necessary to have length exactly
lenf - 1
. The output res
must have room for lenf - 1
coefficients.
fq_zech_poly_powmod_fmpz_binexp :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFmpz -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_powmod_fmpz_binexp res poly e f ctx
Sets res
to poly
raised to the power e
modulo f
, using binary
exponentiation. We require e >= 0
.
_fq_zech_poly_powmod_fmpz_binexp_preinv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_powmod_fmpz_binexp_preinv res poly e f lenf finv lenfinv ctx
Sets res
to poly
raised to the power e
modulo f
, using binary
exponentiation. We require e > 0
. We require finv
to be the inverse
of the reverse of f
.
We require lenf > 1
. It is assumed that poly
is already reduced
modulo f
and zero-padded as necessary to have length exactly
lenf - 1
. The output res
must have room for lenf - 1
coefficients.
fq_zech_poly_powmod_fmpz_binexp_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFmpz -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_powmod_fmpz_binexp_preinv res poly e f finv ctx
Sets res
to poly
raised to the power e
modulo f
, using binary
exponentiation. We require e >= 0
. We require finv
to be the inverse
of the reverse of f
.
_fq_zech_poly_powmod_fmpz_sliding_preinv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFmpz -> CULong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_powmod_fmpz_sliding_preinv res poly e k f lenf finv lenfinv ctx
Sets res
to poly
raised to the power e
modulo f
, using
sliding-window exponentiation with window size k
. We require e > 0
.
We require finv
to be the inverse of the reverse of f
. If k
is set
to zero, then an "optimum" size will be selected automatically base on
e
.
We require lenf > 1
. It is assumed that poly
is already reduced
modulo f
and zero-padded as necessary to have length exactly
lenf - 1
. The output res
must have room for lenf - 1
coefficients.
fq_zech_poly_powmod_fmpz_sliding_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFmpz -> CULong -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_powmod_fmpz_sliding_preinv res poly e k f finv ctx
Sets res
to poly
raised to the power e
modulo f
, using
sliding-window exponentiation with window size k
. We require e >= 0
.
We require finv
to be the inverse of the reverse of f
. If k
is set
to zero, then an "optimum" size will be selected automatically base on
e
.
_fq_zech_poly_powmod_x_fmpz_preinv :: Ptr CFqZech -> Ptr CFmpz -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_powmod_x_fmpz_preinv res e f lenf finv lenfinv ctx
Sets res
to x
raised to the power e
modulo f
, using sliding
window exponentiation. We require e > 0
. We require finv
to be the
inverse of the reverse of f
.
We require lenf > 2
. The output res
must have room for lenf - 1
coefficients.
fq_zech_poly_powmod_x_fmpz_preinv :: Ptr CFqZechPoly -> Ptr CFmpz -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_powmod_x_fmpz_preinv res e f finv ctx
Sets res
to x
raised to the power e
modulo f
, using sliding
window exponentiation. We require e >= 0
. We require finv
to be the
inverse of the reverse of f
.
_fq_zech_poly_pow_trunc_binexp :: Ptr CFqZech -> Ptr CFqZech -> CULong -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_pow_trunc_binexp res poly e trunc ctx
Sets res
to the low trunc
coefficients of poly
(assumed to be zero
padded if necessary to length trunc
) to the power e
. This is
equivalent to doing a powering followed by a truncation. We require that
res
has enough space for trunc
coefficients, that trunc > 0
and
that e > 1
. Aliasing is not permitted. Uses the binary exponentiation
method.
fq_zech_poly_pow_trunc_binexp :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_pow_trunc_binexp res poly e trunc ctx
Sets res
to the low trunc
coefficients of poly
to the power e
.
This is equivalent to doing a powering followed by a truncation. Uses
the binary exponentiation method.
_fq_zech_poly_pow_trunc :: Ptr CFqZech -> Ptr CFqZech -> CULong -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_pow_trunc res poly e trunc mod
Sets res
to the low trunc
coefficients of poly
(assumed to be zero
padded if necessary to length trunc
) to the power e
. This is
equivalent to doing a powering followed by a truncation. We require that
res
has enough space for trunc
coefficients, that trunc > 0
and
that e > 1
. Aliasing is not permitted.
fq_zech_poly_pow_trunc :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_pow_trunc res poly e trunc ctx
Sets res
to the low trunc
coefficients of poly
to the power e
.
This is equivalent to doing a powering followed by a truncation.
Shifting
_fq_zech_poly_shift_left :: Ptr CFqZech -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_shift_left rop op len n ctx
Sets (rop, len + n)
to (op, len)
shifted left by \(n\) coefficients.
Inserts zero coefficients at the lower end. Assumes that len
and \(n\)
are positive, and that rop
fits len + n
elements. Supports aliasing
between rop
and op
.
fq_zech_poly_shift_left :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_shift_left rop op n ctx
Sets rop
to op
shifted left by \(n\) coeffs. Zero coefficients are
inserted.
_fq_zech_poly_shift_right :: Ptr CFqZech -> Ptr CFqZech -> CLong -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_shift_right rop op len n ctx
Sets (rop, len - n)
to (op, len)
shifted right by \(n\)
coefficients.
Assumes that len
and \(n\) are positive, that len > n
, and that
rop
fits len - n
elements. Supports aliasing between rop
and op
,
although in this case the top coefficients of op
are not set to zero.
fq_zech_poly_shift_right :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_shift_right rop op n ctx
Sets rop
to op
shifted right by \(n\) coefficients. If \(n\) is
equal to or greater than the current length of op
, rop
is set to the
zero polynomial.
Norms
_fq_zech_poly_hamming_weight :: Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO CLong Source #
_fq_zech_poly_hamming_weight op len ctx
Returns the number of non-zero entries in (op, len)
.
fq_zech_poly_hamming_weight :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CLong Source #
fq_zech_poly_hamming_weight op ctx
Returns the number of non-zero entries in the polynomial op
.
Euclidean division
_fq_zech_poly_divrem :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_divrem Q R A lenA B lenB invB ctx
Computes (Q, lenA - lenB + 1)
, (R, lenA)
such that \(A = B Q + R\)
with \(0 \leq \operatorname{len}(R) < \operatorname{len}(B)\).
Assumes that the leading coefficient of \(B\) is invertible and that
invB
is its inverse.
Assumes that \(\operatorname{len}(A), \operatorname{len}(B) > 0\).
Allows zero-padding in (A, lenA)
. \(R\) and \(A\) may be aliased, but
apart from this no aliasing of input and output operands is allowed.
fq_zech_poly_divrem :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_divrem Q R A B ctx
Computes \(Q\), \(R\) such that \(A = B Q + R\) with \(0 \leq \operatorname{len}(R) < \operatorname{len}(B)\).
Assumes that the leading coefficient of \(B\) is invertible. This can be taken for granted the context is for a finite field, that is, when \(p\) is prime and \(f(X)\) is irreducible.
fq_zech_poly_divrem_f :: Ptr CFqZech -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_divrem_f f Q R A B ctx
Either finds a non-trivial factor \(f\) of the modulus of ctx
, or
computes \(Q\), \(R\) such that \(A = B Q + R\) and
\(0 \leq \operatorname{len}(R) < \operatorname{len}(B)\).
If the leading coefficient of \(B\) is invertible, the division with remainder operation is carried out, \(Q\) and \(R\) are computed correctly, and \(f\) is set to \(1\). Otherwise, \(f\) is set to a non-trivial factor of the modulus and \(Q\) and \(R\) are not touched.
Assumes that \(B\) is non-zero.
_fq_zech_poly_rem :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_rem R A lenA B lenB invB ctx
Sets R
to the remainder of the division of (A,lenA)
by (B,lenB)
.
Assumes that the leading coefficient of (B,lenB)
is invertible and
that invB
is its inverse.
fq_zech_poly_rem :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_rem R A B ctx
Sets R
to the remainder of the division of A
by B
in the context
described by ctx
.
_fq_zech_poly_div :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_div Q A lenA B lenB invB ctx
Notationally, computes \(Q\), \(R\) such that \(A = B Q + R\) with (0
leq operatorname{len}(R) < operatorname{len}(B)) but only sets
(Q, lenA - lenB + 1)
.
Allows zero-padding in \(A\) but not in \(B\). Assumes that the leading coefficient of \(B\) is a unit.
fq_zech_poly_div :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_div Q A B ctx
Notionally finds polynomials \(Q\) and \(R\) such that \(A = B Q + R\)
with \(\operatorname{len}(R) < \operatorname{len}(B)\), but returns only
Q
. If \(\operatorname{len}(B) = 0\) an exception is raised.
_fq_zech_poly_div_newton_n_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> IO () Source #
_fq_zech_poly_div_newton_n_preinv Q A lenA B lenB Binv lenBinv ctx_t
Notionally computes polynomials \(Q\) and \(R\) such that \(A = BQ + R\)
with \(\operatorname{len}(R)\) less than lenB
, where A
is of length
lenA
and B
is of length lenB
, but return only \(Q\).
We require that \(Q\) have space for lenA - lenB + 1
coefficients and
assume that the leading coefficient of \(B\) is a unit. Furthermore, we
assume that \(Binv\) is the inverse of the reverse of \(B\) mod
\(x^{\operatorname{len}(B)}\).
The algorithm used is to reverse the polynomials and divide the resulting power series, then reverse the result.
fq_zech_poly_div_newton_n_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_div_newton_n_preinv Q A B Binv ctx
Notionally computes \(Q\) and \(R\) such that \(A = BQ + R\) with \(\operatorname{len}(R) < \operatorname{len}(B)\), but returns only \(Q\).
We assume that the leading coefficient of \(B\) is a unit and that \(Binv\) is the inverse of the reverse of \(B\) mod \(x^{\operatorname{len}(B)}\).
It is required that the length of \(A\) is less than or equal to 2*the length of \(B\) - 2.
The algorithm used is to reverse the polynomials and divide the resulting power series, then reverse the result.
_fq_zech_poly_divrem_newton_n_preinv :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_divrem_newton_n_preinv Q R A lenA B lenB Binv lenBinv ctx
Computes \(Q\) and \(R\) such that \(A = BQ + R\) with
\(\operatorname{len}(R)\) less than lenB
, where \(A\) is of length
lenA
and \(B\) is of length lenB
. We require that \(Q\) have space
for lenA - lenB + 1
coefficients. Furthermore, we assume that \(Binv\)
is the inverse of the reverse of \(B\) mod
\(x^{\operatorname{len}(B)}\). The algorithm used is to call
div_newton_preinv
and then multiply out and compute the remainder.
fq_zech_poly_divrem_newton_n_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_divrem_newton_n_preinv Q R A B Binv ctx
Computes \(Q\) and \(R\) such that \(A = BQ + R\) with (operatorname{len}(R) < operatorname{len}(B)). We assume \(Binv\) is the inverse of the reverse of \(B\) mod \(x^{\operatorname{len}(B)}\).
It is required that the length of \(A\) is less than or equal to 2*the length of \(B\) - 2.
The algorithm used is to call div_newton
and then multiply out and
compute the remainder.
_fq_zech_poly_inv_series_newton :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_inv_series_newton Qinv Q n ctx
Given Q
of length n
whose constant coefficient is invertible modulo
the given modulus, find a polynomial Qinv
of length n
such that
Q * Qinv
is 1
modulo \(x^n\). Requires n > 0
. This function can be
viewed as inverting a power series via Newton iteration.
fq_zech_poly_inv_series_newton :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_inv_series_newton Qinv Q n ctx
Given Q
find Qinv
such that Q * Qinv
is 1
modulo \(x^n\). The
constant coefficient of Q
must be invertible modulo the modulus of
Q
. An exception is raised if this is not the case or if n = 0
. This
function can be viewed as inverting a power series via Newton iteration.
_fq_zech_poly_inv_series :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_inv_series Qinv Q n ctx
Given Q
of length n
whose constant coefficient is invertible modulo
the given modulus, find a polynomial Qinv
of length n
such that
Q * Qinv
is 1
modulo \(x^n\). Requires n > 0
.
fq_zech_poly_inv_series :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_inv_series Qinv Q n ctx
Given Q
find Qinv
such that Q * Qinv
is 1
modulo \(x^n\). The
constant coefficient of Q
must be invertible modulo the modulus of
Q
. An exception is raised if this is not the case or if n = 0
.
_fq_zech_poly_div_series :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFmpz -> CLong -> CLong -> Ptr CFqCtx -> IO () Source #
_fq_zech_poly_div_series Q A Alen B Blen n ctx
Set (Q, n)
to the quotient of the series (A, Alen
) and (B, Blen)
assuming Alen, Blen <= n
. We assume the bottom coefficient of B
is
invertible.
fq_zech_poly_div_series :: Ptr CFmpzModPoly -> Ptr CFmpzModPoly -> Ptr CFmpzModPoly -> CLong -> Ptr CFqCtx -> IO () Source #
fq_zech_poly_div_series Q A B n ctx
Set \(Q\) to the quotient of the series \(A\) by \(B\), thinking of the series as though they were of length \(n\). We assume that the bottom coefficient of \(B\) is invertible.
Greatest common divisor
fq_zech_poly_gcd :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_gcd rop op1 op2 ctx
Sets rop
to the greatest common divisor of op1
and op2
, using the
either the Euclidean or HGCD algorithm. The GCD of zero polynomials is
defined to be zero, whereas the GCD of the zero polynomial and some
other polynomial \(P\) is defined to be \(P\). Except in the case where
the GCD is zero, the GCD \(G\) is made monic.
_fq_zech_poly_gcd :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CLong Source #
_fq_zech_poly_gcd G A lenA B lenB ctx
Computes the GCD of \(A\) of length lenA
and \(B\) of length lenB
,
where lenA >= lenB > 0
and sets \(G\) to it. The length of the GCD
\(G\) is returned by the function. No attempt is made to make the GCD
monic. It is required that \(G\) have space for lenB
coefficients.
_fq_zech_poly_gcd_euclidean_f :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CLong Source #
_fq_zech_poly_gcd_euclidean_f f G A lenA B lenB ctx
Either sets \(f = 1\) and \(G\) to the greatest common divisor of
\((A,\operatorname{len}(A))\) and \((B, \operatorname{len}(B))\) and
returns its length, or sets \(f\) to a non-trivial factor of the modulus
of ctx
and leaves the contents of the vector \((G, lenB)\) undefined.
Assumes that \(\operatorname{len}(A) \geq \operatorname{len}(B) > 0\) and that the vector \(G\) has space for sufficiently many coefficients.
fq_zech_poly_gcd_euclidean_f :: Ptr CFqZech -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_gcd_euclidean_f f G A B ctx
Either sets \(f = 1\) and \(G\) to the greatest common divisor of \(A\)
and \(B\) or sets \(f\) to a factor of the modulus of ctx
.
_fq_zech_poly_xgcd :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFmpz -> Ptr CFqZechCtx -> IO CLong Source #
_fq_zech_poly_xgcd G S T A lenA B lenB invB ctx
Computes the GCD of \(A\) and \(B\) together with cofactors \(S\) and \(T\) such that \(S A + T B = G\). Returns the length of \(G\).
Assumes that \(\operatorname{len}(A) \geq \operatorname{len}(B) \geq 1\) and \((\operatorname{len}(A),\operatorname{len}(B)) \neq (1,1)\).
No attempt is made to make the GCD monic.
Requires that \(G\) have space for \(\operatorname{len}(B)\) coefficients. Writes \(\operatorname{len}(B)-1\) and \(\operatorname{len}(A)-1\) coefficients to \(S\) and \(T\), respectively. Note that, in fact, \(\operatorname{len}(S) \leq \max(\operatorname{len}(B) - \operatorname{len}(G), 1)\) and \(\operatorname{len}(T) \leq \max(\operatorname{len}(A) - \operatorname{len}(G), 1)\).
No aliasing of input and output operands is permitted.
fq_zech_poly_xgcd :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_xgcd G S T A B ctx
Computes the GCD of \(A\) and \(B\). The GCD of zero polynomials is defined to be zero, whereas the GCD of the zero polynomial and some other polynomial \(P\) is defined to be \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made monic.
Polynomials S
and T
are computed such that S*A + T*B = G
. The
length of S
will be at most lenB
and the length of T
will be at
most lenA
.
_fq_zech_poly_xgcd_euclidean_f :: Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFmpz -> Ptr CFqZechCtx -> IO CLong Source #
_fq_zech_poly_xgcd_euclidean_f f G S T A lenA B lenB invB ctx
Either sets \(f = 1\) and computes the GCD of \(A\) and \(B\) together
with cofactors \(S\) and \(T\) such that \(S A + T B = G\); otherwise,
sets \(f\) to a non-trivial factor of the modulus of ctx
and leaves
\(G\), \(S\), and \(T\) undefined. Returns the length of \(G\).
Assumes that \(\operatorname{len}(A) \geq \operatorname{len}(B) \geq 1\) and \((\operatorname{len}(A),\operatorname{len}(B)) \neq (1,1)\).
No attempt is made to make the GCD monic.
Requires that \(G\) have space for \(\operatorname{len}(B)\) coefficients. Writes \(\operatorname{len}(B)-1\) and \(\operatorname{len}(A)-1\) coefficients to \(S\) and \(T\), respectively. Note that, in fact, \(\operatorname{len}(S) \leq \max(\operatorname{len}(B) - \operatorname{len}(G), 1)\) and \(\operatorname{len}(T) \leq \max(\operatorname{len}(A) - \operatorname{len}(G), 1)\).
No aliasing of input and output operands is permitted.
fq_zech_poly_xgcd_euclidean_f :: Ptr CFqZech -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_xgcd_euclidean_f f G S T A B ctx
Either sets \(f = 1\) and computes the GCD of \(A\) and \(B\) or sets
\(f\) to a non-trivial factor of the modulus of ctx
.
If the GCD is computed, polynomials S
and T
are computed such that
S*A + T*B = G
; otherwise, they are undefined. The length of S
will
be at most lenB
and the length of T
will be at most lenA
.
The GCD of zero polynomials is defined to be zero, whereas the GCD of the zero polynomial and some other polynomial \(P\) is defined to be \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made monic.
Divisibility testing
_fq_zech_poly_divides :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO CInt Source #
_fq_zech_poly_divides Q A lenA B lenB invB ctx
Returns \(1\) if (B, lenB)
divides (A, lenA)
exactly and sets \(Q\)
to the quotient, otherwise returns \(0\).
It is assumed that \(\operatorname{len}(A) \geq \operatorname{len}(B) > 0\) and that \(Q\) has space for \(\operatorname{len}(A) - \operatorname{len}(B) + 1\) coefficients.
Aliasing of \(Q\) with either of the inputs is not permitted.
This function is currently unoptimised and provided for convenience only.
fq_zech_poly_divides :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_divides Q A B ctx
Returns \(1\) if \(B\) divides \(A\) exactly and sets \(Q\) to the quotient, otherwise returns \(0\).
This function is currently unoptimised and provided for convenience only.
Derivative
_fq_zech_poly_derivative :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_derivative rop op len ctx
Sets (rop, len - 1)
to the derivative of (op, len)
. Also handles the
cases where len
is \(0\) or \(1\) correctly. Supports aliasing of
rop
and op
.
fq_zech_poly_derivative :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_derivative rop op ctx
Sets rop
to the derivative of op
.
Square root
_fq_zech_poly_invsqrt_series :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_invsqrt_series g h n mod
Set the first \(n\) terms of \(g\) to the series expansion of \(1/\sqrt{h}\). It is assumed that \(n > 0\), that \(h\) has constant term 1 and that \(h\) is zero-padded as necessary to length \(n\). Aliasing is not permitted.
fq_zech_poly_invsqrt_series :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_invsqrt_series g h n ctx
Set \(g\) to the series expansion of \(1/\sqrt{h}\) to order \(O(x^n)\). It is assumed that \(h\) has constant term 1.
_fq_zech_poly_sqrt_series :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_sqrt_series g h n ctx
Set the first \(n\) terms of \(g\) to the series expansion of \(\sqrt{h}\). It is assumed that \(n > 0\), that \(h\) has constant term 1 and that \(h\) is zero-padded as necessary to length \(n\). Aliasing is not permitted.
fq_zech_poly_sqrt_series :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CLong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_sqrt_series g h n ctx
Set \(g\) to the series expansion of \(\sqrt{h}\) to order \(O(x^n)\). It is assumed that \(h\) has constant term 1.
_fq_zech_poly_sqrt :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CInt Source #
_fq_zech_poly_sqrt s p n mod
If (p, n)
is a perfect square, sets (s, n / 2 + 1)
to a square root
of \(p\) and returns 1. Otherwise returns 0.
fq_zech_poly_sqrt :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_sqrt s p mod
If \(p\) is a perfect square, sets \(s\) to a square root of \(p\) and returns 1. Otherwise returns 0.
Evaluation
_fq_zech_poly_evaluate_fq_zech :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_evaluate_fq_zech rop op len a ctx
Sets rop
to (op, len)
evaluated at \(a\).
Supports zero padding. There are no restrictions on len
, that is,
len
is allowed to be zero, too.
fq_zech_poly_evaluate_fq_zech :: Ptr CFqZech -> Ptr CFqZechPoly -> Ptr CFqZech -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_evaluate_fq_zech rop f a ctx
Sets rop
to the value of \(f(a)\).
As the coefficient ring \(\mathbf{F}_q\) is finite, Horner's method is sufficient.
Composition
_fq_zech_poly_compose :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_compose rop op1 len1 op2 len2 ctx
Sets rop
to the composition of (op1, len1)
and (op2, len2)
.
Assumes that rop
has space for (len1-1)*(len2-1) + 1
coefficients.
Assumes that op1
and op2
are non-zero polynomials. Does not support
aliasing between any of the inputs and the output.
fq_zech_poly_compose :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_compose rop op1 op2 ctx
Sets rop
to the composition of op1
and op2
. To be precise about
the order of composition, denoting rop
, op1
, and op2
by \(f\),
\(g\), and \(h\), respectively, sets \(f(t) = g(h(t))\).
_fq_zech_poly_compose_mod_horner :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_compose_mod_horner res f lenf g h lenh ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero and that the length of \(g\) is one less than the
length of \(h\) (possibly with zero padding). The output is not allowed
to be aliased with any of the inputs.
The algorithm used is Horner's rule.
fq_zech_poly_compose_mod_horner :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_compose_mod_horner res f g h ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero. The algorithm used is Horner's rule.
_fq_zech_poly_compose_mod_horner_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_compose_mod_horner_preinv res f lenf g h lenh hinv lenhiv ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero and that the length of \(g\) is one less than the
length of \(h\) (possibly with zero padding). We also require that the
length of \(f\) is less than the length of \(h\). Furthermore, we
require hinv
to be the inverse of the reverse of h
. The output is
not allowed to be aliased with any of the inputs.
The algorithm used is Horner's rule.
fq_zech_poly_compose_mod_horner_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_compose_mod_horner_preinv res f g h hinv ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero and that \(f\) has smaller degree than \(h\).
Furthermore, we require hinv
to be the inverse of the reverse of h
.
The algorithm used is Horner's rule.
_fq_zech_poly_compose_mod_brent_kung :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_compose_mod_brent_kung res f lenf g h lenh ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero and that the length of \(g\) is one less than the
length of \(h\) (possibly with zero padding). We also require that the
length of \(f\) is less than the length of \(h\). The output is not
allowed to be aliased with any of the inputs.
The algorithm used is the Brent-Kung matrix algorithm.
fq_zech_poly_compose_mod_brent_kung :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_compose_mod_brent_kung res f g h ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero and that \(f\) has smaller degree than \(h\). The
algorithm used is the Brent-Kung matrix algorithm.
_fq_zech_poly_compose_mod_brent_kung_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_compose_mod_brent_kung_preinv res f lenf g h lenh hinv lenhiv ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero and that the length of \(g\) is one less than the
length of \(h\) (possibly with zero padding). We also require that the
length of \(f\) is less than the length of \(h\). Furthermore, we
require hinv
to be the inverse of the reverse of h
. The output is
not allowed to be aliased with any of the inputs.
The algorithm used is the Brent-Kung matrix algorithm.
fq_zech_poly_compose_mod_brent_kung_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_compose_mod_brent_kung_preinv res f g h hinv ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero and that \(f\) has smaller degree than \(h\).
Furthermore, we require hinv
to be the inverse of the reverse of h
.
The algorithm used is the Brent-Kung matrix algorithm.
_fq_zech_poly_compose_mod :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_compose_mod res f lenf g h lenh ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero and that the length of \(g\) is one less than the
length of \(h\) (possibly with zero padding). The output is not allowed
to be aliased with any of the inputs.
fq_zech_poly_compose_mod :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_compose_mod res f g h ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero.
_fq_zech_poly_compose_mod_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_compose_mod_preinv res f lenf g h lenh hinv lenhiv ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero and that the length of \(g\) is one less than the
length of \(h\) (possibly with zero padding). We also require that the
length of \(f\) is less than the length of \(h\). Furthermore, we
require hinv
to be the inverse of the reverse of h
. The output is
not allowed to be aliased with any of the inputs.
fq_zech_poly_compose_mod_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_compose_mod_preinv res f g h hinv ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero and that \(f\) has smaller degree than \(h\).
Furthermore, we require hinv
to be the inverse of the reverse of h
.
_fq_zech_poly_reduce_matrix_mod_poly :: Ptr CFqZechMat -> Ptr CFqZechMat -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_reduce_matrix_mod_poly A B f ctx
Sets the ith row of A
to the reduction of the ith row of \(B\) modulo
\(f\) for \(i=1,\ldots,\sqrt{\deg(f)}\). We require \(B\) to be at least
a \(\sqrt{\deg(f)}\times \deg(f)\) matrix and \(f\) to be nonzero.
_fq_zech_poly_precompute_matrix :: Ptr CFqZechMat -> Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_precompute_matrix A f g leng ginv lenginv ctx
Sets the ith row of A
to \(f^i\) modulo \(g\) for
\(i=1,\ldots,\sqrt{\deg(g)}\). We require \(A\) to be a
\(\sqrt{\deg(g)}\times \deg(g)\) matrix. We require ginv
to be the
inverse of the reverse of g
and \(g\) to be nonzero.
fq_zech_poly_precompute_matrix :: Ptr CFqZechMat -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_precompute_matrix A f g ginv ctx
Sets the ith row of A
to \(f^i\) modulo \(g\) for
\(i=1,\ldots,\sqrt{\deg(g)}\). We require \(A\) to be a
\(\sqrt{\deg(g)}\times \deg(g)\) matrix. We require ginv
to be the
inverse of the reverse of g
.
_fq_zech_poly_compose_mod_brent_kung_precomp_preinv :: Ptr CFqZech -> Ptr CFqZech -> CLong -> Ptr CFqZechMat -> Ptr CFqZech -> CLong -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO () Source #
_fq_zech_poly_compose_mod_brent_kung_precomp_preinv res f lenf A h lenh hinv lenhinv ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that
\(h\) is nonzero. We require that the ith row of \(A\) contains \(g^i\)
for \(i=1,\ldots,\sqrt{\deg(h)}\), i.e. \(A\) is a
\(\sqrt{\deg(h)}\times \deg(h)\) matrix. We also require that the length
of \(f\) is less than the length of \(h\). Furthermore, we require
hinv
to be the inverse of the reverse of h
. The output is not
allowed to be aliased with any of the inputs.
The algorithm used is the Brent-Kung matrix algorithm.
fq_zech_poly_compose_mod_brent_kung_precomp_preinv :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechMat -> Ptr CFqZechPoly -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_compose_mod_brent_kung_precomp_preinv res f A h hinv ctx
Sets res
to the composition \(f(g)\) modulo \(h\). We require that the
ith row of \(A\) contains \(g^i\) for \(i=1,\ldots,\sqrt{\deg(h)}\),
i.e. \(A\) is a (sqrt{deg(h)}times
deg(h)) matrix. We require that \(h\) is nonzero and that \(f\) has
smaller degree than \(h\). Furthermore, we require hinv
to be the
inverse of the reverse of h
. This version of Brent-Kung modular
composition is particularly useful if one has to perform several modular
composition of the form \(f(g)\) modulo \(h\) for fixed \(g\) and \(h\).
Output
_fq_zech_poly_fprint_pretty :: Ptr CFile -> Ptr CFqZech -> CLong -> CString -> Ptr CFqZechCtx -> IO CInt Source #
_fq_zech_poly_fprint_pretty file poly len x ctx
Prints the pretty representation of (poly, len)
to the stream file
,
using the string x
to represent the indeterminate.
In case of success, returns a positive value. In case of failure, returns a non-positive value.
fq_zech_poly_fprint_pretty :: Ptr CFile -> Ptr CFqZechPoly -> CString -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_fprint_pretty file poly x ctx
Prints the pretty representation of poly
to the stream file
, using
the string x
to represent the indeterminate.
In case of success, returns a positive value. In case of failure, returns a non-positive value.
_fq_zech_poly_print_pretty :: Ptr CFqZech -> CLong -> CString -> Ptr CFqZechCtx -> IO CInt Source #
_fq_zech_poly_print_pretty poly len x ctx
Prints the pretty representation of (poly, len)
to stdout
, using the
string x
to represent the indeterminate.
In case of success, returns a positive value. In case of failure, returns a non-positive value.
fq_zech_poly_print_pretty :: Ptr CFqZechPoly -> CString -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_print_pretty poly x ctx
Prints the pretty representation of poly
to stdout
, using the string
x
to represent the indeterminate.
In case of success, returns a positive value. In case of failure, returns a non-positive value.
_fq_zech_poly_fprint :: Ptr CFile -> Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CInt Source #
_fq_zech_poly_fprint file poly len ctx
Prints the pretty representation of (poly, len)
to the stream file
.
In case of success, returns a positive value. In case of failure, returns a non-positive value.
fq_zech_poly_fprint :: Ptr CFile -> Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_fprint file poly ctx
Prints the pretty representation of poly
to the stream file
.
In case of success, returns a positive value. In case of failure, returns a non-positive value.
_fq_zech_poly_print :: Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CInt Source #
_fq_zech_poly_print poly len ctx
Prints the pretty representation of (poly, len)
to stdout
.
In case of success, returns a positive value. In case of failure, returns a non-positive value.
fq_zech_poly_print :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CInt Source #
fq_zech_poly_print poly ctx
Prints the representation of poly
to stdout
.
In case of success, returns a positive value. In case of failure, returns a non-positive value.
_fq_zech_poly_get_str :: Ptr CFqZech -> CLong -> Ptr CFqZechCtx -> IO CString Source #
_fq_zech_poly_get_str poly len ctx
Returns the plain FLINT string representation of the polynomial
(poly, len)
.
fq_zech_poly_get_str :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CString Source #
fq_zech_poly_get_str poly ctx
Returns the plain FLINT string representation of the polynomial poly
.
_fq_zech_poly_get_str_pretty :: Ptr CFqZech -> CLong -> CString -> Ptr CFqZechCtx -> IO CString Source #
_fq_zech_poly_get_str_pretty poly len x ctx
Returns a pretty representation of the polynomial (poly, len)
using
the null-terminated string x
as the variable name.
fq_zech_poly_get_str_pretty :: Ptr CFqZechPoly -> CString -> Ptr CFqZechCtx -> IO CString Source #
fq_zech_poly_get_str_pretty poly x ctx
Returns a pretty representation of the polynomial poly
using the
null-terminated string x
as the variable name
Inflation and deflation
fq_zech_poly_inflate :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_inflate result input inflation ctx
Sets result
to the inflated polynomial \(p(x^n)\) where \(p\) is given
by input
and \(n\) is given by inflation
.
fq_zech_poly_deflate :: Ptr CFqZechPoly -> Ptr CFqZechPoly -> CULong -> Ptr CFqZechCtx -> IO () Source #
fq_zech_poly_deflate result input deflation ctx
Sets result
to the deflated polynomial \(p(x^{1/n})\) where \(p\) is
given by input
and \(n\) is given by deflation
. Requires \(n > 0\).
fq_zech_poly_deflation :: Ptr CFqZechPoly -> Ptr CFqZechCtx -> IO CULong Source #
fq_zech_poly_deflation input ctx
Returns the largest integer by which input
can be deflated. As special
cases, returns 0 if input
is the zero polynomial and 1 of input
is a
constant polynomial.