Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
- Multivariate polynomials over the integers
- Constructor
- Context object
- Memory management
- Input/Output
- Basic manipulation
- Constants
- Degrees
- Coefficients
- Comparison
- Conversion
- Container operations
- Random generation
- Addition/Subtraction
- Scalar operations
- Differentiation/Integration
- Evaluation
- Multiplication
- Powering
- Division
- Greatest Common Divisor
- Square Root
- Univariate Functions
- Internal Functions
- Vectors
- Ideals and Gröbner bases
- Special polynomials
Synopsis
- data FmpzMPoly = FmpzMPoly !(ForeignPtr CFmpzMPoly)
- data CFmpzMPoly = CFmpzMPoly
- newFmpzMPoly :: FmpzMPolyCtx -> IO FmpzMPoly
- withFmpzMPoly :: FmpzMPoly -> (Ptr CFmpzMPoly -> IO a) -> IO (FmpzMPoly, a)
- withNewFmpzMPoly :: FmpzMPolyCtx -> (Ptr CFmpzMPoly -> IO a) -> IO (FmpzMPoly, a)
- data FmpzMPolyCtx = FmpzMPolyCtx !(ForeignPtr CFmpzMPolyCtx)
- data CFmpzMPolyCtx
- newFmpzMPolyCtx :: CLong -> COrdering -> IO FmpzMPolyCtx
- withFmpzMPolyCtx :: FmpzMPolyCtx -> (Ptr CFmpzMPolyCtx -> IO a) -> IO (FmpzMPolyCtx, a)
- withNewFmpzMPolyCtx :: CLong -> COrdering -> (Ptr CFmpzMPolyCtx -> IO a) -> IO (FmpzMPolyCtx, a)
- fmpz_mpoly_ctx_init :: Ptr CFmpzMPolyCtx -> CLong -> COrdering -> IO ()
- fmpz_mpoly_ctx_nvars :: Ptr CFmpzMPolyCtx -> IO CLong
- fmpz_mpoly_ctx_ord :: Ptr CFmpzMPolyCtx -> IO COrdering
- fmpz_mpoly_ctx_clear :: Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_init :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_init2 :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_init3 :: Ptr CFmpzMPoly -> CLong -> CFBitCnt -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_fit_length :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_fit_bits :: Ptr CFmpzMPoly -> CFBitCnt -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_realloc :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_clear :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_get_str_pretty :: Ptr CFmpzMPoly -> Ptr (Ptr CChar) -> Ptr CFmpzMPolyCtx -> IO CString
- fmpz_mpoly_fprint_pretty :: Ptr CFile -> Ptr CFmpzMPoly -> Ptr (Ptr CChar) -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_print_pretty :: Ptr CFmpzMPoly -> Ptr (Ptr CChar) -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_set_str_pretty :: Ptr CFmpzMPoly -> CString -> Ptr (Ptr CChar) -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_gen :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_is_gen :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_set :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_equal :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_swap :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- _fmpz_mpoly_fits_small :: Ptr CFmpz -> CLong -> IO CInt
- fmpz_mpoly_max_bits :: Ptr CFmpzMPoly -> IO CLong
- fmpz_mpoly_is_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_get_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_set_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_zero :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_one :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_equal_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_is_zero :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_is_one :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_degrees_fit_si :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_degrees_fmpz :: Ptr (Ptr CFmpz) -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_degree_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_total_degree_fits_si :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_total_degree_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_used_vars :: Ptr CInt -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_get_coeff_fmpz_monomial :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_set_coeff_fmpz_monomial :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_get_coeff_fmpz_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpz) -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_set_coeff_fmpz_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr (Ptr CFmpz) -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_get_coeff_vars_ui :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CLong -> Ptr CULong -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_cmp :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_is_fmpz_poly :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_get_fmpz_poly :: Ptr CFmpzPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_set_fmpz_poly :: Ptr CFmpzMPoly -> Ptr CFmpzPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_term_coeff_ref :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO (Ptr CFmpz)
- fmpz_mpoly_is_canonical :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_length :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CLong
- fmpz_mpoly_resize :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_get_term_coeff_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_set_term_coeff_fmpz :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_term_exp_fits_si :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_get_term_exp_fmpz :: Ptr (Ptr CFmpz) -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_get_term_var_exp_ui :: Ptr CFmpzMPoly -> CLong -> CLong -> Ptr CFmpzMPolyCtx -> IO CULong
- fmpz_mpoly_set_term_exp_fmpz :: Ptr CFmpzMPoly -> CLong -> Ptr (Ptr CFmpz) -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_get_term :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_get_term_monomial :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_push_term_fmpz_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr (Ptr CFmpz) -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_sort_terms :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_combine_like_terms :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_reverse :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_randtest_bound :: Ptr CFmpzMPoly -> Ptr CFRandState -> CLong -> CMpLimb -> CULong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_randtest_bounds :: Ptr CFmpzMPoly -> Ptr CFRandState -> CLong -> CMpLimb -> Ptr CULong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_randtest_bits :: Ptr CFmpzMPoly -> Ptr CFRandState -> CLong -> CMpLimb -> CMpLimb -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_add_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_sub_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_add :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_sub :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_neg :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_scalar_mul_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_scalar_fmma :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_scalar_divexact_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_scalar_divides_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_derivative :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_integral :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_evaluate_all_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpz) -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_evaluate_one_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_compose_fmpz_poly :: Ptr CFmpzPoly -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpzPoly) -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_compose_fmpz_mpoly_geobucket :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpzMPoly) -> Ptr CFmpzMPolyCtx -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_compose_fmpz_mpoly_gen :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CLong -> Ptr CFmpzMPolyCtx -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_mul :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_mul_johnson :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_mul_array :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_mul_dense :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_pow_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_pow_ui :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CULong -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_divides :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_divrem :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_quasidivrem :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_div :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_quasidiv :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_divrem_ideal :: Ptr (Ptr CFmpzMPoly) -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpzMPoly) -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_quasidivrem_ideal :: Ptr CFmpz -> Ptr (Ptr CFmpzMPoly) -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpzMPoly) -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_term_content :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_content_vars :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CLong -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_gcd :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_gcd_cofactors :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_gcd_brown :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_resultant :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_discriminant :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_primitive_part :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_sqrt_heap :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> CInt -> IO CInt
- fmpz_mpoly_sqrt :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_is_square :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_univar_init :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_univar_clear :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_univar_swap :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_to_univar :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_from_univar :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyUnivar -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_univar_degree_fits_si :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_univar_length :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyCtx -> IO CLong
- fmpz_mpoly_univar_get_term_exp_si :: Ptr CFmpzMPolyUnivar -> CLong -> Ptr CFmpzMPolyCtx -> IO CLong
- fmpz_mpoly_univar_get_term_coeff :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyUnivar -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_inflate :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_deflate :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_deflation :: Ptr CFmpz -> Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_pow_fps :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CULong -> Ptr CFmpzMPolyCtx -> IO ()
- _fmpz_mpoly_divides_array :: Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CLong -> CLong -> CLong -> IO CLong
- fmpz_mpoly_divides_array :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- _fmpz_mpoly_divides_monagan_pearce :: Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> CLong -> CLong -> IO CLong
- fmpz_mpoly_divides_monagan_pearce :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_divides_heap_threaded :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> CLong -> IO CInt
- _fmpz_mpoly_div_monagan_pearce :: Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> CLong -> CLong -> IO CLong
- fmpz_mpoly_div_monagan_pearce :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- _fmpz_mpoly_divrem_monagan_pearce :: Ptr CLong -> Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> CLong -> CLong -> IO CLong
- fmpz_mpoly_divrem_monagan_pearce :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- _fmpz_mpoly_divrem_array :: Ptr CLong -> Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CLong -> CLong -> CLong -> IO CLong
- fmpz_mpoly_divrem_array :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_quasidivrem_heap :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- _fmpz_mpoly_divrem_ideal_monagan_pearce :: Ptr (Ptr CFmpzMPoly) -> Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr (Ptr CFmpzMPoly) -> Ptr (Ptr CULong) -> CLong -> CLong -> CLong -> Ptr CFmpzMPolyCtx -> IO CLong
- fmpz_mpoly_divrem_ideal_monagan_pearce :: Ptr (Ptr CFmpzMPoly) -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpzMPoly) -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_init :: Ptr CFmpzMPolyVec -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_clear :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_print :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_swap :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_fit_length :: Ptr CFmpzMPolyVec -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_set :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_append :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_insert_unique :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CLong
- fmpz_mpoly_vec_set_length :: Ptr CFmpzMPolyVec -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_randtest_not_zero :: Ptr CFmpzMPolyVec -> Ptr CFRandState -> CLong -> CLong -> CLong -> CULong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_set_primitive_unique :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_spoly :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_reduction_primitive_part :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_is_groebner :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_vec_is_autoreduced :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_vec_autoreduction :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_vec_autoreduction_groebner :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_buchberger_naive :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_buchberger_naive_with_limits :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> CLong -> CLong -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt
- fmpz_mpoly_symmetric_gens :: Ptr CFmpzMPoly -> CULong -> Ptr CLong -> CLong -> Ptr CFmpzMPolyCtx -> IO ()
- fmpz_mpoly_symmetric :: Ptr CFmpzMPoly -> CULong -> Ptr CFmpzMPolyCtx -> IO ()
Multivariate polynomials over the integers
data CFmpzMPoly Source #
Instances
Storable CFmpzMPoly Source # | |
Defined in Data.Number.Flint.Fmpz.MPoly.FFI sizeOf :: CFmpzMPoly -> Int # alignment :: CFmpzMPoly -> Int # peekElemOff :: Ptr CFmpzMPoly -> Int -> IO CFmpzMPoly # pokeElemOff :: Ptr CFmpzMPoly -> Int -> CFmpzMPoly -> IO () # peekByteOff :: Ptr b -> Int -> IO CFmpzMPoly # pokeByteOff :: Ptr b -> Int -> CFmpzMPoly -> IO () # peek :: Ptr CFmpzMPoly -> IO CFmpzMPoly # poke :: Ptr CFmpzMPoly -> CFmpzMPoly -> IO () # |
Constructor
newFmpzMPoly :: FmpzMPolyCtx -> IO FmpzMPoly Source #
newFmpzMPoly ctx
Construct a new FmpzMPoly
with context ctx.
withFmpzMPoly :: FmpzMPoly -> (Ptr CFmpzMPoly -> IO a) -> IO (FmpzMPoly, a) Source #
withNewFmpzMPoly :: FmpzMPolyCtx -> (Ptr CFmpzMPoly -> IO a) -> IO (FmpzMPoly, a) Source #
withNewFmpzMPoly ctx
Execute computation f on a new FmpzMPoly
with context ctx.
Context object
data CFmpzMPolyCtx Source #
Instances
Storable CFmpzMPolyCtx Source # | |
Defined in Data.Number.Flint.Fmpz.MPoly.FFI sizeOf :: CFmpzMPolyCtx -> Int # alignment :: CFmpzMPolyCtx -> Int # peekElemOff :: Ptr CFmpzMPolyCtx -> Int -> IO CFmpzMPolyCtx # pokeElemOff :: Ptr CFmpzMPolyCtx -> Int -> CFmpzMPolyCtx -> IO () # peekByteOff :: Ptr b -> Int -> IO CFmpzMPolyCtx # pokeByteOff :: Ptr b -> Int -> CFmpzMPolyCtx -> IO () # peek :: Ptr CFmpzMPolyCtx -> IO CFmpzMPolyCtx # poke :: Ptr CFmpzMPolyCtx -> CFmpzMPolyCtx -> IO () # |
newFmpzMPolyCtx :: CLong -> COrdering -> IO FmpzMPolyCtx Source #
Create a new FmpzMPolyCtx
withFmpzMPolyCtx :: FmpzMPolyCtx -> (Ptr CFmpzMPolyCtx -> IO a) -> IO (FmpzMPolyCtx, a) Source #
Use a FmpzMPolyCtx
withNewFmpzMPolyCtx :: CLong -> COrdering -> (Ptr CFmpzMPolyCtx -> IO a) -> IO (FmpzMPolyCtx, a) Source #
fmpz_mpoly_ctx_init :: Ptr CFmpzMPolyCtx -> CLong -> COrdering -> IO () Source #
fmpz_mpoly_ctx_init ctx nvars ord
Initialise a context object for a polynomial ring with the given number
of variables and the given ordering. The possibilities for the ordering
are ORD_LEX
, ORD_DEGLEX
and ORD_DEGREVLEX
.
fmpz_mpoly_ctx_nvars :: Ptr CFmpzMPolyCtx -> IO CLong Source #
fmpz_mpoly_ctx_nvars ctx
Return the number of variables used to initialize the context.
fmpz_mpoly_ctx_ord :: Ptr CFmpzMPolyCtx -> IO COrdering Source #
fmpz_mpoly_ctx_ord ctx
Return the ordering used to initialize the context.
fmpz_mpoly_ctx_clear :: Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_ctx_clear ctx
Release up any space allocated by ctx.
Memory management
fmpz_mpoly_init :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_init A ctx
Initialise A for use with the given and initialised context object. Its value is set to zero.
fmpz_mpoly_init2 :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_init2 A alloc ctx
Initialise A for use with the given and initialised context object.
Its value is set to zero. It is allocated with space for alloc terms
and at least MPOLY_MIN_BITS
bits for the exponents.
fmpz_mpoly_init3 :: Ptr CFmpzMPoly -> CLong -> CFBitCnt -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_init3 A alloc bits ctx
Initialise A for use with the given and initialised context object. Its value is set to zero. It is allocated with space for alloc terms and bits bits for the exponents.
fmpz_mpoly_fit_length :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_fit_length A len ctx
Ensure that A has space for at least len terms.
fmpz_mpoly_fit_bits :: Ptr CFmpzMPoly -> CFBitCnt -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_fit_bits A bits ctx
Ensure that the exponent fields of A have at least bits bits.
fmpz_mpoly_realloc :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_realloc A alloc ctx
Reallocate A to have space for alloc terms. Assumes the current length of the polynomial is not greater than alloc.
fmpz_mpoly_clear :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_clear A ctx
Release any space allocated for A.
Input/Output
fmpz_mpoly_get_str_pretty :: Ptr CFmpzMPoly -> Ptr (Ptr CChar) -> Ptr CFmpzMPolyCtx -> IO CString Source #
fmpz_mpoly_get_str_pretty A x ctx
Return a string, which the user is responsible for cleaning up, representing A, given an array of variable strings x.
fmpz_mpoly_fprint_pretty :: Ptr CFile -> Ptr CFmpzMPoly -> Ptr (Ptr CChar) -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_fprint_pretty file A x ctx
Print a string representing A to file.
fmpz_mpoly_print_pretty :: Ptr CFmpzMPoly -> Ptr (Ptr CChar) -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_print_pretty A x ctx
Print a string representing A to stdout
.
foreign import ccall "fmpz_mpoly.h fmpz_mpoly_print_pretty"
fmpz_mpoly_print_pretty :: Ptr CFmpzMPoly -> Ptr (Ptr CChar) -> Ptr CFmpzMPolyCtx -> IO CInt
fmpz_mpoly_set_str_pretty :: Ptr CFmpzMPoly -> CString -> Ptr (Ptr CChar) -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_set_str_pretty A str x ctx
Set A to the polynomial in the null-terminates string str given an
array x of variable strings. If parsing str fails, A is set to
zero, and \(-1\) is returned. Otherwise, \(0\) is returned. The
operations +
, -
, *
, and /
are permitted along with integers and
the variables in x. The character ^
must be immediately followed by
the (integer) exponent. If any division is not exact, parsing fails.
Basic manipulation
fmpz_mpoly_gen :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_gen A var ctx
Set A to the variable of index var, where \(var = 0\) corresponds to the variable with the most significance with respect to the ordering.
fmpz_mpoly_is_gen :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_is_gen A var ctx
If \(var \ge 0\), return \(1\) if A is equal to the \(var\)-th generator, otherwise return \(0\). If \(var < 0\), return \(1\) if the polynomial is equal to any generator, otherwise return \(0\).
fmpz_mpoly_set :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_set A B ctx
Set A to B.
fmpz_mpoly_equal :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_equal A B ctx
Return \(1\) if A is equal to B, else return \(0\).
fmpz_mpoly_swap :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_swap poly1 poly2 ctx
Efficiently swap A and B.
_fmpz_mpoly_fits_small :: Ptr CFmpz -> CLong -> IO CInt Source #
_fmpz_mpoly_fits_small poly len
Return 1 if the array of coefficients of length len consists entirely
of values that are small fmpz
values, i.e. of at most FLINT_BITS - 2
bits plus a sign bit.
fmpz_mpoly_max_bits :: Ptr CFmpzMPoly -> IO CLong Source #
fmpz_mpoly_max_bits A
Computes the maximum number of bits \(b\) required to represent the absolute values of the coefficients of A. If all of the coefficients are positive, \(b\) is returned, otherwise \(-b\) is returned.
Constants
fmpz_mpoly_is_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_is_fmpz A ctx
Return \(1\) if A is a constant, else return \(0\).
fmpz_mpoly_get_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_get_fmpz c A ctx
Assuming that A is a constant, set c to this constant. This function throws if A is not a constant.
fmpz_mpoly_set_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_set_fmpz A c ctx
Set A to the constant c.
fmpz_mpoly_zero :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_zero A ctx
Set A to the constant \(0\).
fmpz_mpoly_one :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_one A ctx
Set A to the constant \(1\).
fmpz_mpoly_equal_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_equal_fmpz A c ctx
Return \(1\) if A is equal to the constant c, else return \(0\).
fmpz_mpoly_is_zero :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_is_zero A ctx
Return \(1\) if A is the constant \(0\), else return \(0\).
fmpz_mpoly_is_one :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_is_one A ctx
Return \(1\) if A is the constant \(1\), else return \(0\).
Degrees
fmpz_mpoly_degrees_fit_si :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_degrees_fit_si A ctx
Return \(1\) if the degrees of A with respect to each variable fit
into an slong
, otherwise return \(0\).
fmpz_mpoly_degrees_fmpz :: Ptr (Ptr CFmpz) -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_degrees_fmpz degs A ctx
Set degs to the degrees of A with respect to each variable. If A is zero, all degrees are set to \(-1\).
fmpz_mpoly_degree_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_degree_fmpz deg A var ctx
Either return or set deg to the degree of A with respect to the variable of index var. If A is zero, the degree is defined to be \(-1\).
fmpz_mpoly_total_degree_fits_si :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_total_degree_fits_si A ctx
Return \(1\) if the total degree of A fits into an slong
, otherwise
return \(0\).
fmpz_mpoly_total_degree_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_total_degree_fmpz tdeg A ctx
Either return or set tdeg to the total degree of A. If A is zero, the total degree is defined to be \(-1\).
fmpz_mpoly_used_vars :: Ptr CInt -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_used_vars used A ctx
For each variable index i, set used[i]
to nonzero if the variable of
index i appears in A and to zero otherwise.
Coefficients
fmpz_mpoly_get_coeff_fmpz_monomial :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_get_coeff_fmpz_monomial c A M ctx
Assuming that M is a monomial, set c to the coefficient of the corresponding monomial in A. This function throws if M is not a monomial.
fmpz_mpoly_set_coeff_fmpz_monomial :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_set_coeff_fmpz_monomial poly c poly2 ctx
Assuming that M is a monomial, set the coefficient of the corresponding monomial in A to c. This function throws if M is not a monomial.
fmpz_mpoly_get_coeff_fmpz_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpz) -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_get_coeff_fmpz_fmpz c A exp ctx
Either return or set c to the coefficient of the monomial with exponent vector exp.
fmpz_mpoly_set_coeff_fmpz_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr (Ptr CFmpz) -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_set_coeff_fmpz_fmpz A c exp ctx
Set the coefficient of the monomial with exponent vector exp to c.
fmpz_mpoly_get_coeff_vars_ui :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CLong -> Ptr CULong -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_get_coeff_vars_ui C A vars exps length ctx
Set C to the coefficient of A with respect to the variables in vars with powers in the corresponding array exps. Both vars and exps point to array of length length. It is assumed that \(0 < length \le nvars(A)\) and that the variables in vars are distinct.
Comparison
fmpz_mpoly_cmp :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_cmp A B ctx
Return \(1\) (resp. \(-1\), or \(0\)) if A is after (resp. before, same as) B in some arbitrary but fixed total ordering of the polynomials. This ordering agrees with the usual ordering of monomials when A and B are both monomials.
Conversion
fmpz_mpoly_is_fmpz_poly :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_is_fmpz_poly A var ctx
Return whether A is a univariate polynomial in the variable with index var.
fmpz_mpoly_get_fmpz_poly :: Ptr CFmpzPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_get_fmpz_poly A B var ctx
If B is a univariate polynomial in the variable with index var, set A to this polynomial and return 1; otherwise return 0.
fmpz_mpoly_set_fmpz_poly :: Ptr CFmpzMPoly -> Ptr CFmpzPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_set_fmpz_poly A B var ctx
Set A to the univariate polynomial B in the variable with index var.
Container operations
fmpz_mpoly_term_coeff_ref :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO (Ptr CFmpz) Source #
fmpz_mpoly_term_coeff_ref A i ctx
Return a reference to the coefficient of index i of A.
fmpz_mpoly_is_canonical :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_is_canonical A ctx
Return \(1\) if A is in canonical form. Otherwise, return \(0\). To be in canonical form, all of the terms must have nonzero coefficient, and the terms must be sorted from greatest to least.
fmpz_mpoly_length :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CLong Source #
fmpz_mpoly_length A ctx
Return the number of terms in A. If the polynomial is in canonical form, this will be the number of nonzero coefficients.
fmpz_mpoly_resize :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_resize A new_length ctx
Set the length of A to \(new\_length\). Terms are either deleted from the end, or new zero terms are appended.
fmpz_mpoly_get_term_coeff_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_get_term_coeff_fmpz c A i ctx
Either return or set c to the coefficient of the term of index i.
fmpz_mpoly_set_term_coeff_fmpz :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_set_term_coeff_fmpz A i c ctx
Set the coefficient of the term of index i to c.
fmpz_mpoly_term_exp_fits_si :: Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_term_exp_fits_si poly i ctx
Return \(1\) if all entries of the exponent vector of the term of index
i fit into an slong
(resp. a ulong
). Otherwise, return \(0\).
fmpz_mpoly_get_term_exp_fmpz :: Ptr (Ptr CFmpz) -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_get_term_exp_fmpz exp A i ctx
Set exp to the exponent vector of the term of index i. The _ui
(resp. _si
) version throws if any entry does not fit into a ulong
(resp. slong
).
fmpz_mpoly_get_term_var_exp_ui :: Ptr CFmpzMPoly -> CLong -> CLong -> Ptr CFmpzMPolyCtx -> IO CULong Source #
fmpz_mpoly_get_term_var_exp_ui A i var ctx
Return the exponent of the variable \(var\) of the term of index i.
This function throws if the exponent does not fit into a ulong
(resp.
slong
).
fmpz_mpoly_set_term_exp_fmpz :: Ptr CFmpzMPoly -> CLong -> Ptr (Ptr CFmpz) -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_set_term_exp_fmpz A i exp ctx
Set the exponent vector of the term of index i to exp.
fmpz_mpoly_get_term :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_get_term M A i ctx
Set \(M\) to the term of index i in A.
fmpz_mpoly_get_term_monomial :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_get_term_monomial M A i ctx
Set \(M\) to the monomial of the term of index i in A. The coefficient of \(M\) will be one.
fmpz_mpoly_push_term_fmpz_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr (Ptr CFmpz) -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_push_term_fmpz_fmpz A c exp ctx
Append a term to A with coefficient c and exponent vector exp. This function runs in constant average time.
fmpz_mpoly_sort_terms :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_sort_terms A ctx
Sort the terms of A into the canonical ordering dictated by the ordering in ctx. This function simply reorders the terms: It does not combine like terms, nor does it delete terms with coefficient zero. This function runs in linear time in the size of A.
fmpz_mpoly_combine_like_terms :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_combine_like_terms A ctx
Combine adjacent like terms in A and delete terms with coefficient zero. If the terms of A were sorted to begin with, the result will be in canonical form. This function runs in linear time in the size of A.
fmpz_mpoly_reverse :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_reverse A B ctx
Set A to the reversal of B.
Random generation
fmpz_mpoly_randtest_bound :: Ptr CFmpzMPoly -> Ptr CFRandState -> CLong -> CMpLimb -> CULong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_randtest_bound A state length coeff_bits exp_bound ctx
Generate a random polynomial with length up to length and exponents in
the range [0, exp_bound - 1]
. The exponents of each variable are
generated by calls to n_randint(state, exp_bound)
.
fmpz_mpoly_randtest_bounds :: Ptr CFmpzMPoly -> Ptr CFRandState -> CLong -> CMpLimb -> Ptr CULong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_randtest_bounds A state length coeff_bits exp_bounds ctx
Generate a random polynomial with length up to length and exponents in
the range [0, exp_bounds[i] - 1]
. The exponents of the variable of
index i are generated by calls to n_randint(state, exp_bounds[i])
.
fmpz_mpoly_randtest_bits :: Ptr CFmpzMPoly -> Ptr CFRandState -> CLong -> CMpLimb -> CMpLimb -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_randtest_bits A state length coeff_bits exp_bits ctx
Generate a random polynomial with length up to the given length and exponents whose packed form does not exceed the given bit count.
The parameter coeff_bits
to the three functions
fmpz_mpoly_randtest_{bound|bounds|bits}
is merely a suggestion for the
approximate bit count of the resulting signed coefficients. The function
fmpz_mpoly_max_bits
will give the exact bit count of the result.
Addition/Subtraction
fmpz_mpoly_add_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_add_fmpz A B c ctx
Set A to \(B + c\). If A and B are aliased, this function will probably run quickly.
fmpz_mpoly_sub_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_sub_fmpz A B c ctx
Set A to \(B - c\). If A and B are aliased, this function will probably run quickly.
fmpz_mpoly_add :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_add A B C ctx
Set A to \(B + C\). If A and B are aliased, this function might run in time proportional to the size of \(C\).
fmpz_mpoly_sub :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_sub A B C ctx
Set A to \(B - C\). If A and B are aliased, this function might run in time proportional to the size of \(C\).
Scalar operations
fmpz_mpoly_neg :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_neg A B ctx
Set A to \(-B\).
fmpz_mpoly_scalar_mul_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_scalar_mul_fmpz A B c ctx
Set A to \(B \times c\).
fmpz_mpoly_scalar_fmma :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_scalar_fmma A B c D e ctx
Sets A to \(B \times c + D \times e\).
fmpz_mpoly_scalar_divexact_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_scalar_divexact_fmpz A B c ctx
Set A to B divided by c. The division is assumed to be exact.
fmpz_mpoly_scalar_divides_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_scalar_divides_fmpz A B c ctx
If B is divisible by c, set A to the exact quotient and return \(1\), otherwise set A to zero and return \(0\).
Differentiation/Integration
fmpz_mpoly_derivative :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_derivative A B var ctx
Set A to the derivative of B with respect to the variable of index \(var\).
fmpz_mpoly_integral :: Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_integral A scale B var ctx
Set A and scale so that A is an integral of \(scale \times B\) with respect to the variable of index var, where scale is positive and as small as possible.
Evaluation
fmpz_mpoly_evaluate_all_fmpz :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpz) -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_evaluate_all_fmpz ev A vals ctx
Set ev to the evaluation of A where the variables are replaced by the corresponding elements of the array vals. Return \(1\) for success and \(0\) for failure.
fmpz_mpoly_evaluate_one_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_evaluate_one_fmpz A B var val ctx
Set A to the evaluation of B where the variable of index var is
replaced by val
. Return \(1\) for success and \(0\) for failure.
fmpz_mpoly_compose_fmpz_poly :: Ptr CFmpzPoly -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpzPoly) -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_compose_fmpz_poly A B C ctxB
Set A to the evaluation of B where the variables are replaced by the corresponding elements of the array C. The context object of B is ctxB. Return \(1\) for success and \(0\) for failure.
fmpz_mpoly_compose_fmpz_mpoly_geobucket :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpzMPoly) -> Ptr CFmpzMPolyCtx -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_compose_fmpz_mpoly_geobucket A B C ctxB ctxAC
Set A to the evaluation of B where the variables are replaced by the
corresponding elements of the array C. Both A and the elements of
C have context object ctxAC, while B has context object ctxB.
The length of the array C is the number of variables in ctxB.
Neither A nor B is allowed to alias any other polynomial. Return
\(1\) for success and \(0\) for failure. The main method attempts to
perform the calculation using matrices and chooses heuristically between
the geobucket
and horner
methods if needed.
fmpz_mpoly_compose_fmpz_mpoly_gen :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CLong -> Ptr CFmpzMPolyCtx -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_compose_fmpz_mpoly_gen A B c ctxB ctxAC
Set A to the evaluation of B where the variable of index i in
ctxB is replaced by the variable of index c[i]
in ctxAC. The
length of the array C is the number of variables in ctxB. If any
c[i]
is negative, the corresponding variable of B is replaced by
zero. Otherwise, it is expected that c[i]
is less than the number of
variables in ctxAC.
Multiplication
fmpz_mpoly_mul :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_mul A B C ctx
Set A to \(B \times C\).
fmpz_mpoly_mul_johnson :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_mul_johnson A B C ctx
Set A to \(B \times C\) using Johnson's heap-based method. The first version always uses one thread.
fmpz_mpoly_mul_array :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_mul_array A B C ctx
Try to set A to \(B \times C\) using arrays. If the return is \(0\), the operation was unsuccessful. Otherwise, it was successful and the return is \(1\). The first version always uses one thread.
fmpz_mpoly_mul_dense :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_mul_dense A B C ctx
Try to set A to \(B \times C\) using dense arithmetic. If the return is \(0\), the operation was unsuccessful. Otherwise, it was successful and the return is \(1\).
Powering
fmpz_mpoly_pow_fmpz :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_pow_fmpz A B k ctx
Set A to B raised to the k-th power. Return \(1\) for success and \(0\) for failure.
fmpz_mpoly_pow_ui :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CULong -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_pow_ui A B k ctx
Set A to B raised to the k-th power. Return \(1\) for success and \(0\) for failure.
Division
fmpz_mpoly_divides :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_divides Q A B ctx
If A is divisible by B, set Q to the exact quotient and return \(1\). Otherwise, set \(Q\) to zero and return \(0\).
fmpz_mpoly_divrem :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_divrem Q R A B ctx
Set \(Q\) and \(R\) to the quotient and remainder of A divided by B. The monomials in R divisible by the leading monomial of B will have coefficients reduced modulo the absolute value of the leading coefficient of B. Note that this function is not very useful if the leading coefficient B is not a unit.
fmpz_mpoly_quasidivrem :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_quasidivrem scale Q R A B ctx
Set scale, Q and R so that Q and R are the quotient and remainder of \(scale \times A\) divided by B. No monomials in R will be divisible by the leading monomial of B.
fmpz_mpoly_div :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_div Q A B ctx
Perform the operation of fmpz_mpoly_divrem
and discard R. Note that
this function is not very useful if the division is not exact and the
leading coefficient B is not a unit.
fmpz_mpoly_quasidiv :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_quasidiv scale Q A B ctx
Perform the operation of fmpz_mpoly_quasidivrem
and discard R.
fmpz_mpoly_divrem_ideal :: Ptr (Ptr CFmpzMPoly) -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpzMPoly) -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_divrem_ideal Q R A B len ctx
This function is as per fmpz_mpoly_divrem
except that it takes an
array of divisor polynomials B and it returns an array of quotient
polynomials Q. The number of divisor (and hence quotient) polynomials
is given by len. Note that this function is not very useful if there
is no unit among the leading coefficients in the array B.
fmpz_mpoly_quasidivrem_ideal :: Ptr CFmpz -> Ptr (Ptr CFmpzMPoly) -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpzMPoly) -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_quasidivrem_ideal scale Q R A B len ctx
This function is as per fmpz_mpoly_quasidivrem
except that it takes an
array of divisor polynomials B and it returns an array of quotient
polynomials Q. The number of divisor (and hence quotient) polynomials
is given by len.
Greatest Common Divisor
fmpz_mpoly_term_content :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_term_content M A ctx
Set M to the GCD of the terms of A. If A is zero, M will be zero. Otherwise, M will be a monomial with positive coefficient.
fmpz_mpoly_content_vars :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CLong -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_content_vars g A vars vars_length ctx
Set g to the GCD of the coefficients of A when viewed as a polynomial in the variables vars. Return \(1\) for success and \(0\) for failure. Upon success, g will be independent of the variables vars.
fmpz_mpoly_gcd :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_gcd G A B ctx
Try to set G to the GCD of A and B with positive leading coefficient. The GCD of zero and zero is defined to be zero. If the return is \(1\) the function was successful. Otherwise the return is \(0\) and G is left untouched.
fmpz_mpoly_gcd_cofactors :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_gcd_cofactors G Abar Bbar A B ctx
Do the operation of fmpz_mpoly_gcd
and also compute \(Abar = A/G\) and
\(Bbar = B/G\) if successful.
fmpz_mpoly_gcd_brown :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_gcd_brown G A B ctx
Try to set G to the GCD of A and B using various algorithms.
fmpz_mpoly_resultant :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_resultant R A B var ctx
Try to set R to the resultant of A and B with respect to the variable of index var.
fmpz_mpoly_discriminant :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_discriminant D A var ctx
Try to set D to the discriminant of A with respect to the variable of index var.
fmpz_mpoly_primitive_part :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_primitive_part res f ctx
Sets res to the primitive part of f, obtained by dividing out the content of all coefficients and normalizing the leading coefficient to be positive. The zero polynomial is unchanged.
Square Root
fmpz_mpoly_sqrt_heap :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> CInt -> IO CInt Source #
fmpz_mpoly_sqrt_heap Q A ctx check
If A is a perfect square return \(1\) and set Q to the square root with positive leading coefficient. Otherwise return \(0\) and set Q to the zero polynomial. If \(check = 0\) the polynomial is assumed to be a perfect square. This can be significantly faster, but it will not detect non-squares with any reliability, and in the event of being passed a non-square the result is meaningless.
fmpz_mpoly_sqrt :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_sqrt q A ctx
If A is a perfect square return \(1\) and set Q to the square root with positive leading coefficient. Otherwise return \(0\) and set Q to zero.
fmpz_mpoly_is_square :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_is_square A ctx
Return \(1\) if A is a perfect square, otherwise return \(0\).
Univariate Functions
fmpz_mpoly_univar_init :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_univar_init A ctx
Initialize A.
fmpz_mpoly_univar_clear :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_univar_clear A ctx
Clear A.
fmpz_mpoly_univar_swap :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_univar_swap A B ctx
Swap A and B.
fmpz_mpoly_to_univar :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPoly -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_to_univar A B var ctx
Set A to a univariate form of B by pulling out the variable of index var. The coefficients of A will still belong to the content ctx but will not depend on the variable of index var.
fmpz_mpoly_from_univar :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyUnivar -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_from_univar A B var ctx
Set A to the normal form of B by putting in the variable of index var. This function is undefined if the coefficients of B depend on the variable of index var.
fmpz_mpoly_univar_degree_fits_si :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_univar_degree_fits_si A ctx
Return \(1\) if the degree of A with respect to the main variable fits
an slong
. Otherwise, return \(0\).
fmpz_mpoly_univar_length :: Ptr CFmpzMPolyUnivar -> Ptr CFmpzMPolyCtx -> IO CLong Source #
fmpz_mpoly_univar_length A ctx
Return the number of terms in A with respect to the main variable.
fmpz_mpoly_univar_get_term_exp_si :: Ptr CFmpzMPolyUnivar -> CLong -> Ptr CFmpzMPolyCtx -> IO CLong Source #
fmpz_mpoly_univar_get_term_exp_si A i ctx
Return the exponent of the term of index i of A.
fmpz_mpoly_univar_get_term_coeff :: Ptr CFmpzMPoly -> Ptr CFmpzMPolyUnivar -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_univar_get_term_coeff c A i ctx
Set (resp. swap) c to (resp. with) the coefficient of the term of index i of A.
Internal Functions
fmpz_mpoly_inflate :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_inflate A B shift stride ctx
Apply the function e -> shift[v] + stride[v]*e
to each exponent e
corresponding to the variable v
. It is assumed that each shift and
stride is not negative.
fmpz_mpoly_deflate :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpz -> Ptr CFmpz -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_deflate A B shift stride ctx
Apply the function e -> (e - shift[v])/stride[v]
to each exponent e
corresponding to the variable v
. If any stride[v]
is zero, the
corresponding numerator e - shift[v]
is assumed to be zero, and the
quotient is defined as zero. This allows the function to undo the
operation performed by fmpz_mpoly_inflate
when possible.
fmpz_mpoly_deflation :: Ptr CFmpz -> Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_deflation shift stride A ctx
For each variable \(v\) let \(S_v\) be the set of exponents appearing on
\(v\). Set shift[v]
to \(\operatorname{min}(S_v)\) and set stride[v]
to \(\operatorname{gcd}(S-\operatorname{min}(S_v))\). If A is zero,
all shifts and strides are set to zero.
fmpz_mpoly_pow_fps :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> CULong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_pow_fps A B k ctx
Set A to B raised to the k-th power, using the Monagan and Pearce FPS algorithm. It is assumed that B is not zero and \(k \geq 2\).
_fmpz_mpoly_divides_array :: Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CLong -> CLong -> CLong -> IO CLong Source #
_fmpz_mpoly_divides_array poly1 exp1 alloc poly2 exp2 len2 poly3 exp3 len3 mults num bits
Use dense array exact division to set (poly1, exp1, alloc)
to
(poly2, exp3, len2)
divided by (poly3, exp3, len3)
in num
variables, given a list of multipliers to tightly pack exponents and a
number of bits for the fields of the exponents of the result. The array
"mults" is a list of bases to be used in encoding the array indices
from the exponents. The function reallocates its output, hence the
double indirection, and returns the length of its output if the quotient
is exact, or zero if not. It is assumed that poly2
is not zero. No
aliasing is allowed.
fmpz_mpoly_divides_array :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_divides_array poly1 poly2 poly3 ctx
Set poly1
to poly2
divided by poly3
, using a big dense array to
accumulate coefficients, and return 1 if the quotient is exact.
Otherwise, return 0 if the quotient is not exact. If the array will be
larger than some internally set parameter, the function fails silently
and returns \(-1\) so that some other method may be called. This
function is most efficient on dense inputs. Note that the function
fmpz_mpoly_div_monagan_pearce
below may be much faster if the quotient
is known to be exact.
_fmpz_mpoly_divides_monagan_pearce :: Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> CLong -> CLong -> IO CLong Source #
_fmpz_mpoly_divides_monagan_pearce poly1 exp1 alloc poly2 exp2 len2 poly3 exp3 len3 bits N
Set (poly1, exp1, alloc)
to (poly2, exp3, len2)
divided by
(poly3, exp3, len3)
and return 1 if the quotient is exact. Otherwise
return 0. The function assumes exponent vectors that each fit in \(N\)
words, and are packed into fields of the given number of bits. Assumes
input polys are nonzero. Implements "Polynomial division using dynamic
arrays, heaps and packed exponents" by Michael Monagan and Roman
Pearce. No aliasing is allowed.
fmpz_mpoly_divides_monagan_pearce :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_divides_heap_threaded :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> CLong -> IO CInt Source #
fmpz_mpoly_divides_heap_threaded Q A B ctx thread_limit
Set poly1
to poly2
divided by poly3
and return 1 if the quotient
is exact. Otherwise return 0. The function uses the algorithm of Michael
Monagan and Roman Pearce. Note that the function
fmpz_mpoly_div_monagan_pearce
below may be much faster if the quotient
is known to be exact.
The threaded version takes an upper limit on the number of threads to use, while the first version always uses one thread.
_fmpz_mpoly_div_monagan_pearce :: Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> CLong -> CLong -> IO CLong Source #
_fmpz_mpoly_div_monagan_pearce polyq expq allocq poly2 exp2 len2 poly3 exp3 len3 bits N
Set (polyq, expq, allocq)
to the quotient of (poly2, exp2, len2)
by
(poly3, exp3, len3)
discarding remainder (with notional remainder
coefficients reduced modulo the leading coefficient of
(poly3, exp3, len3)
), and return the length of the quotient. The
function reallocates its output, hence the double indirection. The
function assumes the exponent vectors all fit in \(N\) words. The
exponent vectors are assumed to have fields with the given number of
bits. Assumes input polynomials are nonzero. Implements "Polynomial
division using dynamic arrays, heaps and packed exponents" by Michael
Monagan and Roman Pearce. No aliasing is allowed.
fmpz_mpoly_div_monagan_pearce :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_div_monagan_pearce polyq poly2 poly3 ctx
Set polyq
to the quotient of poly2
by poly3
, discarding the
remainder (with notional remainder coefficients reduced modulo the
leading coefficient of poly3
). Implements "Polynomial division using
dynamic arrays, heaps and packed exponents" by Michael Monagan and
Roman Pearce. This function is exceptionally efficient if the division
is known to be exact.
_fmpz_mpoly_divrem_monagan_pearce :: Ptr CLong -> Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> CLong -> CLong -> IO CLong Source #
_fmpz_mpoly_divrem_monagan_pearce lenr polyq expq allocq polyr expr allocr poly2 exp2 len2 poly3 exp3 len3 bits N
Set (polyq, expq, allocq)
and (polyr, expr, allocr)
to the quotient
and remainder of (poly2, exp2, len2)
by (poly3, exp3, len3)
(with
remainder coefficients reduced modulo the leading coefficient of
(poly3, exp3, len3)
), and return the length of the quotient. The
function reallocates its outputs, hence the double indirection. The
function assumes the exponent vectors all fit in \(N\) words. The
exponent vectors are assumed to have fields with the given number of
bits. Assumes input polynomials are nonzero. Implements "Polynomial
division using dynamic arrays, heaps and packed exponents" by Michael
Monagan and Roman Pearce. No aliasing is allowed.
fmpz_mpoly_divrem_monagan_pearce :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_divrem_monagan_pearce q r poly2 poly3 ctx
Set polyq
and polyr
to the quotient and remainder of poly2
divided
by poly3
(with remainder coefficients reduced modulo the leading
coefficient of poly3
). Implements "Polynomial division using dynamic
arrays, heaps and packed exponents" by Michael Monagan and Roman
Pearce.
_fmpz_mpoly_divrem_array :: Ptr CLong -> Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr CLong -> CLong -> CLong -> IO CLong Source #
_fmpz_mpoly_divrem_array lenr polyq expq allocq polyr expr allocr poly2 exp2 len2 poly3 exp3 len3 mults num bits
Use dense array division to set (polyq, expq, allocq)
and
(polyr, expr, allocr)
to the quotient and remainder of
(poly2, exp2, len2)
divided by (poly3, exp3, len3)
in num
variables, given a list of multipliers to tightly pack exponents and a
number of bits for the fields of the exponents of the result. The
function reallocates its outputs, hence the double indirection. The
array mults
is a list of bases to be used in encoding the array
indices from the exponents. The function returns the length of the
quotient. It is assumed that the input polynomials are not zero. No
aliasing is allowed.
fmpz_mpoly_divrem_array :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_divrem_array q r poly2 poly3 ctx
Set polyq
and polyr
to the quotient and remainder of poly2
divided
by poly3
(with remainder coefficients reduced modulo the leading
coefficient of poly3
). The function is implemented using dense arrays,
and is efficient when the inputs are fairly dense. If the array will be
larger than some internally set parameter, the function silently returns
0 so that another function can be called, otherwise it returns 1.
fmpz_mpoly_quasidivrem_heap :: Ptr CFmpz -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_quasidivrem_heap scale q r poly2 poly3 ctx
Set scale
, q
and r
so that scale*poly2 = q*poly3 + r
and no
monomial in r
is divisible by the leading monomial of poly3
, where
scale
is positive and as small as possible. This function throws an
exception if poly3
is zero or if an exponent overflow occurs.
_fmpz_mpoly_divrem_ideal_monagan_pearce :: Ptr (Ptr CFmpzMPoly) -> Ptr (Ptr CFmpz) -> Ptr (Ptr CULong) -> Ptr CLong -> Ptr CFmpz -> Ptr CULong -> CLong -> Ptr (Ptr CFmpzMPoly) -> Ptr (Ptr CULong) -> CLong -> CLong -> CLong -> Ptr CFmpzMPolyCtx -> IO CLong Source #
_fmpz_mpoly_divrem_ideal_monagan_pearce polyq polyr expr allocr poly2 exp2 len2 poly3 exp3 len N bits ctx
This function is as per _fmpz_mpoly_divrem_monagan_pearce
except that
it takes an array of divisor polynomials poly3
and an array of
repacked exponent arrays exp3
, which may alias the exponent arrays of
poly3
, and it returns an array of quotient polynomials polyq
. The
number of divisor (and hence quotient) polynomials is given by len
.
The function computes polynomials \(q_i\) such that
\(r = a - \sum_{i=0}^{\mbox{len - 1}} q_ib_i\), where the \(q_i\) are
the quotient polynomials and the \(b_i\) are the divisor polynomials.
fmpz_mpoly_divrem_ideal_monagan_pearce :: Ptr (Ptr CFmpzMPoly) -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr (Ptr CFmpzMPoly) -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_divrem_ideal_monagan_pearce q r poly2 poly3 len ctx
This function is as per fmpz_mpoly_divrem_monagan_pearce
except that
it takes an array of divisor polynomials poly3
, and it returns an
array of quotient polynomials q
. The number of divisor (and hence
quotient) polynomials is given by len
. The function computes
polynomials \(q_i = q[i]\) such that poly2
is
\(r + \sum_{i=0}^{\mbox{len - 1}} q_ib_i\), where \(b_i =\) poly3[i]
.
Vectors
fmpz_mpoly_vec_init :: Ptr CFmpzMPolyVec -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_init vec len ctx
Initializes vec to a vector of length len, setting all entries to the zero polynomial.
fmpz_mpoly_vec_clear :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_clear vec ctx
Clears vec, freeing its allocated memory.
fmpz_mpoly_vec_print :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_print vec ctx
Prints vec to standard output.
fmpz_mpoly_vec_swap :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_swap x y ctx
Swaps x and y efficiently.
fmpz_mpoly_vec_fit_length :: Ptr CFmpzMPolyVec -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_fit_length vec len ctx
Allocates room for len entries in vec.
fmpz_mpoly_vec_set :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_set dest src ctx
Sets dest to a copy of src.
fmpz_mpoly_vec_append :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_append vec f ctx
Appends f to the end of vec.
fmpz_mpoly_vec_insert_unique :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO CLong Source #
fmpz_mpoly_vec_insert_unique vec f ctx
Inserts f without duplication into vec and returns its index. If this polynomial already exists, vec is unchanged. If this polynomial does not exist in vec, it is appended.
fmpz_mpoly_vec_set_length :: Ptr CFmpzMPolyVec -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_set_length vec len ctx
Sets the length of vec to len, truncating or zero-extending as needed.
fmpz_mpoly_vec_randtest_not_zero :: Ptr CFmpzMPolyVec -> Ptr CFRandState -> CLong -> CLong -> CLong -> CULong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_randtest_not_zero vec state len poly_len bits exp_bound ctx
Sets vec to a random vector with exactly len entries, all nonzero, with random parameters defined by poly_len, bits and exp_bound.
fmpz_mpoly_vec_set_primitive_unique :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_set_primitive_unique res src ctx
Sets res to a vector containing all polynomials in src reduced to their primitive parts, without duplication. The zero polynomial is skipped if present. The output order is arbitrary.
Ideals and Gröbner bases
fmpz_mpoly_spoly :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_spoly res f g ctx
Sets res to the S-polynomial of f and g, scaled to an integer polynomial by computing the LCM of the leading coefficients.
fmpz_mpoly_reduction_primitive_part :: Ptr CFmpzMPoly -> Ptr CFmpzMPoly -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_reduction_primitive_part res f vec ctx
Sets res to the primitive part of the reduction (remainder of multivariate quasidivision with remainder) with respect to the polynomials vec.
fmpz_mpoly_vec_is_groebner :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_vec_is_groebner G F ctx
If F is NULL, checks if G is a Gröbner basis. If F is not NULL, checks if G is a Gröbner basis for F.
fmpz_mpoly_vec_is_autoreduced :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_vec_is_autoreduced F ctx
Checks whether the vector F is autoreduced (or inter-reduced).
fmpz_mpoly_vec_autoreduction :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_autoreduction H F ctx
Sets H to the autoreduction (inter-reduction) of F.
fmpz_mpoly_vec_autoreduction_groebner :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_vec_autoreduction_groebner H G ctx
Sets H to the autoreduction (inter-reduction) of G. Assumes that G is a Gröbner basis. This produces a reduced Gröbner basis, which is unique (up to the sort order of the entries in the vector).
fmpz_mpoly_buchberger_naive :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_buchberger_naive G F ctx
Sets G to a Gröbner basis for F, computed using a naive implementation of Buchberger's algorithm.
fmpz_mpoly_buchberger_naive_with_limits :: Ptr CFmpzMPolyVec -> Ptr CFmpzMPolyVec -> CLong -> CLong -> CLong -> Ptr CFmpzMPolyCtx -> IO CInt Source #
fmpz_mpoly_buchberger_naive_with_limits G F ideal_len_limit poly_len_limit poly_bits_limit ctx
As fmpz_mpoly_buchberger_naive
, but halts if during the execution of
Buchberger's algorithm the length of the ideal basis set exceeds
ideal_len_limit, the length of any polynomial exceeds
poly_len_limit, or the size of the coefficients of any polynomial
exceeds poly_bits_limit. Returns 1 for success and 0 for failure. On
failure, G is a valid basis for F but it might not be a Gröbner
basis.
Special polynomials
fmpz_mpoly_symmetric_gens :: Ptr CFmpzMPoly -> CULong -> Ptr CLong -> CLong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_symmetric :: Ptr CFmpzMPoly -> CULong -> Ptr CFmpzMPolyCtx -> IO () Source #
fmpz_mpoly_symmetric res k ctx
Sets res to the elementary symmetric polynomial \(e_k(X_1,\ldots,X_n)\).
The gens version takes \(X_1,\ldots,X_n\) to be the subset of generators given by vars and n. The indices in vars start from zero. Currently, the indices in vars must be distinct.