Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Synopsis
- data FmpzModPolyFactor = FmpzModPolyFactor !(ForeignPtr CFmpzModPolyFactor)
- data CFmpzModPolyFactor = CFmpzModPolyFactor (Ptr CFmpzModPoly) (Ptr CLong) CLong CLong
- newFmpzModPolyFactor :: FmpzModCtx -> IO FmpzModPolyFactor
- withFmpzModPolyFactor :: FmpzModPolyFactor -> (Ptr CFmpzModPolyFactor -> IO a) -> IO (FmpzModPolyFactor, a)
- fmpz_mod_poly_factor_init :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_clear :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_realloc :: Ptr CFmpzModPolyFactor -> CLong -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_fit_length :: Ptr CFmpzModPolyFactor -> CLong -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_set :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPolyFactor -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_print :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_print_pretty :: Ptr CFmpzModPolyFactor -> CString -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_insert :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> CLong -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_concat :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPolyFactor -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_pow :: Ptr CFmpzModPolyFactor -> CLong -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_is_irreducible :: Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt
- fmpz_mod_poly_is_irreducible_ddf :: Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt
- fmpz_mod_poly_is_irreducible_rabin :: Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt
- fmpz_mod_poly_is_irreducible_rabin_f :: Ptr CFmpz -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt
- _fmpz_mod_poly_is_squarefree :: Ptr CFmpz -> CLong -> Ptr CFmpzModCtx -> IO CInt
- _fmpz_mod_poly_is_squarefree_f :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFmpzModCtx -> IO CInt
- fmpz_mod_poly_is_squarefree :: Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt
- fmpz_mod_poly_is_squarefree_f :: Ptr CFmpz -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt
- fmpz_mod_poly_factor_equal_deg_prob :: Ptr CFmpzModPoly -> Ptr CFRandState -> Ptr CFmpzModPoly -> CLong -> Ptr CFmpzModCtx -> IO CInt
- fmpz_mod_poly_factor_equal_deg :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> CLong -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_distinct_deg :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr (Ptr CLong) -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_distinct_deg_threaded :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr (Ptr CLong) -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_squarefree :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_cantor_zassenhaus :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_kaltofen_shoup :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_factor_berlekamp :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_roots :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> CInt -> Ptr CFmpzModCtx -> IO ()
- fmpz_mod_poly_roots_factored :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> CInt -> Ptr CFmpzFactor -> Ptr CFmpzModCtx -> IO CInt
Factorisation of polynomials over integers mod n
data CFmpzModPolyFactor Source #
Instances
Storable CFmpzModPolyFactor Source # | |
Defined in Data.Number.Flint.Fmpz.Mod.Poly.Factor.FFI sizeOf :: CFmpzModPolyFactor -> Int # alignment :: CFmpzModPolyFactor -> Int # peekElemOff :: Ptr CFmpzModPolyFactor -> Int -> IO CFmpzModPolyFactor # pokeElemOff :: Ptr CFmpzModPolyFactor -> Int -> CFmpzModPolyFactor -> IO () # peekByteOff :: Ptr b -> Int -> IO CFmpzModPolyFactor # pokeByteOff :: Ptr b -> Int -> CFmpzModPolyFactor -> IO () # peek :: Ptr CFmpzModPolyFactor -> IO CFmpzModPolyFactor # poke :: Ptr CFmpzModPolyFactor -> CFmpzModPolyFactor -> IO () # |
withFmpzModPolyFactor :: FmpzModPolyFactor -> (Ptr CFmpzModPolyFactor -> IO a) -> IO (FmpzModPolyFactor, a) Source #
Factorisation
fmpz_mod_poly_factor_init :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_init fac ctx
Initialises fac
for use.
fmpz_mod_poly_factor_clear :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_clear fac ctx
Frees all memory associated with fac
.
fmpz_mod_poly_factor_realloc :: Ptr CFmpzModPolyFactor -> CLong -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_realloc fac alloc ctx
Reallocates the factor structure to provide space for precisely alloc
factors.
fmpz_mod_poly_factor_fit_length :: Ptr CFmpzModPolyFactor -> CLong -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_fit_length fac len ctx
Ensures that the factor structure has space for at least len
factors.
This function takes care of the case of repeated calls by always at
least doubling the number of factors the structure can hold.
fmpz_mod_poly_factor_set :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPolyFactor -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_set res fac ctx
Sets res
to the same factorisation as fac
.
fmpz_mod_poly_factor_print :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_print fac ctx
Prints the entries of fac
to standard output.
fmpz_mod_poly_factor_print_pretty :: Ptr CFmpzModPolyFactor -> CString -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_print_pretty fac var ctx
Prints the entries of fac
to standard output.
fmpz_mod_poly_factor_insert :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> CLong -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_insert fac poly exp ctx
Inserts the factor poly
with multiplicity exp
into the factorisation
fac
.
If fac
already contains poly
, then exp
simply gets added to the
exponent of the existing entry.
fmpz_mod_poly_factor_concat :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPolyFactor -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_concat res fac ctx
Concatenates two factorisations.
This is equivalent to calling fmpz_mod_poly_factor_insert
repeatedly
with the individual factors of fac
.
Does not support aliasing between res
and fac
.
fmpz_mod_poly_factor_pow :: Ptr CFmpzModPolyFactor -> CLong -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_pow fac exp ctx
Raises fac
to the power exp
.
fmpz_mod_poly_is_irreducible :: Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt Source #
fmpz_mod_poly_is_irreducible f ctx
Returns 1 if the polynomial f
is irreducible, otherwise returns 0.
fmpz_mod_poly_is_irreducible_ddf :: Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt Source #
fmpz_mod_poly_is_irreducible_ddf f ctx
Returns 1 if the polynomial f
is irreducible, otherwise returns 0.
Uses fast distinct-degree factorisation.
fmpz_mod_poly_is_irreducible_rabin :: Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt Source #
fmpz_mod_poly_is_irreducible_rabin f ctx
Returns 1 if the polynomial f
is irreducible, otherwise returns 0.
Uses Rabin irreducibility test.
fmpz_mod_poly_is_irreducible_rabin_f :: Ptr CFmpz -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt Source #
fmpz_mod_poly_is_irreducible_rabin_f r f ctx
Either sets \(r\) to \(1\) and returns 1 if the polynomial f
is
irreducible or \(0\) otherwise, or sets \(r\) to a nontrivial factor of
\(p\).
This algorithm correctly determines whether \(f\) is irreducible over \(\mathbb{Z}/p\mathbb{Z}\), even for composite \(f\), or it finds a factor of \(p\).
_fmpz_mod_poly_is_squarefree :: Ptr CFmpz -> CLong -> Ptr CFmpzModCtx -> IO CInt Source #
_fmpz_mod_poly_is_squarefree f len ctx
Returns 1 if (f, len)
is squarefree, and 0 otherwise. As a special
case, the zero polynomial is not considered squarefree. There are no
restrictions on the length.
_fmpz_mod_poly_is_squarefree_f :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFmpzModCtx -> IO CInt Source #
_fmpz_mod_poly_is_squarefree_f fac f len ctx
If \(fac\) returns with the value \(1\) then the function operates as
per _fmpz_mod_poly_is_squarefree
, otherwise \(f\) is set to a
nontrivial factor of \(p\).
fmpz_mod_poly_is_squarefree :: Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt Source #
fmpz_mod_poly_is_squarefree f ctx
Returns 1 if f
is squarefree, and 0 otherwise. As a special case, the
zero polynomial is not considered squarefree.
fmpz_mod_poly_is_squarefree_f :: Ptr CFmpz -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO CInt Source #
fmpz_mod_poly_is_squarefree_f fac f ctx
If \(fac\) returns with the value \(1\) then the function operates as
per fmpz_mod_poly_is_squarefree
, otherwise \(f\) is set to a
nontrivial factor of \(p\).
fmpz_mod_poly_factor_equal_deg_prob :: Ptr CFmpzModPoly -> Ptr CFRandState -> Ptr CFmpzModPoly -> CLong -> Ptr CFmpzModCtx -> IO CInt Source #
fmpz_mod_poly_factor_equal_deg_prob factor state pol d ctx
Probabilistic equal degree factorisation of pol
into irreducible
factors of degree d
. If it passes, a factor is placed in factor
and
1 is returned, otherwise 0 is returned and the value of factor is
undetermined.
Requires that pol
be monic, non-constant and squarefree.
fmpz_mod_poly_factor_equal_deg :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> CLong -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_equal_deg factors pol d ctx
Assuming pol
is a product of irreducible factors all of degree d
,
finds all those factors and places them in factors. Requires that pol
be monic, non-constant and squarefree.
fmpz_mod_poly_factor_distinct_deg :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr (Ptr CLong) -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_distinct_deg res poly degs ctx
Factorises a monic non-constant squarefree polynomial poly
of degree
\(n\) into factors \(f[d]\) such that for \(1 \leq d \leq n\) \(f[d]\)
is the product of the monic irreducible factors of poly
of degree
\(d\). Factors \(f[d]\) are stored in res
, and the degree \(d\) of the
irreducible factors is stored in degs
in the same order as the
factors.
Requires that degs
has enough space for \((n/2)+1 * sizeof(slong)\).
fmpz_mod_poly_factor_distinct_deg_threaded :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr (Ptr CLong) -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_distinct_deg_threaded res poly degs ctx
Multithreaded version of fmpz_mod_poly_factor_distinct_deg
.
fmpz_mod_poly_factor_squarefree :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_squarefree res f ctx
Sets res
to a squarefree factorization of f
.
fmpz_mod_poly_factor :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor res f ctx
Factorises a non-constant polynomial f
into monic irreducible factors
choosing the best algorithm for given modulo and degree. Choice is based
on heuristic measurements.
fmpz_mod_poly_factor_cantor_zassenhaus :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_cantor_zassenhaus res f ctx
Factorises a non-constant polynomial f
into monic irreducible factors
using the Cantor-Zassenhaus algorithm.
fmpz_mod_poly_factor_kaltofen_shoup :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_kaltofen_shoup res poly ctx
Factorises a non-constant polynomial poly
into monic irreducible
factors using the fast version of Cantor-Zassenhaus algorithm proposed
by Kaltofen and Shoup (1998). More precisely this algorithm uses a baby
step/giant step strategy for the distinct-degree factorization step. If
flint_get_num_threads
is greater than one
fmpz_mod_poly_factor_distinct_deg_threaded
is used.
fmpz_mod_poly_factor_berlekamp :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_factor_berlekamp factors f ctx
Factorises a non-constant polynomial f
into monic irreducible factors
using the Berlekamp algorithm.
Root Finding
fmpz_mod_poly_roots :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> CInt -> Ptr CFmpzModCtx -> IO () Source #
fmpz_mod_poly_roots r f with_multiplicity ctx
Fill \(r\) with factors of the form \(x - r_i\) where the \(r_i\) are the distinct roots of a nonzero \(f\) in \(Z/pZ\). It is expected and not checked that the modulus of \(ctx\) is prime. If \(with\_multiplicity\) is zero, the exponent \(e_i\) of the factor \(x - r_i\) is \(1\). Otherwise, it is the largest \(e_i\) such that \((x-r_i)^e_i\) divides \(f\). This function throws if \(f\) is zero, but is otherwise always successful.
fmpz_mod_poly_roots_factored :: Ptr CFmpzModPolyFactor -> Ptr CFmpzModPoly -> CInt -> Ptr CFmpzFactor -> Ptr CFmpzModCtx -> IO CInt Source #
fmpz_mod_poly_roots_factored r f with_multiplicity n ctx
Fill \(r\) with factors of the form \(x - r_i\) where the \(r_i\) are the distinct roots of a nonzero \(f\) in \(Z/nZ\). It is expected and not checked that \(n\) is a prime factorization of the modulus of \(ctx\). If \(with\_multiplicity\) is zero, the exponent \(e_i\) of the factor \(x - r_i\) is \(1\). Otherwise, it is the largest \(e_i\) such that \((x-r_i)^e_i\) divides \(f\). The roots are first found modulo the primes in \(n\), then lifted to the corresponding prime powers, then combined into roots of the original polynomial \(f\). A return of \(1\) indicates the function was successful. A return of \(0\) indicates the function was not able to find the roots, possibly because there are too many of them. This function throws if \(f\) is zero.