Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
- Multivariate polynomials over finite fields of word-sized characteristic
- Context object
- Memory management
- Input/Output
- Basic manipulation
- Constants
- Degrees
- Coefficients
- Comparison
- Container operations
- Random generation
- Addition/Subtraction
- Scalar operations
- Differentiation
- Evaluation
- Multiplication
- Powering
- Division
- Greatest Common Divisor
- Square Root
- Univariate Functions
Synopsis
- data FqNModMPoly = FqNModMPoly !(ForeignPtr CFqNModMPoly)
- type CFqNModMPoly = CFlint FqNModMPoly
- newFqNModMPoly :: FqNModMPolyCtx -> IO FqNModMPoly
- withFqNModMPoly :: FqNModMPoly -> (Ptr CFqNModMPoly -> IO a) -> IO (FqNModMPoly, a)
- data FqNModMPolyCtx = FqNModMPolyCtx !(ForeignPtr CFqNModMPolyCtx)
- data CFqNModMPolyCtx
- newFqNModMPolyCtx :: CLong -> Ptr COrdering -> FqNModCtx -> IO FqNModMPolyCtx
- withFqNModMPolyCtx :: FqNModMPolyCtx -> (Ptr CFqNModMPolyCtx -> IO a) -> IO (FqNModMPolyCtx, a)
- fq_nmod_mpoly_ctx_init :: Ptr CFqNModMPolyCtx -> CLong -> Ptr COrdering -> Ptr CFqNModCtx -> IO ()
- fq_nmod_mpoly_ctx_nvars :: Ptr CFqNModMPolyCtx -> IO CLong
- fq_nmod_mpoly_ctx_ord :: Ptr CFqNModMPolyCtx -> IO (Ptr COrdering)
- fq_nmod_mpoly_ctx_clear :: Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_init :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_init2 :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_init3 :: Ptr CFqNModMPoly -> CLong -> CFBitCnt -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_fit_length :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_realloc :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_clear :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_str_pretty :: Ptr CFqNModMPoly -> Ptr CString -> Ptr CFqNModMPolyCtx -> IO CString
- fq_nmod_mpoly_fprint_pretty :: Ptr CFile -> Ptr CFqNModMPoly -> Ptr CString -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_print_pretty :: Ptr CFqNModMPoly -> Ptr CString -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_set_str_pretty :: Ptr CFqNModMPoly -> CString -> Ptr CString -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_gen :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_is_gen :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_set :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_equal :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_swap :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_is_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_get_fq_nmod :: Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_set_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_set_ui :: Ptr CFqNModMPoly -> CULong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_set_fq_nmod_gen :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_zero :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_one :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_equal_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_is_zero :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_is_one :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_degrees_fit_si :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_degrees_fmpz :: Ptr (Ptr CFmpz) -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_degrees_si :: Ptr CLong -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_degree_fmpz :: Ptr CFmpz -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_degree_si :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CLong
- fq_nmod_mpoly_total_degree_fits_si :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_total_degree_fmpz :: Ptr CFmpz -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_total_degree_si :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CLong
- fq_nmod_mpoly_used_vars :: Ptr CInt -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_coeff_fq_nmod_monomial :: Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_set_coeff_fq_nmod_monomial :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_coeff_fq_nmod_fmpz :: Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr (Ptr CFmpz) -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_coeff_fq_nmod_ui :: Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr CULong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_set_coeff_fq_nmod_fmpz :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr (Ptr CFmpz) -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_set_coeff_fq_nmod_ui :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CULong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_coeff_vars_ui :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CLong -> Ptr CULong -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_cmp :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_is_canonical :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_length :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CLong
- fq_nmod_mpoly_resize :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_term_coeff_fq_nmod :: Ptr CFqNMod -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_term_exp_fits_si :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_term_exp_fits_ui :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_get_term_exp_fmpz :: Ptr (Ptr CFmpz) -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_term_exp_ui :: Ptr CULong -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_term_exp_si :: Ptr CLong -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_term_var_exp_ui :: Ptr CFqNModMPoly -> CLong -> CLong -> Ptr CFqNModMPolyCtx -> IO CULong
- fq_nmod_mpoly_get_term_var_exp_si :: Ptr CFqNModMPoly -> CLong -> CLong -> Ptr CFqNModMPolyCtx -> IO CLong
- fq_nmod_mpoly_set_term_exp_fmpz :: Ptr CFqNModMPoly -> CLong -> Ptr (Ptr CFmpz) -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_set_term_exp_ui :: Ptr CFqNModMPoly -> CLong -> Ptr CULong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_term :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_get_term_monomial :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_push_term_fq_nmod_fmpz :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr (Ptr CFmpz) -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_push_term_fq_nmod_ui :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CULong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_sort_terms :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_combine_like_terms :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_reverse :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_randtest_bound :: Ptr CFqNModMPoly -> Ptr CFRandState -> CLong -> CULong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_randtest_bounds :: Ptr CFqNModMPoly -> Ptr CFRandState -> CLong -> CULong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_randtest_bits :: Ptr CFqNModMPoly -> Ptr CFRandState -> CLong -> CMpLimb -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_add_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_sub_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_add :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_sub :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_neg :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_scalar_mul_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_make_monic :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_derivative :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_evaluate_all_fq_nmod :: Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr (Ptr (Ptr CFqNMod)) -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_evaluate_one_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_compose_fq_nmod_poly :: Ptr CFqNModPoly -> Ptr CFqNModMPoly -> Ptr (Ptr (Ptr CFqNModPoly)) -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_compose_fq_nmod_mpoly :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr (Ptr (Ptr CFqNModMPoly)) -> Ptr CFqNModMPolyCtx -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_compose_fq_nmod_mpoly_gen :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CLong -> Ptr CFqNModMPolyCtx -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_mul :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_pow_fmpz :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFmpz -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_pow_ui :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CULong -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_divides :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_div :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_divrem :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_divrem_ideal :: Ptr (Ptr (Ptr CFqNModMPoly)) -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr (Ptr (Ptr CFqNModMPoly)) -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_term_content :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_content_vars :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CLong -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_gcd :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_gcd_cofactors :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_gcd_brown :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_gcd_hensel :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_gcd_zippel :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_resultant :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_discriminant :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_sqrt :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_is_square :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_quadratic_root :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_univar_init :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_univar_clear :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_univar_swap :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_to_univar :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_from_univar :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyUnivar -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_univar_degree_fits_si :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyCtx -> IO CInt
- fq_nmod_mpoly_univar_length :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyCtx -> IO CLong
- fq_nmod_mpoly_univar_get_term_exp_si :: Ptr CFqNModMPolyUnivar -> CLong -> Ptr CFqNModMPolyCtx -> IO CLong
- fq_nmod_mpoly_univar_get_term_coeff :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyUnivar -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
- fq_nmod_mpoly_univar_swap_term_coeff :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyUnivar -> CLong -> Ptr CFqNModMPolyCtx -> IO ()
Multivariate polynomials over finite fields of word-sized characteristic
data FqNModMPoly Source #
Instances
Storable CFqNModMPoly Source # | |
Defined in Data.Number.Flint.Fq.NMod.MPoly.FFI sizeOf :: CFqNModMPoly -> Int # alignment :: CFqNModMPoly -> Int # peekElemOff :: Ptr CFqNModMPoly -> Int -> IO CFqNModMPoly # pokeElemOff :: Ptr CFqNModMPoly -> Int -> CFqNModMPoly -> IO () # peekByteOff :: Ptr b -> Int -> IO CFqNModMPoly # pokeByteOff :: Ptr b -> Int -> CFqNModMPoly -> IO () # peek :: Ptr CFqNModMPoly -> IO CFqNModMPoly # poke :: Ptr CFqNModMPoly -> CFqNModMPoly -> IO () # |
type CFqNModMPoly = CFlint FqNModMPoly Source #
withFqNModMPoly :: FqNModMPoly -> (Ptr CFqNModMPoly -> IO a) -> IO (FqNModMPoly, a) Source #
Context object
data CFqNModMPolyCtx Source #
Instances
Storable CFqNModMPolyCtx Source # | |
Defined in Data.Number.Flint.Fq.NMod.MPoly.FFI sizeOf :: CFqNModMPolyCtx -> Int # alignment :: CFqNModMPolyCtx -> Int # peekElemOff :: Ptr CFqNModMPolyCtx -> Int -> IO CFqNModMPolyCtx # pokeElemOff :: Ptr CFqNModMPolyCtx -> Int -> CFqNModMPolyCtx -> IO () # peekByteOff :: Ptr b -> Int -> IO CFqNModMPolyCtx # pokeByteOff :: Ptr b -> Int -> CFqNModMPolyCtx -> IO () # peek :: Ptr CFqNModMPolyCtx -> IO CFqNModMPolyCtx # poke :: Ptr CFqNModMPolyCtx -> CFqNModMPolyCtx -> IO () # |
newFqNModMPolyCtx :: CLong -> Ptr COrdering -> FqNModCtx -> IO FqNModMPolyCtx Source #
Create a new FqNModMPolyCtx
withFqNModMPolyCtx :: FqNModMPolyCtx -> (Ptr CFqNModMPolyCtx -> IO a) -> IO (FqNModMPolyCtx, a) Source #
Use a FqNModMPolyCtx
fq_nmod_mpoly_ctx_init :: Ptr CFqNModMPolyCtx -> CLong -> Ptr COrdering -> Ptr CFqNModCtx -> IO () Source #
fq_nmod_mpoly_ctx_init ctx nvars ord fqctx
Initialise a context object for a polynomial ring with the given number
of variables and the given ordering. It will have coefficients in the
finite field fqctx. The possibilities for the ordering are ORD_LEX
,
ORD_DEGLEX
and ORD_DEGREVLEX
.
fq_nmod_mpoly_ctx_nvars :: Ptr CFqNModMPolyCtx -> IO CLong Source #
fq_nmod_mpoly_ctx_nvars ctx
Return the number of variables used to initialize the context.
fq_nmod_mpoly_ctx_ord :: Ptr CFqNModMPolyCtx -> IO (Ptr COrdering) Source #
fq_nmod_mpoly_ctx_ord ctx
Return the ordering used to initialize the context.
fq_nmod_mpoly_ctx_clear :: Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_ctx_clear ctx
Release any space allocated by an ctx.
Memory management
fq_nmod_mpoly_init :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_init A ctx
Initialise A for use with the given an initialised context object. Its value is set to zero.
fq_nmod_mpoly_init2 :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_init2 A alloc ctx
Initialise A for use with the given an initialised context object. Its
value is set to zero. It is allocated with space for alloc terms and
at least MPOLY_MIN_BITS
bits for the exponents.
fq_nmod_mpoly_init3 :: Ptr CFqNModMPoly -> CLong -> CFBitCnt -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_init3 A alloc bits ctx
Initialise A for use with the given an initialised context object. Its value is set to zero. It is allocated with space for alloc terms and bits bits for the exponents.
fq_nmod_mpoly_fit_length :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_fit_length A len ctx
Ensure that A has space for at least len terms.
fq_nmod_mpoly_realloc :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_realloc A alloc ctx
Reallocate A to have space for alloc terms. Assumes the current length of the polynomial is not greater than alloc.
fq_nmod_mpoly_clear :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_clear A ctx
Release any space allocated for A.
Input/Output
fq_nmod_mpoly_get_str_pretty :: Ptr CFqNModMPoly -> Ptr CString -> Ptr CFqNModMPolyCtx -> IO CString Source #
fq_nmod_mpoly_get_str_pretty A x ctx
Return a string, which the user is responsible for cleaning up, representing A, given an array of variable strings x.
fq_nmod_mpoly_fprint_pretty :: Ptr CFile -> Ptr CFqNModMPoly -> Ptr CString -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_fprint_pretty file A x ctx
Print a string representing A to file.
fq_nmod_mpoly_print_pretty :: Ptr CFqNModMPoly -> Ptr CString -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_print_pretty A x ctx
Print a string representing A to stdout
.
fq_nmod_mpoly_set_str_pretty :: Ptr CFqNModMPoly -> CString -> Ptr CString -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_set_str_pretty A str x ctx
Set A to the polynomial in the null-terminates string str given an
array x of variable strings. If parsing str fails, A is set to
zero, and \(-1\) is returned. Otherwise, \(0\) is returned. The
operations +
, -
, *
, and /
are permitted along with integers and
the variables in x. The character ^
must be immediately followed by
the (integer) exponent. If any division is not exact, parsing fails.
Basic manipulation
fq_nmod_mpoly_gen :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_gen A var ctx
Set A to the variable of index var, where \(var = 0\) corresponds to the variable with the most significance with respect to the ordering.
fq_nmod_mpoly_is_gen :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_is_gen A var ctx
If \(var \ge 0\), return \(1\) if A is equal to the \(var\)-th generator, otherwise return \(0\). If \(var < 0\), return \(1\) if the polynomial is equal to any generator, otherwise return \(0\).
fq_nmod_mpoly_set :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_set A B ctx
Set A to B.
fq_nmod_mpoly_equal :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_equal A B ctx
Return \(1\) if A is equal to B, else return \(0\).
fq_nmod_mpoly_swap :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_swap A B ctx
Efficiently swap A and B.
Constants
fq_nmod_mpoly_is_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_is_fq_nmod A ctx
Return \(1\) if A is a constant, else return \(0\).
fq_nmod_mpoly_get_fq_nmod :: Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_fq_nmod c A ctx
Assuming that A is a constant, set c to this constant. This function throws if A is not a constant.
fq_nmod_mpoly_set_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_set_fq_nmod A c ctx
fq_nmod_mpoly_set_ui :: Ptr CFqNModMPoly -> CULong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_set_ui A c ctx
Set A to the constant c.
fq_nmod_mpoly_set_fq_nmod_gen :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_set_fq_nmod_gen A ctx
Set A to the constant given by fq_nmod_gen
.
fq_nmod_mpoly_zero :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_zero A ctx
Set A to the constant \(0\).
fq_nmod_mpoly_one :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_one A ctx
Set A to the constant \(1\).
fq_nmod_mpoly_equal_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_equal_fq_nmod A c ctx
Return \(1\) if A is equal to the constant c, else return \(0\).
fq_nmod_mpoly_is_zero :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_is_zero A ctx
Return \(1\) if A is the constant \(0\), else return \(0\).
fq_nmod_mpoly_is_one :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_is_one A ctx
Return \(1\) if A is the constant \(1\), else return \(0\).
Degrees
fq_nmod_mpoly_degrees_fit_si :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_degrees_fit_si A ctx
Return \(1\) if the degrees of A with respect to each variable fit
into an slong
, otherwise return \(0\).
fq_nmod_mpoly_degrees_fmpz :: Ptr (Ptr CFmpz) -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_degrees_fmpz degs A ctx
fq_nmod_mpoly_degrees_si :: Ptr CLong -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_degrees_si degs A ctx
Set degs to the degrees of A with respect to each variable. If A is zero, all degrees are set to \(-1\).
fq_nmod_mpoly_degree_fmpz :: Ptr CFmpz -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_degree_fmpz deg A var ctx
fq_nmod_mpoly_degree_si :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CLong Source #
fq_nmod_mpoly_degree_si A var ctx
Either return or set deg to the degree of A with respect to the variable of index var. If A is zero, the degree is defined to be \(-1\).
fq_nmod_mpoly_total_degree_fits_si :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_total_degree_fits_si A ctx
Return \(1\) if the total degree of A fits into an slong
, otherwise
return \(0\).
fq_nmod_mpoly_total_degree_fmpz :: Ptr CFmpz -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_total_degree_fmpz tdeg A ctx
fq_nmod_mpoly_total_degree_si :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CLong Source #
fq_nmod_mpoly_total_degree_si A ctx
Either return or set tdeg to the total degree of A. If A is zero, the total degree is defined to be \(-1\).
fq_nmod_mpoly_used_vars :: Ptr CInt -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_used_vars used A ctx
For each variable index \(i\), set used[i]
to nonzero if the variable
of index \(i\) appears in A and to zero otherwise.
Coefficients
fq_nmod_mpoly_get_coeff_fq_nmod_monomial :: Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_coeff_fq_nmod_monomial c A M ctx
Assuming that M is a monomial, set c to the coefficient of the corresponding monomial in A. This function throws if M is not a monomial.
fq_nmod_mpoly_set_coeff_fq_nmod_monomial :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_set_coeff_fq_nmod_monomial A c M ctx
Assuming that M is a monomial, set the coefficient of the corresponding monomial in A to c. This function throws if M is not a monomial.
fq_nmod_mpoly_get_coeff_fq_nmod_fmpz :: Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr (Ptr CFmpz) -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_coeff_fq_nmod_fmpz c A exp ctx
fq_nmod_mpoly_get_coeff_fq_nmod_ui :: Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr CULong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_coeff_fq_nmod_ui c A exp ctx
Set c to the coefficient of the monomial with exponent vector exp.
fq_nmod_mpoly_set_coeff_fq_nmod_fmpz :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr (Ptr CFmpz) -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_set_coeff_fq_nmod_fmpz A c exp ctx
fq_nmod_mpoly_set_coeff_fq_nmod_ui :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CULong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_set_coeff_fq_nmod_ui A c exp ctx
Set the coefficient of the monomial with exponent exp to c.
fq_nmod_mpoly_get_coeff_vars_ui :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CLong -> Ptr CULong -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_coeff_vars_ui C A vars exps length ctx
Set C to the coefficient of A with respect to the variables in vars with powers in the corresponding array exps. Both vars and exps point to array of length length. It is assumed that \(0 < length \le nvars(A)\) and that the variables in vars are distinct.
Comparison
fq_nmod_mpoly_cmp :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_cmp A B ctx
Return \(1\) (resp. \(-1\), or \(0\)) if A is after (resp. before, same as) B in some arbitrary but fixed total ordering of the polynomials. This ordering agrees with the usual ordering of monomials when A and B are both monomials.
Container operations
fq_nmod_mpoly_is_canonical :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_is_canonical A ctx
Return \(1\) if A is in canonical form. Otherwise, return \(0\). To be in canonical form, all of the terms must have nonzero coefficients, and the terms must be sorted from greatest to least.
fq_nmod_mpoly_length :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CLong Source #
fq_nmod_mpoly_length A ctx
Return the number of terms in A. If the polynomial is in canonical form, this will be the number of nonzero coefficients.
fq_nmod_mpoly_resize :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_resize A new_length ctx
Set the length of A to new_length
. Terms are either deleted from the
end, or new zero terms are appended.
fq_nmod_mpoly_get_term_coeff_fq_nmod :: Ptr CFqNMod -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_term_coeff_fq_nmod c A i ctx
Set c to the coefficient of the term of index i.
fq_nmod_mpoly_term_exp_fits_si :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_term_exp_fits_si A i ctx
fq_nmod_mpoly_term_exp_fits_ui :: Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_term_exp_fits_ui A i ctx
Return \(1\) if all entries of the exponent vector of the term of index
\(i\) fit into an slong
(resp. a ulong
). Otherwise, return \(0\).
fq_nmod_mpoly_get_term_exp_fmpz :: Ptr (Ptr CFmpz) -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_term_exp_fmpz exp A i ctx
fq_nmod_mpoly_get_term_exp_ui :: Ptr CULong -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_term_exp_ui exp A i ctx
fq_nmod_mpoly_get_term_exp_si :: Ptr CLong -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_term_exp_si exp A i ctx
Set exp to the exponent vector of the term of index i. The _ui
(resp. _si
) version throws if any entry does not fit into a ulong
(resp. slong
).
fq_nmod_mpoly_get_term_var_exp_ui :: Ptr CFqNModMPoly -> CLong -> CLong -> Ptr CFqNModMPolyCtx -> IO CULong Source #
fq_nmod_mpoly_get_term_var_exp_ui A i var ctx
fq_nmod_mpoly_get_term_var_exp_si :: Ptr CFqNModMPoly -> CLong -> CLong -> Ptr CFqNModMPolyCtx -> IO CLong Source #
fq_nmod_mpoly_get_term_var_exp_si A i var ctx
Return the exponent of the variable var of the term of index i. This
function throws if the exponent does not fit into a ulong
(resp.
slong
).
fq_nmod_mpoly_set_term_exp_fmpz :: Ptr CFqNModMPoly -> CLong -> Ptr (Ptr CFmpz) -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_set_term_exp_fmpz A i exp ctx
fq_nmod_mpoly_set_term_exp_ui :: Ptr CFqNModMPoly -> CLong -> Ptr CULong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_set_term_exp_ui A i exp ctx
Set the exponent of the term of index i to exp.
fq_nmod_mpoly_get_term :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_term M A i ctx
Set M to the term of index i in A.
fq_nmod_mpoly_get_term_monomial :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_get_term_monomial M A i ctx
Set M to the monomial of the term of index i in A. The coefficient of M will be one.
fq_nmod_mpoly_push_term_fq_nmod_fmpz :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr (Ptr CFmpz) -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_push_term_fq_nmod_fmpz A c exp ctx
fq_nmod_mpoly_push_term_fq_nmod_ui :: Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CULong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_push_term_fq_nmod_ui A c exp ctx
Append a term to A with coefficient c and exponent vector exp. This function runs in constant average time.
fq_nmod_mpoly_sort_terms :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_sort_terms A ctx
Sort the terms of A into the canonical ordering dictated by the ordering in ctx. This function simply reorders the terms: It does not combine like terms, nor does it delete terms with coefficient zero. This function runs in linear time in the bit size of A.
fq_nmod_mpoly_combine_like_terms :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_combine_like_terms A ctx
Combine adjacent like terms in A and delete terms with coefficient zero. If the terms of A were sorted to begin with, the result will be in canonical form. This function runs in linear time in the bit size of A.
fq_nmod_mpoly_reverse :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_reverse A B ctx
Set A to the reversal of B.
Random generation
fq_nmod_mpoly_randtest_bound :: Ptr CFqNModMPoly -> Ptr CFRandState -> CLong -> CULong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_randtest_bound A state length exp_bound ctx
Generate a random polynomial with length up to length and exponents in
the range [0, exp_bound - 1]
. The exponents of each variable are
generated by calls to n_randint(state, exp_bound)
.
fq_nmod_mpoly_randtest_bounds :: Ptr CFqNModMPoly -> Ptr CFRandState -> CLong -> CULong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_randtest_bounds A state length exp_bounds ctx
Generate a random polynomial with length up to length and exponents in
the range [0, exp_bounds[i] - 1]
. The exponents of the variable of
index i are generated by calls to n_randint(state, exp_bounds[i])
.
fq_nmod_mpoly_randtest_bits :: Ptr CFqNModMPoly -> Ptr CFRandState -> CLong -> CMpLimb -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_randtest_bits A state length exp_bits ctx
Generate a random polynomial with length up to length and exponents whose packed form does not exceed the given bit count.
Addition/Subtraction
fq_nmod_mpoly_add_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_add_fq_nmod A B C ctx
Set A to \(B + c\).
fq_nmod_mpoly_sub_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_sub_fq_nmod A B C ctx
Set A to \(B - c\).
fq_nmod_mpoly_add :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_add A B C ctx
Set A to \(B + C\).
fq_nmod_mpoly_sub :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_sub A B C ctx
Set A to \(B - C\).
Scalar operations
fq_nmod_mpoly_neg :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_neg A B ctx
Set A to \(-B\).
fq_nmod_mpoly_scalar_mul_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_scalar_mul_fq_nmod A B c ctx
Set A to \(B \times c\).
fq_nmod_mpoly_make_monic :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_make_monic A B ctx
Set A to B divided by the leading coefficient of B. This throws if B is zero.
Differentiation
fq_nmod_mpoly_derivative :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_derivative A B var ctx
Set A to the derivative of B with respect to the variable of index var.
Evaluation
fq_nmod_mpoly_evaluate_all_fq_nmod :: Ptr CFqNMod -> Ptr CFqNModMPoly -> Ptr (Ptr (Ptr CFqNMod)) -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_evaluate_all_fq_nmod ev A vals ctx
Set ev the evaluation of A where the variables are replaced by the corresponding elements of the array vals.
fq_nmod_mpoly_evaluate_one_fq_nmod :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNMod -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_evaluate_one_fq_nmod A B var val ctx
Set A to the evaluation of B where the variable of index var is replaced by val.
fq_nmod_mpoly_compose_fq_nmod_poly :: Ptr CFqNModPoly -> Ptr CFqNModMPoly -> Ptr (Ptr (Ptr CFqNModPoly)) -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_compose_fq_nmod_poly A B C ctx
Set A to the evaluation of B where the variables are replaced by the corresponding elements of the array C. The context object of B is ctxB. Return \(1\) for success and \(0\) for failure.
fq_nmod_mpoly_compose_fq_nmod_mpoly :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr (Ptr (Ptr CFqNModMPoly)) -> Ptr CFqNModMPolyCtx -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_compose_fq_nmod_mpoly A B C ctxB ctxAC
Set A to the evaluation of B where the variables are replaced by the corresponding elements of the array C. Both A and the elements of C have context object ctxAC, while B has context object ctxB. Neither A nor B is allowed to alias any other polynomial. Return \(1\) for success and \(0\) for failure.
fq_nmod_mpoly_compose_fq_nmod_mpoly_gen :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CLong -> Ptr CFqNModMPolyCtx -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_compose_fq_nmod_mpoly_gen A B c ctxB ctxAC
Set A to the evaluation of B where the variable of index i in
ctxB is replaced by the variable of index c[i]
in ctxAC. The
length of the array C is the number of variables in ctxB. If any
c[i]
is negative, the corresponding variable of B is replaced by
zero. Otherwise, it is expected that c[i]
is less than the number of
variables in ctxAC.
Multiplication
fq_nmod_mpoly_mul :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_mul A B C ctx
Set A to B times C.
Powering
fq_nmod_mpoly_pow_fmpz :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFmpz -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_pow_fmpz A B k ctx
Set A to \(B\) raised to the k-th power. Return \(1\) for success and \(0\) for failure.
fq_nmod_mpoly_pow_ui :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CULong -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_pow_ui A B k ctx
Set A to \(B\) raised to the k-th power. Return \(1\) for success and \(0\) for failure.
Division
fq_nmod_mpoly_divides :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_divides Q A B ctx
If A is divisible by B, set Q to the exact quotient and return \(1\). Otherwise, set Q to zero and return \(0\).
fq_nmod_mpoly_div :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_div Q A B ctx
Set Q to the quotient of A by B, discarding the remainder.
fq_nmod_mpoly_divrem :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_divrem Q R A B ctx
Set Q and R to the quotient and remainder of A divided by B.
fq_nmod_mpoly_divrem_ideal :: Ptr (Ptr (Ptr CFqNModMPoly)) -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr (Ptr (Ptr CFqNModMPoly)) -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_divrem_ideal Q R A B len ctx
This function is as per fq_nmod_mpoly_divrem
except that it takes an
array of divisor polynomials B and it returns an array of quotient
polynomials Q. The number of divisor (and hence quotient) polynomials,
is given by len.
Greatest Common Divisor
fq_nmod_mpoly_term_content :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_term_content M A ctx
Set M to the GCD of the terms of A. If A is zero, M will be zero. Otherwise, M will be a monomial with coefficient one.
fq_nmod_mpoly_content_vars :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CLong -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_content_vars g A vars vars_length ctx
Set g to the GCD of the coefficients of A when viewed as a polynomial in the variables vars. Return \(1\) for success and \(0\) for failure. Upon success, g will be independent of the variables vars.
fq_nmod_mpoly_gcd :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_gcd G A B ctx
Try to set G to the monic GCD of A and B. The GCD of zero and zero is defined to be zero. If the return is \(1\) the function was successful. Otherwise the return is \(0\) and G is left untouched.
fq_nmod_mpoly_gcd_cofactors :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_gcd_cofactors G Abar Bbar A B ctx
Do the operation of fq_nmod_mpoly_gcd
and also compute \(Abar = A/G\)
and \(Bbar = B/G\) if successful.
fq_nmod_mpoly_gcd_brown :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_gcd_brown G A B ctx
fq_nmod_mpoly_gcd_hensel :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_gcd_hensel G A B ctx
fq_nmod_mpoly_gcd_zippel :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_gcd_zippel G A B ctx
Try to set G to the GCD of A and B using various algorithms.
fq_nmod_mpoly_resultant :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_resultant R A B var ctx
Try to set R to the resultant of A and B with respect to the variable of index var.
fq_nmod_mpoly_discriminant :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_discriminant D A var ctx
Try to set D to the discriminant of A with respect to the variable of index var.
Square Root
fq_nmod_mpoly_sqrt :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_sqrt Q A ctx
If \(Q^2=A\) has a solution, set \(Q\) to a solution and return \(1\), otherwise return \(0\) and set \(Q\) to zero.
fq_nmod_mpoly_is_square :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_is_square A ctx
Return \(1\) if A is a perfect square, otherwise return \(0\).
fq_nmod_mpoly_quadratic_root :: Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPoly -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_quadratic_root Q A B ctx
If \(Q^2+AQ=B\) has a solution, set \(Q\) to a solution and return \(1\), otherwise return \(0\).
Univariate Functions
fq_nmod_mpoly_univar_init :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_univar_init A ctx
Initialize A.
fq_nmod_mpoly_univar_clear :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_univar_clear A ctx
Clear A.
fq_nmod_mpoly_univar_swap :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_univar_swap A B ctx
Swap A and \(B\).
fq_nmod_mpoly_to_univar :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPoly -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_to_univar A B var ctx
Set A to a univariate form of B by pulling out the variable of index var. The coefficients of A will still belong to the content ctx but will not depend on the variable of index var.
fq_nmod_mpoly_from_univar :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyUnivar -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_from_univar A B var ctx
Set A to the normal form of B by putting in the variable of index var. This function is undefined if the coefficients of B depend on the variable of index var.
fq_nmod_mpoly_univar_degree_fits_si :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyCtx -> IO CInt Source #
fq_nmod_mpoly_univar_degree_fits_si A ctx
Return \(1\) if the degree of A with respect to the main variable fits
an slong
. Otherwise, return \(0\).
fq_nmod_mpoly_univar_length :: Ptr CFqNModMPolyUnivar -> Ptr CFqNModMPolyCtx -> IO CLong Source #
fq_nmod_mpoly_univar_length A ctx
Return the number of terms in A with respect to the main variable.
fq_nmod_mpoly_univar_get_term_exp_si :: Ptr CFqNModMPolyUnivar -> CLong -> Ptr CFqNModMPolyCtx -> IO CLong Source #
fq_nmod_mpoly_univar_get_term_exp_si A i ctx
Return the exponent of the term of index i of A.
fq_nmod_mpoly_univar_get_term_coeff :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyUnivar -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_univar_get_term_coeff c A i ctx
fq_nmod_mpoly_univar_swap_term_coeff :: Ptr CFqNModMPoly -> Ptr CFqNModMPolyUnivar -> CLong -> Ptr CFqNModMPolyCtx -> IO () Source #
fq_nmod_mpoly_univar_swap_term_coeff c A i ctx
Set (resp. swap) c to (resp. with) the coefficient of the term of index i of A.