| Safe Haskell | Safe-Inferred |
|---|---|
| Language | Haskell2010 |
Data.Number.Flint.Fq
Description
Finite fields
This module implements operations over the finite field \(\mathbb F_q\) where \( q = p^d \) with \(p\) prime.
Basic usage
Consider the finite field \(\mathbb F_{11^4}\). Here we initialize the
context and set x to the generator of the field and print it and its
fourth power.
import Data.Number.Flint
main = do
ctx <- newFqCtx 11 4 "alpha"
withNewFq ctx $ \x -> do
withFqCtx ctx $ \ctx -> do
fq_ctx_print ctx
putStr "\n"
fq_gen x ctx
fq_print_pretty x ctx
putStr "\n"
fq_pow_ui x x 4 ctx
fq_print_pretty x ctx
putStr "\n"
Running main yields:
>>>mainp = 11 d = 4 f(X) = X^4+8*X^2+10*X+2 alpha 3*alpha^2+alpha+9
Synopsis
- data Fq = Fq !(ForeignPtr CFq)
- type CFq = CFmpzPoly
- newFq :: FqCtx -> IO Fq
- withFq :: Fq -> (Ptr CFq -> IO a) -> IO (Fq, a)
- withNewFq :: FqCtx -> (Ptr CFq -> IO a) -> IO (Fq, a)
- data FqCtx = FqCtx !(ForeignPtr CFqCtx)
- type CFqCtx = CFlint FqCtx
- newFqCtx :: Fmpz -> CLong -> String -> IO FqCtx
- withFqCtx :: FqCtx -> (Ptr CFqCtx -> IO a) -> IO (FqCtx, a)
- withNewFqCtx :: Fmpz -> CLong -> String -> (Ptr CFqCtx -> IO a) -> IO (FqCtx, a)
- newFqCtxConway :: Fmpz -> CLong -> String -> IO FqCtx
- withNewFqCtxConway :: Fmpz -> CLong -> String -> (Ptr CFqCtx -> IO a) -> IO (FqCtx, a)
- newFqCtxModulus :: FmpzModPoly -> FmpzModCtx -> String -> IO FqCtx
- withNewFqCtxModulus :: FmpzModPoly -> FmpzModCtx -> String -> (Ptr CFqCtx -> IO a) -> IO (FqCtx, a)
- fq_ctx_init :: Ptr CFqCtx -> Ptr CFmpz -> CLong -> CString -> IO ()
- _fq_ctx_init_conway :: Ptr CFqCtx -> Ptr CFmpz -> CLong -> CString -> IO CInt
- fq_ctx_init_conway :: Ptr CFqCtx -> Ptr CFmpz -> CLong -> CString -> IO ()
- fq_ctx_init_modulus :: Ptr CFqCtx -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> CString -> IO ()
- fq_ctx_clear :: Ptr CFqCtx -> IO ()
- fq_ctx_modulus :: Ptr CFqCtx -> IO (Ptr CFmpzModPoly)
- fq_ctx_degree :: Ptr CFqCtx -> IO CLong
- fq_ctx_prime :: Ptr CFqCtx -> IO (Ptr CFmpz)
- fq_ctx_order :: Ptr CFmpz -> Ptr CFqCtx -> IO ()
- fq_ctx_get_str :: Ptr CFqCtx -> IO CString
- fq_ctx_fprint :: Ptr CFile -> Ptr CFqCtx -> IO CInt
- fq_ctx_print :: Ptr CFqCtx -> IO ()
- fq_ctx_randtest :: Ptr CFqCtx -> IO ()
- fq_ctx_randtest_reducible :: Ptr CFqCtx -> IO ()
- fq_init :: Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_init2 :: Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_clear :: Ptr CFq -> Ptr CFqCtx -> IO ()
- _fq_sparse_reduce :: Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO ()
- _fq_dense_reduce :: Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO ()
- _fq_reduce :: Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO ()
- fq_reduce :: Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_add :: Ptr CFq -> Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_sub :: Ptr CFq -> Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_sub_one :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_neg :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_mul :: Ptr CFq -> Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_mul_fmpz :: Ptr CFq -> Ptr CFq -> Ptr CFmpz -> Ptr CFqCtx -> IO ()
- fq_mul_si :: Ptr CFq -> Ptr CFq -> CLong -> Ptr CFqCtx -> IO ()
- fq_mul_ui :: Ptr CFq -> Ptr CFq -> CULong -> Ptr CFqCtx -> IO ()
- fq_sqr :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_div :: Ptr CFq -> Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- _fq_inv :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO ()
- fq_inv :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_gcdinv :: Ptr CFq -> Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- _fq_pow :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFmpz -> Ptr CFqCtx -> IO ()
- fq_pow :: Ptr CFq -> Ptr CFq -> Ptr CFmpz -> Ptr CFqCtx -> IO ()
- fq_pow_ui :: Ptr CFq -> Ptr CFq -> CULong -> Ptr CFqCtx -> IO ()
- fq_sqrt :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_pth_root :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_is_square :: Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_fprint_pretty :: Ptr CFile -> Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_print_pretty :: Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_fprint :: Ptr CFile -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_print :: Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_get_str :: Ptr CFq -> Ptr CFqCtx -> IO CString
- fq_get_str_pretty :: Ptr CFq -> Ptr CFqCtx -> IO CString
- fq_randtest :: Ptr CFq -> Ptr CFRandState -> Ptr CFqCtx -> IO ()
- fq_randtest_not_zero :: Ptr CFq -> Ptr CFRandState -> Ptr CFqCtx -> IO ()
- fq_randtest_dense :: Ptr CFq -> Ptr CFRandState -> Ptr CFqCtx -> IO ()
- fq_rand :: Ptr CFq -> Ptr CFRandState -> Ptr CFqCtx -> IO ()
- fq_rand_not_zero :: Ptr CFq -> Ptr CFRandState -> Ptr CFqCtx -> IO ()
- fq_set :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_set_si :: Ptr CFq -> CLong -> Ptr CFqCtx -> IO ()
- fq_set_ui :: Ptr CFq -> CULong -> Ptr CFqCtx -> IO ()
- fq_set_fmpz :: Ptr CFq -> Ptr CFmpz -> Ptr CFqCtx -> IO ()
- fq_swap :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_zero :: Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_one :: Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_gen :: Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_get_fmpz :: Ptr CFmpz -> Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_get_fmpz_poly :: Ptr CFmpzPoly -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_get_fmpz_mod_poly :: Ptr CFmpzModPoly -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_set_fmpz_poly :: Ptr CFq -> Ptr CFmpzPoly -> Ptr CFqCtx -> IO ()
- fq_set_fmpz_mod_poly :: Ptr CFq -> Ptr CFmpzModPoly -> Ptr CFqCtx -> IO ()
- fq_get_fmpz_mod_mat :: Ptr CFmpzModMat -> Ptr CFq -> Ptr CFqCtx -> IO ()
- fq_set_fmpz_mod_mat :: Ptr CFq -> Ptr CFmpzModMat -> Ptr CFqCtx -> IO ()
- fq_is_zero :: Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_is_one :: Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_equal :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_is_invertible :: Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_is_invertible_f :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO CInt
- _fq_trace :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO ()
- fq_trace :: Ptr CFmpz -> Ptr CFq -> Ptr CFqCtx -> IO ()
- _fq_norm :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO ()
- fq_norm :: Ptr CFmpz -> Ptr CFq -> Ptr CFqCtx -> IO ()
- _fq_frobenius :: Ptr CFmpz -> Ptr CFmpz -> CLong -> CLong -> Ptr CFqCtx -> IO ()
- fq_frobenius :: Ptr CFq -> Ptr CFq -> CLong -> Ptr CFqCtx -> IO ()
- fq_multiplicative_order :: Ptr CFmpz -> Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_is_primitive :: Ptr CFq -> Ptr CFqCtx -> IO CInt
- fq_bit_pack :: Ptr CFmpz -> Ptr CFq -> CFBitCnt -> Ptr CFqCtx -> IO ()
- fq_bit_unpack :: Ptr CFq -> Ptr CFmpz -> CFBitCnt -> Ptr CFqCtx -> IO ()
Finite fields
Finite field element
The type Fq represents an element of the finite field \(\mathbb F_q\).
Finite field context
Context of the finite field (opaque pointer)
Constructors
| FqCtx !(ForeignPtr CFqCtx) |
Instances
newFqCtxConway :: Fmpz -> CLong -> String -> IO FqCtx Source #
Create a new Fq context using fq_ctx_init_conway.
withNewFqCtxConway :: Fmpz -> CLong -> String -> (Ptr CFqCtx -> IO a) -> IO (FqCtx, a) Source #
Apply function to new Fq initialized with fq_ctx_init_conway.
newFqCtxModulus :: FmpzModPoly -> FmpzModCtx -> String -> IO FqCtx Source #
Create a new Fq context using fq_ctx_init_modulus.
withNewFqCtxModulus :: FmpzModPoly -> FmpzModCtx -> String -> (Ptr CFqCtx -> IO a) -> IO (FqCtx, a) Source #
Create a new Fq initialized using fq_ctx_init_modulus.
Context Management
fq_ctx_init :: Ptr CFqCtx -> Ptr CFmpz -> CLong -> CString -> IO () Source #
fq_ctx_init ctx p d var
Initialises the context for prime \(p\) and extension degree \(d\), with
name var for the generator. By default, it will try use a Conway
polynomial; if one is not available, a random irreducible polynomial
will be used.
Assumes that \(p\) is a prime.
Assumes that the string var is a null-terminated string of length at
least one.
_fq_ctx_init_conway :: Ptr CFqCtx -> Ptr CFmpz -> CLong -> CString -> IO CInt Source #
_fq_ctx_init_conway ctx p d var
Attempts to initialise the context for prime \(p\) and extension degree
\(d\), with name var for the generator using a Conway polynomial for
the modulus.
Returns \(1\) if the Conway polynomial is in the database for the given size and the initialization is successful; otherwise, returns \(0\).
Assumes that \(p\) is a prime.
Assumes that the string var is a null-terminated string of length at
least one.
fq_ctx_init_conway :: Ptr CFqCtx -> Ptr CFmpz -> CLong -> CString -> IO () Source #
fq_ctx_init_conway ctx p d var
Initialises the context for prime \(p\) and extension degree \(d\), with
name var for the generator using a Conway polynomial for the modulus.
Assumes that \(p\) is a prime.
Assumes that the string var is a null-terminated string of length at
least one.
fq_ctx_init_modulus :: Ptr CFqCtx -> Ptr CFmpzModPoly -> Ptr CFmpzModCtx -> CString -> IO () Source #
fq_ctx_init_modulus ctx modulus ctxp var
Initialises the context for given modulus with name var for the
generator.
Assumes that modulus is an irreducible polynomial over the finite
field \(\mathbf{F}_{p}\) in ctxp.
Assumes that the string var is a null-terminated string of length at
least one.
fq_ctx_clear :: Ptr CFqCtx -> IO () Source #
fq_ctx_clear ctx
Clears all memory that has been allocated as part of the context.
fq_ctx_modulus :: Ptr CFqCtx -> IO (Ptr CFmpzModPoly) Source #
fq_ctx_modulus ctx
Returns a pointer to the modulus in the context.
fq_ctx_degree :: Ptr CFqCtx -> IO CLong Source #
fq_ctx_degree ctx
Returns the degree of the field extension \([\mathbf{F}_{q} : \mathbf{F}_{p}]\), which is equal to \(\log_{p} q\).
fq_ctx_prime :: Ptr CFqCtx -> IO (Ptr CFmpz) Source #
fq_ctx_prime ctx
Returns a pointer to the prime \(p\) in the context.
fq_ctx_order :: Ptr CFmpz -> Ptr CFqCtx -> IO () Source #
fq_ctx_order f ctx
Sets \(f\) to be the size of the finite field.
fq_ctx_fprint :: Ptr CFile -> Ptr CFqCtx -> IO CInt Source #
fq_ctx_fprint file ctx
Prints the context information to file. Returns 1 for a success and a
negative number for an error.
fq_ctx_print :: Ptr CFqCtx -> IO () Source #
fq_ctx_print ctx
Prints the context information to stdout.
fq_ctx_randtest :: Ptr CFqCtx -> IO () Source #
fq_ctx_randtest ctx
Initializes ctx to a random finite field. Assumes that fq_ctx_init
has not been called on ctx already.
fq_ctx_randtest_reducible :: Ptr CFqCtx -> IO () Source #
fq_ctx_randtest_reducible ctx
Initializes ctx to a random extension of a prime field. The modulus
may or may not be irreducible. Assumes that fq_ctx_init has not been
called on ctx already.
Memory management
fq_init :: Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_init rop ctx
Initialises the element rop, setting its value to \(0\).
fq_init2 :: Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_init2 rop ctx
Initialises poly with at least enough space for it to be an element of
ctx and sets it to \(0\).
_fq_sparse_reduce :: Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO () Source #
_fq_sparse_reduce R lenR ctx
Reduces (R, lenR) modulo the polynomial \(f\) given by the modulus of
ctx.
_fq_dense_reduce :: Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO () Source #
_fq_dense_reduce R lenR ctx
Reduces (R, lenR) modulo the polynomial \(f\) given by the modulus of
ctx using Newton division.
_fq_reduce :: Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO () Source #
_fq_reduce r lenR ctx
Reduces (R, lenR) modulo the polynomial \(f\) given by the modulus of
ctx. Does either sparse or dense reduction based on
ctx->sparse_modulus.
fq_reduce :: Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_reduce rop ctx
Reduces the polynomial rop as an element of
\(\mathbf{F}_p[X] / (f(X))\).
Basic arithmetic
fq_add :: Ptr CFq -> Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_add rop op1 op2 ctx
Sets rop to the sum of op1 and op2.
fq_sub :: Ptr CFq -> Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_sub rop op1 op2 ctx
Sets rop to the difference of op1 and op2.
fq_sub_one :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_sub_one rop op1 ctx
Sets rop to the difference of op1 and \(1\).
fq_neg :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_neg rop op ctx
Sets rop to the negative of op.
fq_mul :: Ptr CFq -> Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_mul rop op1 op2 ctx
Sets rop to the product of op1 and op2, reducing the output in the
given context.
fq_mul_fmpz :: Ptr CFq -> Ptr CFq -> Ptr CFmpz -> Ptr CFqCtx -> IO () Source #
fq_mul_fmpz rop op x ctx
Sets rop to the product of op and \(x\), reducing the output in the
given context.
fq_mul_si :: Ptr CFq -> Ptr CFq -> CLong -> Ptr CFqCtx -> IO () Source #
fq_mul_si rop op x ctx
Sets rop to the product of op and \(x\), reducing the output in the
given context.
fq_mul_ui :: Ptr CFq -> Ptr CFq -> CULong -> Ptr CFqCtx -> IO () Source #
fq_mul_ui rop op x ctx
Sets rop to the product of op and \(x\), reducing the output in the
given context.
fq_sqr :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_sqr rop op ctx
Sets rop to the square of op, reducing the output in the given
context.
fq_div :: Ptr CFq -> Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_div rop op1 op2 ctx
Sets rop to the quotient of op1 and op2, reducing the output in
the given context.
_fq_inv :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO () Source #
_fq_inv rop op len ctx
Sets (rop, d) to the inverse of the non-zero element (op, len).
fq_inv :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_inv rop op ctx
Sets rop to the inverse of the non-zero element op.
fq_gcdinv :: Ptr CFq -> Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_gcdinv f inv op ctx
Sets inv to be the inverse of op modulo the modulus of ctx. If
op is not invertible, then f is set to a factor of the modulus;
otherwise, it is set to one.
_fq_pow :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFmpz -> Ptr CFqCtx -> IO () Source #
_fq_pow rop op len e ctx
Sets (rop, 2*d-1) to (op,len) raised to the power \(e\), reduced
modulo \(f(X)\), the modulus of ctx.
Assumes that \(e \geq 0\) and that len is positive and at most \(d\).
Although we require that rop provides space for \(2d - 1\)
coefficients, the output will be reduced modulo \(f(X)\), which is a
polynomial of degree \(d\).
Does not support aliasing.
fq_pow :: Ptr CFq -> Ptr CFq -> Ptr CFmpz -> Ptr CFqCtx -> IO () Source #
fq_pow rop op e ctx
Sets rop the op raised to the power \(e\).
Currently assumes that \(e \geq 0\).
Note that for any input op, rop is set to \(1\) whenever \(e = 0\).
fq_pow_ui :: Ptr CFq -> Ptr CFq -> CULong -> Ptr CFqCtx -> IO () Source #
fq_pow_ui rop op e ctx
Sets rop the op raised to the power \(e\).
Currently assumes that \(e \geq 0\).
Note that for any input op, rop is set to \(1\) whenever \(e = 0\).
Roots
fq_sqrt :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_sqrt rop op1 ctx
Sets rop to the square root of op1 if it is a square, and return
\(1\), otherwise return \(0\).
fq_pth_root :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_pth_root rop op1 ctx
Sets rop to a \(p^{th}\) root root of op1. Currently, this computes
the root by raising op1 to \(p^{d-1}\) where \(d\) is the degree of
the extension.
fq_is_square :: Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_is_square op ctx
Return 1 if op is a square.
Output
fq_fprint_pretty :: Ptr CFile -> Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_fprint_pretty file op ctx
Prints a pretty representation of op to file.
In the current implementation, always returns \(1\). The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code.
fq_print_pretty :: Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_print_pretty op ctx
Prints a pretty representation of op to stdout.
In the current implementation, always returns \(1\). The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code.
fq_fprint :: Ptr CFile -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_fprint file op ctx
Prints a representation of op to file.
For further details on the representation used, see
fmpz_mod_poly_fprint.
fq_print :: Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_print op ctx
Prints a representation of op to stdout.
For further details on the representation used, see
fmpz_mod_poly_print.
fq_get_str :: Ptr CFq -> Ptr CFqCtx -> IO CString Source #
fq_get_str op ctx
Returns the plain FLINT string representation of the element op.
fq_get_str_pretty :: Ptr CFq -> Ptr CFqCtx -> IO CString Source #
fq_get_str_pretty op ctx
Returns a pretty representation of the element op using the
null-terminated string x as the variable name.
Randomisation
fq_randtest :: Ptr CFq -> Ptr CFRandState -> Ptr CFqCtx -> IO () Source #
fq_randtest rop state ctx
Generates a random element of \(\mathbf{F}_q\).
fq_randtest_not_zero :: Ptr CFq -> Ptr CFRandState -> Ptr CFqCtx -> IO () Source #
fq_randtest_not_zero rop state ctx
Generates a random non-zero element of \(\mathbf{F}_q\).
fq_randtest_dense :: Ptr CFq -> Ptr CFRandState -> Ptr CFqCtx -> IO () Source #
fq_randtest_dense rop state ctx
Generates a random element of \(\mathbf{F}_q\) which has an underlying polynomial with dense coefficients.
fq_rand :: Ptr CFq -> Ptr CFRandState -> Ptr CFqCtx -> IO () Source #
fq_rand rop state ctx
Generates a high quality random element of \(\mathbf{F}_q\).
fq_rand_not_zero :: Ptr CFq -> Ptr CFRandState -> Ptr CFqCtx -> IO () Source #
fq_rand_not_zero rop state ctx
Generates a high quality non-zero random element of \(\mathbf{F}_q\).
Assignments and conversions
fq_set_si :: Ptr CFq -> CLong -> Ptr CFqCtx -> IO () Source #
fq_set_si rop x ctx
Sets rop to x, considered as an element of \(\mathbf{F}_p\).
fq_set_ui :: Ptr CFq -> CULong -> Ptr CFqCtx -> IO () Source #
fq_set_ui rop x ctx
Sets rop to x, considered as an element of \(\mathbf{F}_p\).
fq_set_fmpz :: Ptr CFq -> Ptr CFmpz -> Ptr CFqCtx -> IO () Source #
fq_set_fmpz rop x ctx
Sets rop to x, considered as an element of \(\mathbf{F}_p\).
fq_swap :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_swap op1 op2 ctx
Swaps the two elements op1 and op2.
fq_one :: Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_one rop ctx
Sets rop to one, reduced in the given context.
fq_gen :: Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_gen rop ctx
Sets rop to a generator for the finite field. There is no guarantee
this is a multiplicative generator of the finite field.
fq_get_fmpz :: Ptr CFmpz -> Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_get_fmpz rop op ctx
If op has a lift to the integers, return \(1\) and set rop to the
lift in \([0,p)\). Otherwise, return \(0\) and leave \(rop\) undefined.
fq_get_fmpz_mod_poly :: Ptr CFmpzModPoly -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_get_fmpz_mod_poly a b ctx
Set a to a representative of b in ctx. The representatives are
taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where \(h(x)\) is the
defining polynomial in ctx.
fq_set_fmpz_mod_poly :: Ptr CFq -> Ptr CFmpzModPoly -> Ptr CFqCtx -> IO () Source #
fq_set_fmpz_mod_poly a b ctx
Set a to the element in ctx with representative b. The
representatives are taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where
\(h(x)\) is the defining polynomial in ctx.
fq_get_fmpz_mod_mat :: Ptr CFmpzModMat -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_get_fmpz_mod_mat col a ctx
Convert a to a column vector of length degree(ctx).
fq_set_fmpz_mod_mat :: Ptr CFq -> Ptr CFmpzModMat -> Ptr CFqCtx -> IO () Source #
fq_set_fmpz_mod_mat a col ctx
Convert a column vector col of length degree(ctx) to an element of
ctx.
Comparison
fq_is_zero :: Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_is_zero op ctx
Returns whether op is equal to zero.
fq_is_one :: Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_is_one op ctx
Returns whether op is equal to one.
fq_equal :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_equal op1 op2 ctx
Returns whether op1 and op2 are equal.
fq_is_invertible :: Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_is_invertible op ctx
Returns whether op is an invertible element.
fq_is_invertible_f :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_is_invertible_f f op ctx
Returns whether op is an invertible element. If it is not, then f is
set of a factor of the modulus.
Special functions
_fq_trace :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO () Source #
_fq_trace rop op len ctx
Sets rop to the trace of the non-zero element (op, len) in
\(\mathbf{F}_{q}\).
fq_trace :: Ptr CFmpz -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_trace rop op ctx
Sets rop to the trace of op.
For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the trace of \(a\) as the trace of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\sum_{i=0}^{d-1} \Sigma^i (a)\), where (d = log_{p} q).
_fq_norm :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFqCtx -> IO () Source #
_fq_norm rop op len ctx
Sets rop to the norm of the non-zero element (op, len) in
\(\mathbf{F}_{q}\).
fq_norm :: Ptr CFmpz -> Ptr CFq -> Ptr CFqCtx -> IO () Source #
fq_norm rop op ctx
Computes the norm of op.
For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the norm of \(a\) as the determinant of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\prod_{i=0}^{d-1} \Sigma^i (a)\), where \(d = \text{dim}_{\mathbf{F}_p}(\mathbf{F}_q)\).
Algorithm selection is automatic depending on the input.
_fq_frobenius :: Ptr CFmpz -> Ptr CFmpz -> CLong -> CLong -> Ptr CFqCtx -> IO () Source #
_fq_frobenius rop op len e ctx
Sets (rop, 2d-1) to the image of (op, len) under the Frobenius
operator raised to the e-th power, assuming that neither op nor e
are zero.
fq_frobenius :: Ptr CFq -> Ptr CFq -> CLong -> Ptr CFqCtx -> IO () Source #
fq_frobenius rop op e ctx
Evaluates the homomorphism \(\Sigma^e\) at op.
Recall that \(\mathbf{F}_q / \mathbf{F}_p\) is Galois with Galois group \(\langle \sigma \rangle\), which is also isomorphic to \(\mathbf{Z}/d\mathbf{Z}\), where \(\sigma \in \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)\) is the Frobenius element \(\sigma \colon x \mapsto x^p\).
fq_multiplicative_order :: Ptr CFmpz -> Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_multiplicative_order ord op ctx
Computes the order of op as an element of the multiplicative group of
ctx.
Returns 0 if op is 0, otherwise it returns 1 if op is a generator of
the multiplicative group, and -1 if it is not.
This function can also be used to check primitivity of a generator of a finite field whose defining polynomial is not primitive.
fq_is_primitive :: Ptr CFq -> Ptr CFqCtx -> IO CInt Source #
fq_is_primitive op ctx
Returns whether op is primitive, i.e., whether it is a generator of
the multiplicative group of ctx.