Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
- Matrices of univariate polynomials over integers mod n (word-size n)
- Memory management
- Basic properties
- Basic assignment and manipulation
- Input and output
- Random matrix generation
- Special matrices
- Basic comparison and properties
- Norms
- Evaluation
- Arithmetic
- Row reduction
- Trace
- Determinant and rank
- Inverse
- Nullspace
- Solving
Synopsis
- data NModPolyMat = NModPolyMat !(ForeignPtr CNModPolyMat)
- data CNModPolyMat = CNModPolyMat (Ptr CNModPoly) CLong CLong (Ptr (Ptr CNModPoly)) (Ptr CNMod)
- newNModPolyMat :: CLong -> CLong -> CMpLimb -> IO NModPolyMat
- withNModPolyMat :: NModPolyMat -> (Ptr CNModPolyMat -> IO a) -> IO (NModPolyMat, a)
- nmod_poly_mat_init :: Ptr CNModPolyMat -> CLong -> CLong -> CMpLimb -> IO ()
- nmod_poly_mat_init_set :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_clear :: Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_nrows :: Ptr CNModPolyMat -> IO CLong
- nmod_poly_mat_ncols :: Ptr CNModPolyMat -> IO CLong
- nmod_poly_mat_modulus :: Ptr CNModPolyMat -> IO CMpLimb
- nmod_poly_mat_entry :: Ptr CNModPolyMat -> CLong -> CLong -> IO (Ptr CNModPoly)
- nmod_poly_mat_set :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_swap :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_swap_entrywise :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_print :: Ptr CNModPolyMat -> CString -> IO ()
- nmod_poly_mat_randtest :: Ptr CNModPolyMat -> Ptr CFRandState -> CLong -> IO ()
- nmod_poly_mat_randtest_sparse :: Ptr CNModPolyMat -> Ptr CFRandState -> CLong -> CFloat -> IO ()
- nmod_poly_mat_zero :: Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_one :: Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_equal :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO CInt
- nmod_poly_mat_is_zero :: Ptr CNModPolyMat -> IO CInt
- nmod_poly_mat_is_one :: Ptr CNModPolyMat -> IO CInt
- nmod_poly_mat_is_empty :: Ptr CNModPolyMat -> IO CInt
- nmod_poly_mat_is_square :: Ptr CNModPolyMat -> IO CInt
- nmod_poly_mat_max_length :: Ptr CNModPolyMat -> IO CLong
- nmod_poly_mat_evaluate_nmod :: Ptr CNModMat -> Ptr CNModPolyMat -> CMpLimb -> IO ()
- nmod_poly_mat_scalar_mul_nmod_poly :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPoly -> IO ()
- nmod_poly_mat_scalar_mul_nmod :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> CMpLimb -> IO ()
- nmod_poly_mat_add :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_sub :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_neg :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_mul :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_mul_classical :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_mul_KS :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_mul_interpolate :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_sqr :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_sqr_classical :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_sqr_KS :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_sqr_interpolate :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_pow :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> CULong -> IO ()
- nmod_poly_mat_find_pivot_any :: Ptr CNModPolyMat -> CLong -> CLong -> CLong -> IO CLong
- nmod_poly_mat_find_pivot_partial :: Ptr CNModPolyMat -> CLong -> CLong -> CLong -> IO CLong
- nmod_poly_mat_fflu :: Ptr CNModPolyMat -> Ptr CNModPoly -> Ptr CLong -> Ptr CNModPolyMat -> CInt -> IO CLong
- nmod_poly_mat_rref :: Ptr CNModPolyMat -> Ptr CNModPoly -> Ptr CNModPolyMat -> IO CLong
- nmod_poly_mat_trace :: Ptr CNModPoly -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_det :: Ptr CNModPoly -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_det_fflu :: Ptr CNModPoly -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_det_interpolate :: Ptr CNModPoly -> Ptr CNModPolyMat -> IO ()
- nmod_poly_mat_rank :: Ptr CNModPolyMat -> IO CLong
- nmod_poly_mat_inv :: Ptr CNModPolyMat -> Ptr CNModPoly -> Ptr CNModPolyMat -> IO CInt
- nmod_poly_mat_nullspace :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO CLong
- nmod_poly_mat_solve :: Ptr CNModPolyMat -> Ptr CNModPoly -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO CInt
- nmod_poly_mat_solve_fflu :: Ptr CNModPolyMat -> Ptr CNModPoly -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO CInt
- nmod_poly_mat_solve_fflu_precomp :: Ptr CNModPolyMat -> Ptr CLong -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO ()
Matrices of univariate polynomials over integers mod n (word-size n)
data CNModPolyMat Source #
Instances
Storable CNModPolyMat Source # | |
Defined in Data.Number.Flint.NMod.Types.FFI sizeOf :: CNModPolyMat -> Int # alignment :: CNModPolyMat -> Int # peekElemOff :: Ptr CNModPolyMat -> Int -> IO CNModPolyMat # pokeElemOff :: Ptr CNModPolyMat -> Int -> CNModPolyMat -> IO () # peekByteOff :: Ptr b -> Int -> IO CNModPolyMat # pokeByteOff :: Ptr b -> Int -> CNModPolyMat -> IO () # peek :: Ptr CNModPolyMat -> IO CNModPolyMat # poke :: Ptr CNModPolyMat -> CNModPolyMat -> IO () # |
newNModPolyMat :: CLong -> CLong -> CMpLimb -> IO NModPolyMat Source #
withNModPolyMat :: NModPolyMat -> (Ptr CNModPolyMat -> IO a) -> IO (NModPolyMat, a) Source #
Memory management
nmod_poly_mat_init :: Ptr CNModPolyMat -> CLong -> CLong -> CMpLimb -> IO () Source #
nmod_poly_mat_init mat rows cols n
Initialises a matrix with the given number of rows and columns for use. The modulus is set to \(n\).
nmod_poly_mat_init_set :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_init_set mat src
Initialises a matrix mat
of the same dimensions and modulus as src
,
and sets it to a copy of src
.
nmod_poly_mat_clear :: Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_clear mat
Frees all memory associated with the matrix. The matrix must be reinitialised if it is to be used again.
Basic properties
nmod_poly_mat_nrows :: Ptr CNModPolyMat -> IO CLong Source #
nmod_poly_mat_nrows mat
Returns the number of rows in mat
.
nmod_poly_mat_ncols :: Ptr CNModPolyMat -> IO CLong Source #
nmod_poly_mat_ncols mat
Returns the number of columns in mat
.
nmod_poly_mat_modulus :: Ptr CNModPolyMat -> IO CMpLimb Source #
nmod_poly_mat_modulus mat
Returns the modulus of mat
.
Basic assignment and manipulation
nmod_poly_mat_entry :: Ptr CNModPolyMat -> CLong -> CLong -> IO (Ptr CNModPoly) Source #
nmod_poly_mat_entry mat i j
Gives a reference to the entry at row i
and column j
. The reference
can be passed as an input or output variable to any nmod_poly
function
for direct manipulation of the matrix element. No bounds checking is
performed.
nmod_poly_mat_set :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_set mat1 mat2
Sets mat1
to a copy of mat2
.
nmod_poly_mat_swap :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_swap mat1 mat2
Swaps mat1
and mat2
efficiently.
nmod_poly_mat_swap_entrywise :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_swap_entrywise mat1 mat2
Swaps two matrices by swapping the individual entries rather than swapping the contents of the structs.
Input and output
nmod_poly_mat_print :: Ptr CNModPolyMat -> CString -> IO () Source #
nmod_poly_mat_print mat x
Prints the matrix mat
to standard output, using the variable x
.
Random matrix generation
nmod_poly_mat_randtest :: Ptr CNModPolyMat -> Ptr CFRandState -> CLong -> IO () Source #
nmod_poly_mat_randtest mat state len
This is equivalent to applying nmod_poly_randtest
to all entries in
the matrix.
nmod_poly_mat_randtest_sparse :: Ptr CNModPolyMat -> Ptr CFRandState -> CLong -> CFloat -> IO () Source #
nmod_poly_mat_randtest_sparse A state len density
Creates a random matrix with the amount of nonzero entries given
approximately by the density
variable, which should be a fraction
between 0 (most sparse) and 1 (most dense).
The nonzero entries will have random lengths between 1 and len
.
Special matrices
nmod_poly_mat_zero :: Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_zero mat
Sets mat
to the zero matrix.
nmod_poly_mat_one :: Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_one mat
Sets mat
to the unit or identity matrix of given shape, having the
element 1 on the main diagonal and zeros elsewhere. If mat
is
nonsquare, it is set to the truncation of a unit matrix.
Basic comparison and properties
nmod_poly_mat_equal :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO CInt Source #
nmod_poly_mat_equal mat1 mat2
Returns nonzero if mat1
and mat2
have the same shape and all their
entries agree, and returns zero otherwise.
nmod_poly_mat_is_zero :: Ptr CNModPolyMat -> IO CInt Source #
nmod_poly_mat_is_zero mat
Returns nonzero if all entries in mat
are zero, and returns zero
otherwise.
nmod_poly_mat_is_one :: Ptr CNModPolyMat -> IO CInt Source #
nmod_poly_mat_is_one mat
Returns nonzero if all entry of mat
on the main diagonal are the
constant polynomial 1 and all remaining entries are zero, and returns
zero otherwise. The matrix need not be square.
nmod_poly_mat_is_empty :: Ptr CNModPolyMat -> IO CInt Source #
nmod_poly_mat_is_empty mat
Returns a non-zero value if the number of rows or the number of columns
in mat
is zero, and otherwise returns zero.
nmod_poly_mat_is_square :: Ptr CNModPolyMat -> IO CInt Source #
nmod_poly_mat_is_square mat
Returns a non-zero value if the number of rows is equal to the number of
columns in mat
, and otherwise returns zero.
Norms
nmod_poly_mat_max_length :: Ptr CNModPolyMat -> IO CLong Source #
nmod_poly_mat_max_length A
Returns the maximum polynomial length among all the entries in A
.
Evaluation
nmod_poly_mat_evaluate_nmod :: Ptr CNModMat -> Ptr CNModPolyMat -> CMpLimb -> IO () Source #
nmod_poly_mat_evaluate_nmod B A x
Sets the nmod_mat_t
B
to A
evaluated entrywise at the point x
.
Arithmetic
nmod_poly_mat_scalar_mul_nmod_poly :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPoly -> IO () Source #
nmod_poly_mat_scalar_mul_nmod_poly B A c
Sets B
to A
multiplied entrywise by the polynomial c
.
nmod_poly_mat_scalar_mul_nmod :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> CMpLimb -> IO () Source #
nmod_poly_mat_scalar_mul_nmod B A c
Sets B
to A
multiplied entrywise by the coefficient c
, which is
assumed to be reduced modulo the modulus.
nmod_poly_mat_add :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_add C A B
Sets C
to the sum of A
and B
. All matrices must have the same
shape. Aliasing is allowed.
nmod_poly_mat_sub :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_sub C A B
Sets C
to the sum of A
and B
. All matrices must have the same
shape. Aliasing is allowed.
nmod_poly_mat_neg :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_neg B A
Sets B
to the negation of A
. The matrices must have the same shape.
Aliasing is allowed.
nmod_poly_mat_mul :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_mul C A B
Sets C
to the matrix product of A
and B
. The matrices must have
compatible dimensions for matrix multiplication. Aliasing is allowed.
This function automatically chooses between classical, KS and
evaluation-interpolation multiplication.
nmod_poly_mat_mul_classical :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_mul_classical C A B
Sets C
to the matrix product of A
and B
, computed using the
classical algorithm. The matrices must have compatible dimensions for
matrix multiplication. Aliasing is allowed.
nmod_poly_mat_mul_KS :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_mul_KS C A B
Sets C
to the matrix product of A
and B
, computed using Kronecker
segmentation. The matrices must have compatible dimensions for matrix
multiplication. Aliasing is allowed.
nmod_poly_mat_mul_interpolate :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_mul_interpolate C A B
Sets C
to the matrix product of A
and B
, computed through
evaluation and interpolation. The matrices must have compatible
dimensions for matrix multiplication. For interpolation to be
well-defined, we require that the modulus is a prime at least as large
as \(m + n - 1\) where \(m\) and \(n\) are the maximum lengths of
polynomials in the input matrices. Aliasing is allowed.
nmod_poly_mat_sqr :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_sqr B A
Sets B
to the square of A
, which must be a square matrix. Aliasing
is allowed. This function automatically chooses between classical and KS
squaring.
nmod_poly_mat_sqr_classical :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_sqr_classical B A
Sets B
to the square of A
, which must be a square matrix. Aliasing
is allowed. This function uses direct formulas for very small matrices,
and otherwise classical matrix multiplication.
nmod_poly_mat_sqr_KS :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_sqr_KS B A
Sets B
to the square of A
, which must be a square matrix. Aliasing
is allowed. This function uses Kronecker segmentation.
nmod_poly_mat_sqr_interpolate :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_sqr_interpolate B A
Sets B
to the square of A
, which must be a square matrix, computed
through evaluation and interpolation. For interpolation to be
well-defined, we require that the modulus is a prime at least as large
as \(2n - 1\) where \(n\) is the maximum length of polynomials in the
input matrix. Aliasing is allowed.
nmod_poly_mat_pow :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> CULong -> IO () Source #
nmod_poly_mat_pow B A exp
Sets B
to A
raised to the power exp
, where A
is a square matrix.
Uses exponentiation by squaring. Aliasing is allowed.
Row reduction
nmod_poly_mat_find_pivot_any :: Ptr CNModPolyMat -> CLong -> CLong -> CLong -> IO CLong Source #
nmod_poly_mat_find_pivot_any mat start_row end_row c
Attempts to find a pivot entry for row reduction. Returns a row index
\(r\) between start_row
(inclusive) and stop_row
(exclusive) such
that column \(c\) in mat
has a nonzero entry on row \(r\), or returns
-1 if no such entry exists.
This implementation simply chooses the first nonzero entry from it encounters. This is likely to be a nearly optimal choice if all entries in the matrix have roughly the same size, but can lead to unnecessary coefficient growth if the entries vary in size.
nmod_poly_mat_find_pivot_partial :: Ptr CNModPolyMat -> CLong -> CLong -> CLong -> IO CLong Source #
nmod_poly_mat_find_pivot_partial mat start_row end_row c
Attempts to find a pivot entry for row reduction. Returns a row index
\(r\) between start_row
(inclusive) and stop_row
(exclusive) such
that column \(c\) in mat
has a nonzero entry on row \(r\), or returns
-1 if no such entry exists.
This implementation searches all the rows in the column and chooses the nonzero entry of smallest degree. This heuristic typically reduces coefficient growth when the matrix entries vary in size.
nmod_poly_mat_fflu :: Ptr CNModPolyMat -> Ptr CNModPoly -> Ptr CLong -> Ptr CNModPolyMat -> CInt -> IO CLong Source #
nmod_poly_mat_fflu B den perm A rank_check
Uses fraction-free Gaussian elimination to set (B
, den
) to a
fraction-free LU decomposition of A
and returns the rank of A
.
Aliasing of A
and B
is allowed.
Pivot elements are chosen with nmod_poly_mat_find_pivot_partial
. If
perm
is non-NULL
, the permutation of rows in the matrix will also be
applied to perm
.
If rank_check
is set, the function aborts and returns 0 if the matrix
is detected not to have full rank without completing the elimination.
The denominator den
is set to \(\pm \operatorname{det}(A)\), where the
sign is decided by the parity of the permutation. Note that the
determinant is not generally the minimal denominator.
nmod_poly_mat_rref :: Ptr CNModPolyMat -> Ptr CNModPoly -> Ptr CNModPolyMat -> IO CLong Source #
nmod_poly_mat_rref B den A
Sets (B
, den
) to the reduced row echelon form of A
and returns the
rank of A
. Aliasing of A
and B
is allowed.
The denominator den
is set to \(\pm \operatorname{det}(A)\). Note that
the determinant is not generally the minimal denominator.
Trace
nmod_poly_mat_trace :: Ptr CNModPoly -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_trace trace mat
Computes the trace of the matrix, i.e. the sum of the entries on the main diagonal. The matrix is required to be square.
Determinant and rank
nmod_poly_mat_det :: Ptr CNModPoly -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_det det A
Sets det
to the determinant of the square matrix A
. Uses a direct
formula, fraction-free LU decomposition, or interpolation, depending on
the size of the matrix.
nmod_poly_mat_det_fflu :: Ptr CNModPoly -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_det_fflu det A
Sets det
to the determinant of the square matrix A
. The determinant
is computed by performing a fraction-free LU decomposition on a copy of
A
.
nmod_poly_mat_det_interpolate :: Ptr CNModPoly -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_det_interpolate det A
Sets det
to the determinant of the square matrix A
. The determinant
is computed by determining a bound \(n\) for its length, evaluating the
matrix at \(n\) distinct points, computing the determinant of each
coefficient matrix, and forming the interpolating polynomial.
If the coefficient ring does not contain \(n\) distinct points (that is,
if working over \(\mathbf{Z}/p\mathbf{Z}\) where \(p < n\)), this
function automatically falls back to nmod_poly_mat_det_fflu
.
nmod_poly_mat_rank :: Ptr CNModPolyMat -> IO CLong Source #
nmod_poly_mat_rank A
Returns the rank of A
. Performs fraction-free LU decomposition on a
copy of A
.
Inverse
nmod_poly_mat_inv :: Ptr CNModPolyMat -> Ptr CNModPoly -> Ptr CNModPolyMat -> IO CInt Source #
nmod_poly_mat_inv Ainv den A
Sets (Ainv
, den
) to the inverse matrix of A
. Returns 1 if A
is
nonsingular and 0 if A
is singular. Aliasing of Ainv
and A
is
allowed.
More precisely, det
will be set to the determinant of A
and Ainv
will be set to the adjugate matrix of A
. Note that the determinant is
not necessarily the minimal denominator.
Uses fraction-free LU decomposition, followed by solving for the identity matrix.
Nullspace
nmod_poly_mat_nullspace :: Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO CLong Source #
nmod_poly_mat_nullspace res mat
Computes the right rational nullspace of the matrix mat
and returns
the nullity.
More precisely, assume that mat
has rank \(r\) and nullity \(n\). Then
this function sets the first \(n\) columns of res
to linearly
independent vectors spanning the nullspace of mat
. As a result, we
always have rank(res
) \(= n\), and mat
\(\times\) res
is the zero
matrix.
The computed basis vectors will not generally be in a reduced form. In general, the polynomials in each column vector in the result will have a nontrivial common GCD.
Solving
nmod_poly_mat_solve :: Ptr CNModPolyMat -> Ptr CNModPoly -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO CInt Source #
nmod_poly_mat_solve X den A B
Solves the equation \(AX = B\) for nonsingular \(A\). More precisely,
computes (X
, den
) such that \(AX = B \times \operatorname{den}\).
Returns 1 if \(A\) is nonsingular and 0 if \(A\) is singular. The
computed denominator will not generally be minimal.
Uses fraction-free LU decomposition followed by fraction-free forward and back substitution.
nmod_poly_mat_solve_fflu :: Ptr CNModPolyMat -> Ptr CNModPoly -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO CInt Source #
nmod_poly_mat_solve_fflu X den A B
Solves the equation \(AX = B\) for nonsingular \(A\). More precisely,
computes (X
, den
) such that \(AX = B \times \operatorname{den}\).
Returns 1 if \(A\) is nonsingular and 0 if \(A\) is singular. The
computed denominator will not generally be minimal.
Uses fraction-free LU decomposition followed by fraction-free forward and back substitution.
nmod_poly_mat_solve_fflu_precomp :: Ptr CNModPolyMat -> Ptr CLong -> Ptr CNModPolyMat -> Ptr CNModPolyMat -> IO () Source #
nmod_poly_mat_solve_fflu_precomp X perm FFLU B
Performs fraction-free forward and back substitution given a precomputed fraction-free LU decomposition and corresponding permutation.