{-# LINE 1 "src/Data/Number/Flint/Acb/DFT/FFI.hsc" #-} {-| module : Data.Number.Flint.Acb.DFT.FFI copyright : (c) 2022 Hartmut Monien license : GNU GPL, version 2 or above (see LICENSE) maintainer : hmonien@uni-bonn.de -} module Data.Number.Flint.Acb.DFT.FFI ( -- * Discrete Fourier transform -- DFTAlgorithms -- * Main DFT functions -- | If \(G=\mathbb Z/n\mathbb Z\), we compute the DFT according to the usual -- convention -- -- \[w_x = \sum_{y\bmod n} v_y e^{-\frac{2i \pi}nxy}\] -- acb_dft , acb_dft_inverse -- * DFT Precomputation , AcbDftPre (..) , CAcbDftPre (..) , newAcbDftPre , withAcbDftPre , withNewAcbDftPre -- * , acb_dft_precomp_init , acb_dft_precomp_clear , acb_dft_precomp , acb_dft_inverse_precomp -- -- * DFT on products -- -- $Products -- , AcbDftProd (..) -- , CAcbDftProd (..) -- , newAcbDftProd -- , withAcbDftProd -- , withNewAcbDftProd -- -- * -- -- , acb_dirichlet_dft_prod -- , acb_dft_prod_init -- , acb_dft_prod_clear -- , acb_dirichlet_dft_prod_precomp -- * Convolution , acb_dft_convol_naive , acb_dft_convol_rad2 , acb_dft_convol -- * FFT algorithms -- -- * Naive algorithm -- , AcbDftNaive (..) -- , CAcbDftNaive (..) -- , newAcbDftNaive -- , withAcbDftNaive -- , withNewAcbDftNaive -- -- * -- , acb_dft_naive -- , acb_dft_naive_init -- , acb_dft_naive_clear -- , acb_dft_naive_precomp -- * CRT decomposition , AcbDftCrt (..) , CAcbDftCrt (..) , newAcbDftCrt , withAcbDftCrt , withNewAcbDftCrt -- * , acb_dft_crt , acb_dft_crt_init , acb_dft_crt_clear , acb_dft_crt_precomp -- -- * Cooley-Tukey decomposition -- , AcbDftCyc (..) -- , CAcbDftCyc (..) -- , newAcbDftCyc -- , withAcbDftCyc -- , withNewAcbDftCyc -- -- * -- , acb_dft_cyc -- , acb_dft_cyc_init -- , acb_dft_cyc_clear -- , acb_dft_cyc_precomp -- * Radix 2 decomposition -- , AcbDftRad2 (..) -- , CAcbDftRad2 (..) -- , newAcbDftRad2 -- , withAcbDftRad2 -- , withNewAcbDftRad2 -- -- * -- , acb_dft_rad2 -- , acb_dft_inverse_rad2 -- , acb_dft_rad2_init -- , acb_dft_rad2_clear -- , acb_dft_rad2_precomp -- * Bluestein transform -- , AcbDftBluestein (..) -- , CAcbDftBluestein (..) -- , newAcbDftBluestein -- , withAcbDftBluestein -- , withNewAcbDftBluestein -- -- * -- , acb_dft_bluestein -- , acb_dft_bluestein_init -- , acb_dft_bluestein_clear -- , acb_dft_bluestein_precomp ) where -- Discrete Fourier transform -------------------------------------------------- import Foreign.Ptr import Foreign.ForeignPtr import Foreign.C.Types import Foreign.C.String import Foreign.Storable import Foreign.Marshal.Alloc (free) import Foreign.Marshal.Array (advancePtr) import Data.Typeable import Data.Number.Flint.Flint import Data.Number.Flint.Fmpz import Data.Number.Flint.Fmpq import Data.Number.Flint.Arb.Types import Data.Number.Flint.Acb.Types -- Main DFT functions ---------------------------------------------------------- -- | /acb_dft/ /w/ /v/ /n/ /prec/ -- -- Set /w/ to the DFT of /v/ of length /len/, using an automatic choice of -- algorithm. foreign import ccall "acb_dft.h acb_dft" acb_dft :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_dft_inverse/ /w/ /v/ /n/ /prec/ -- -- Compute the inverse DFT of /v/ into /w/. foreign import ccall "acb_dft.h acb_dft_inverse" acb_dft_inverse :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- acb_dft_pre ----------------------------------------------------------------- data AcbDftPre = AcbDftPre {-# UNPACK #-} !(ForeignPtr CAcbDftPre) type CAcbDftPre = CFlint AcbDftPre instance Storable CAcbDftPre where sizeOf :: CAcbDftPre -> Int sizeOf CAcbDftPre _ = (Int 432) {-# LINE 149 "src/Data/Number/Flint/Acb/DFT/FFI.hsc" #-} alignment _ = 8 {-# LINE 150 "src/Data/Number/Flint/Acb/DFT/FFI.hsc" #-} peek = undefined poke :: Ptr CAcbDftPre -> CAcbDftPre -> IO () poke = Ptr CAcbDftPre -> CAcbDftPre -> IO () forall a. HasCallStack => a undefined newAcbDftPre :: CLong -> CLong -> IO AcbDftPre newAcbDftPre CLong len CLong prec = do ForeignPtr CAcbDftPre x <- IO (ForeignPtr CAcbDftPre) forall a. Storable a => IO (ForeignPtr a) mallocForeignPtr ForeignPtr CAcbDftPre -> (Ptr CAcbDftPre -> IO ()) -> IO () forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CAcbDftPre x ((Ptr CAcbDftPre -> IO ()) -> IO ()) -> (Ptr CAcbDftPre -> IO ()) -> IO () forall a b. (a -> b) -> a -> b $ \Ptr CAcbDftPre x -> do Ptr CAcbDftPre -> CLong -> CLong -> IO () acb_dft_precomp_init Ptr CAcbDftPre x CLong len CLong prec FinalizerPtr CAcbDftPre -> ForeignPtr CAcbDftPre -> IO () forall a. FinalizerPtr a -> ForeignPtr a -> IO () addForeignPtrFinalizer FinalizerPtr CAcbDftPre p_acb_dft_precomp_clear ForeignPtr CAcbDftPre x AcbDftPre -> IO AcbDftPre forall a. a -> IO a forall (m :: * -> *) a. Monad m => a -> m a return (AcbDftPre -> IO AcbDftPre) -> AcbDftPre -> IO AcbDftPre forall a b. (a -> b) -> a -> b $ ForeignPtr CAcbDftPre -> AcbDftPre AcbDftPre ForeignPtr CAcbDftPre x withAcbDftPre :: AcbDftPre -> (Ptr CAcbDftPre -> IO a) -> IO (AcbDftPre, a) withAcbDftPre (AcbDftPre ForeignPtr CAcbDftPre p) Ptr CAcbDftPre -> IO a f = do ForeignPtr CAcbDftPre -> (Ptr CAcbDftPre -> IO (AcbDftPre, a)) -> IO (AcbDftPre, a) forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CAcbDftPre p ((Ptr CAcbDftPre -> IO (AcbDftPre, a)) -> IO (AcbDftPre, a)) -> (Ptr CAcbDftPre -> IO (AcbDftPre, a)) -> IO (AcbDftPre, a) forall a b. (a -> b) -> a -> b $ \Ptr CAcbDftPre fp -> (ForeignPtr CAcbDftPre -> AcbDftPre AcbDftPre ForeignPtr CAcbDftPre p,) (a -> (AcbDftPre, a)) -> IO a -> IO (AcbDftPre, a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Ptr CAcbDftPre -> IO a f Ptr CAcbDftPre fp withNewAcbDftPre :: CLong -> CLong -> (Ptr CAcbDftPre -> IO a) -> IO (AcbDftPre, a) withNewAcbDftPre CLong len CLong prec Ptr CAcbDftPre -> IO a f = do AcbDftPre x <- CLong -> CLong -> IO AcbDftPre newAcbDftPre CLong len CLong prec AcbDftPre -> (Ptr CAcbDftPre -> IO a) -> IO (AcbDftPre, a) forall {a}. AcbDftPre -> (Ptr CAcbDftPre -> IO a) -> IO (AcbDftPre, a) withAcbDftPre AcbDftPre x Ptr CAcbDftPre -> IO a f -------------------------------------------------------------------------------- -- | /acb_dft_precomp_init/ /pre/ /len/ /prec/ -- -- Initializes the fast DFT scheme of length /len/, using an automatic -- choice of algorithms depending on the factorization of /len/. -- -- The length /len/ is stored as /pre->n/. -- -- If several computations are to be done on the same group, the FFT scheme -- should be reused. -- foreign import ccall "acb_dft.h acb_dft_precomp_init" acb_dft_precomp_init :: Ptr CAcbDftPre -> CLong -> CLong -> IO () -- | /acb_dft_precomp_clear/ /pre/ -- -- Clears /pre/. foreign import ccall "acb_dft.h acb_dft_precomp_clear" acb_dft_precomp_clear :: Ptr CAcbDftPre -> IO () foreign import ccall "acb_dft.h &acb_dft_precomp_clear" p_acb_dft_precomp_clear :: FunPtr (Ptr CAcbDftPre -> IO ()) -- | /acb_dft_precomp/ /w/ /v/ /pre/ /prec/ -- -- Computes the DFT of the sequence /v/ into /w/ by applying the -- precomputed scheme /pre/. Both /v/ and /w/ must have length /pre->n/. foreign import ccall "acb_dft.h acb_dft_precomp" acb_dft_precomp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcbDftPre -> CLong -> IO () -- | /acb_dft_inverse_precomp/ /w/ /v/ /pre/ /prec/ -- -- Compute the inverse DFT of /v/ into /w/. foreign import ccall "acb_dft.h acb_dft_inverse_precomp" acb_dft_inverse_precomp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcbDftPre -> CLong -> IO () -- -- DFT on products ------------------------------------------------------------- -- data AcbDftProd = AcbDftProd {-# UNPACK #-} !(ForeignPtr CAcbDftProd) -- type CAcbDftProd = CFlint AcbDftProd -- instance Storable CAcbDftProd where -- sizeOf _ = #{size acb_dft_prod_t} -- alignment _ = #{alignment acb_dft_prod_t} -- peek = undefined -- poke = undefined -- newAcbDftProd cyc num prec = do -- x <- mallocForeignPtr -- withForeignPtr x $ \x -> do -- acb_dft_prod_init x cyc num prec -- addForeignPtrFinalizer p_acb_dft_prod_clear x -- return $ AcbDftProd x -- withAcbDftProd (AcbDftProd p) f = do -- withForeignPtr p $ \fp -> (AcbDftProd p,) <$> f fp -- withNewAcbDftProd cyc num prec f = do -- x <- newAcbDftProd cyc num prec -- withAcbDftProd x f -- -------------------------------------------------------------------------------- -- -- $Products -- -- -- -- A finite abelian group is isomorphic to a product of cyclic components -- -- -- -- \[G = \bigoplus_{i=1}^r \mathbb Z/n_i\mathbb Z\] -- -- -- -- Characters are product of component characters and the DFT reads -- -- -- -- \[\hat f(x_1,\dots x_r) = \sum_{y_1\dots y_r} f(y_1,\dots y_r) -- -- e^{-2i \pi \sum\frac{x_i y_i}{n_i}}\] -- -- -- -- We assume that \(f\) is given by a vector of length \(\prod n_i\) -- -- corresponding to a lexicographic ordering of the values -- -- \(y_1,\dots y_r\), and the computation returns the same indexing for -- -- values of \(\hat f\). -- -- -- -- -- | /acb_dirichlet_dft_prod/ /w/ /v/ /cyc/ /num/ /prec/ -- -- -- -- -- -- Computes the DFT on the group product of /num/ cyclic components of -- -- -- sizes /cyc/. Assume the entries of /v/ are indexed according to -- -- -- lexicographic ordering of the cyclic components. -- -- foreign import ccall "acb_dft.h acb_dirichlet_dft_prod" -- -- acb_dirichlet_dft_prod :: Ptr CAcb -> Ptr CAcb -> Ptr CLong -> CLong -> CLong -> IO () -- -- | /acb_dft_prod_init/ /t/ /cyc/ /num/ /prec/ -- -- -- -- Stores in /t/ a DFT scheme for the product of /num/ cyclic components -- -- whose sizes are given in the array /cyc/. -- foreign import ccall "acb_dft.h acb_dft_prod_init" -- acb_dft_prod_init :: Ptr CAcbDftProd -> Ptr CLong -> CLong -> CLong -> IO () -- -- | /acb_dft_prod_clear/ /t/ -- -- -- -- Clears /t/. -- foreign import ccall "acb_dft.h acb_dft_prod_clear" -- acb_dft_prod_clear :: Ptr CAcbDftProd -> IO () -- foreign import ccall "acb_dft.h &acb_dft_prod_clear" -- p_acb_dft_prod_clear :: FunPtr (Ptr CAcbDftProd -> IO ()) -- -- | /acb_dirichlet_dft_prod_precomp/ /w/ /v/ /prod/ /prec/ -- -- -- -- Sets /w/ to the DFT of /v/. Assume the entries are lexicographically -- -- ordered according to the product of cyclic groups initialized in /t/. -- foreign import ccall "acb_dft.h acb_dirichlet_dft_prod_precomp" -- acb_dirichlet_dft_prod_precomp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcbDftProd -> CLong -> IO () -- Convolution ----------------------------------------------------------------- -- For functions \(f\) and \(g\) on \(G\) we consider the convolution -- -- \[(f \star g)(x) = \sum_{y\in G} f(x-y)g(y)\] -- -- | /acb_dft_convol_naive/ /w/ /f/ /g/ /len/ /prec/ -- foreign import ccall "acb_dft.h acb_dft_convol_naive" acb_dft_convol_naive :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_dft_convol_rad2/ /w/ /f/ /g/ /len/ /prec/ -- foreign import ccall "acb_dft.h acb_dft_convol_rad2" acb_dft_convol_rad2 :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_dft_convol/ /w/ /f/ /g/ /len/ /prec/ -- -- Sets /w/ to the convolution of /f/ and /g/ of length /len/. -- -- The /naive/ version simply uses the definition. -- -- The /rad2/ version embeds the sequence into a power of 2 length and uses -- the formula -- -- \[\widehat{f \star g}(\chi) = \hat f(\chi)\hat g(\chi)\] -- -- to compute it using three radix 2 FFT. -- -- The default version uses radix 2 FFT unless /len/ is a product of small -- primes where a non padded FFT is faster. foreign import ccall "acb_dft.h acb_dft_convol" acb_dft_convol :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- -- FFT algorithms -------------------------------------------------------------- -- -- $FFTAlgorithms -- -- -- -- Fast Fourier transform techniques allow to compute efficiently all -- -- values \(\hat f(\chi)\) by reusing common computations. -- -- -- -- Specifically, if \(H\triangleleft G\) is a subgroup of size \(M\) and -- -- index [G:H]=m, then writing \(f_x(h)=f(xh)\) the translate of \(f\) by -- -- representatives x of \(G/H\), one has a decomposition -- -- -- -- \[\hat f(\chi) = \sum_{x\in G/H} \overline{\chi(x)} \hat{f_x}(\chi_{H})\] -- -- -- -- so that the DFT on \(G\) can be computed using \(m\) DFT on \(H\) (of -- -- appropriate translates of \(f\)), then \(M\) DFT on \(G/H\), one for -- -- each restriction \(\chi_{H}\). -- -- -- -- This decomposition can be done recursively. -- -- -- -- Naive algorithm ------------------------------------------------------------- -- data AcbDftNaive = AcbDftNaive {-# UNPACK #-} !(ForeignPtr CAcbDftNaive) -- type CAcbDftNaive = CFlint AcbDftNaive -- instance Storable CAcbDftNaive where -- sizeOf _ = #{size acb_dft_naive_t} -- alignment _ = #{alignment acb_dft_naive_t} -- peek = undefined -- poke = undefined -- newAcbDftNaive len prec = do -- x <- mallocForeignPtr -- withForeignPtr x $ \x -> do -- acb_dft_naive_init x len prec -- addForeignPtrFinalizer p_acb_dft_naive_clear x -- return $ AcbDftNaive x -- withAcbDftNaive (AcbDftNaive p) f = do -- withForeignPtr p $ \fp -> (AcbDftNaive p,) <$> f fp -- withNewAcbDftNaive len prec f = do -- x <- newAcbDftNaive len prec -- withAcbDftNaive x f -- -------------------------------------------------------------------------------- -- -- | /acb_dft_naive/ /w/ /v/ /n/ /prec/ -- -- -- -- Computes the DFT of /v/ into /w/, where /v/ and /w/ have size /n/, using -- -- the naive \(O(n^2)\) algorithm. -- foreign import ccall "acb_dft.h acb_dft_naive" -- acb_dft_naive :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- -- | /acb_dft_naive_init/ /t/ /len/ /prec/ -- -- -- foreign import ccall "acb_dft.h acb_dft_naive_init" -- acb_dft_naive_init :: Ptr CAcbDftNaive -> CLong -> CLong -> IO () -- -- | /acb_dft_naive_clear/ /t/ -- -- -- -- Stores a table of roots of unity in /t/. The length /len/ is stored as -- -- /t->n/. -- foreign import ccall "acb_dft.h acb_dft_naive_clear" -- acb_dft_naive_clear :: Ptr CAcbDftNaive -> IO () -- foreign import ccall "acb_dft.h &acb_dft_naive_clear" -- p_acb_dft_naive_clear :: FunPtr (Ptr CAcbDftNaive -> IO ()) -- -- | /acb_dft_naive_precomp/ /w/ /v/ /t/ /prec/ -- -- -- -- Sets /w/ to the DFT of /v/ of size /t->n/, using the naive algorithm -- -- data /t/. -- foreign import ccall "acb_dft.h acb_dft_naive_precomp" -- acb_dft_naive_precomp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcbDftNaive -> CLong -> IO () -- CRT decomposition ----------------------------------------------------------- data AcbDftCrt = AcbDftCrt {-# UNPACK #-} !(ForeignPtr CAcbDftCrt) type CAcbDftCrt = CFlint AcbDftCrt instance Storable CAcbDftCrt where sizeOf :: CAcbDftCrt -> Int sizeOf CAcbDftCrt _ = (Int 416) {-# LINE 396 "src/Data/Number/Flint/Acb/DFT/FFI.hsc" #-} alignment _ = 8 {-# LINE 397 "src/Data/Number/Flint/Acb/DFT/FFI.hsc" #-} peek = undefined poke :: Ptr CAcbDftCrt -> CAcbDftCrt -> IO () poke = Ptr CAcbDftCrt -> CAcbDftCrt -> IO () forall a. HasCallStack => a undefined newAcbDftCrt :: CLong -> CLong -> IO AcbDftCrt newAcbDftCrt CLong len CLong prec = do ForeignPtr CAcbDftCrt x <- IO (ForeignPtr CAcbDftCrt) forall a. Storable a => IO (ForeignPtr a) mallocForeignPtr ForeignPtr CAcbDftCrt -> (Ptr CAcbDftCrt -> IO ()) -> IO () forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CAcbDftCrt x ((Ptr CAcbDftCrt -> IO ()) -> IO ()) -> (Ptr CAcbDftCrt -> IO ()) -> IO () forall a b. (a -> b) -> a -> b $ \Ptr CAcbDftCrt x -> do Ptr CAcbDftCrt -> CLong -> CLong -> IO () acb_dft_crt_init Ptr CAcbDftCrt x CLong len CLong prec FinalizerPtr CAcbDftCrt -> ForeignPtr CAcbDftCrt -> IO () forall a. FinalizerPtr a -> ForeignPtr a -> IO () addForeignPtrFinalizer FinalizerPtr CAcbDftCrt p_acb_dft_crt_clear ForeignPtr CAcbDftCrt x AcbDftCrt -> IO AcbDftCrt forall a. a -> IO a forall (m :: * -> *) a. Monad m => a -> m a return (AcbDftCrt -> IO AcbDftCrt) -> AcbDftCrt -> IO AcbDftCrt forall a b. (a -> b) -> a -> b $ ForeignPtr CAcbDftCrt -> AcbDftCrt AcbDftCrt ForeignPtr CAcbDftCrt x withAcbDftCrt :: AcbDftCrt -> (Ptr CAcbDftCrt -> IO a) -> IO (AcbDftCrt, a) withAcbDftCrt (AcbDftCrt ForeignPtr CAcbDftCrt p) Ptr CAcbDftCrt -> IO a f = do ForeignPtr CAcbDftCrt -> (Ptr CAcbDftCrt -> IO (AcbDftCrt, a)) -> IO (AcbDftCrt, a) forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CAcbDftCrt p ((Ptr CAcbDftCrt -> IO (AcbDftCrt, a)) -> IO (AcbDftCrt, a)) -> (Ptr CAcbDftCrt -> IO (AcbDftCrt, a)) -> IO (AcbDftCrt, a) forall a b. (a -> b) -> a -> b $ \Ptr CAcbDftCrt fp -> (ForeignPtr CAcbDftCrt -> AcbDftCrt AcbDftCrt ForeignPtr CAcbDftCrt p,) (a -> (AcbDftCrt, a)) -> IO a -> IO (AcbDftCrt, a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Ptr CAcbDftCrt -> IO a f Ptr CAcbDftCrt fp withNewAcbDftCrt :: CLong -> CLong -> (Ptr CAcbDftCrt -> IO a) -> IO (AcbDftCrt, a) withNewAcbDftCrt CLong len CLong prec Ptr CAcbDftCrt -> IO a f = do AcbDftCrt x <- CLong -> CLong -> IO AcbDftCrt newAcbDftCrt CLong len CLong prec AcbDftCrt -> (Ptr CAcbDftCrt -> IO a) -> IO (AcbDftCrt, a) forall {a}. AcbDftCrt -> (Ptr CAcbDftCrt -> IO a) -> IO (AcbDftCrt, a) withAcbDftCrt AcbDftCrt x Ptr CAcbDftCrt -> IO a f -------------------------------------------------------------------------------- -- | /acb_dft_crt/ /w/ /v/ /n/ /prec/ -- -- Computes the DFT of /v/ into /w/, where /v/ and /w/ have size /len/, -- using CRT to express \(\mathbb Z/n\mathbb Z\) as a product of cyclic -- groups. foreign import ccall "acb_dft.h acb_dft_crt" acb_dft_crt :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_dft_crt_init/ /t/ /len/ /prec/ -- foreign import ccall "acb_dft.h acb_dft_crt_init" acb_dft_crt_init :: Ptr CAcbDftCrt -> CLong -> CLong -> IO () -- | /acb_dft_crt_clear/ /t/ -- -- Initialize a CRT decomposition of \(\mathbb Z/n\mathbb Z\) as a direct -- product of cyclic groups. The length /len/ is stored as /t->n/. foreign import ccall "acb_dft.h acb_dft_crt_clear" acb_dft_crt_clear :: Ptr CAcbDftCrt -> IO () foreign import ccall "acb_dft.h &acb_dft_crt_clear" p_acb_dft_crt_clear :: FunPtr (Ptr CAcbDftCrt -> IO ()) -- | /acb_dft_crt_precomp/ /w/ /v/ /t/ /prec/ -- -- Sets /w/ to the DFT of /v/ of size /t->n/, using the CRT decomposition -- scheme /t/. foreign import ccall "acb_dft.h acb_dft_crt_precomp" acb_dft_crt_precomp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcbDftCrt -> CLong -> IO () -- -- Cooley-Tukey decomposition -------------------------------------------------- -- data AcbDftCyc = AcbDftCyc {-# UNPACK #-} !(ForeignPtr CAcbDftCyc) -- type CAcbDftCyc = CFlint AcbDftCyc -- instance Storable CAcbDftCyc where -- sizeOf _ = #{size acb_dft_cyc_t} -- alignment _ = #{alignment acb_dft_cyc_t} -- peek = undefined -- poke = undefined -- newAcbDftCyc len prec = do -- x <- mallocForeignPtr -- withForeignPtr x $ \x -> do -- acb_dft_cyc_init x len prec -- addForeignPtrFinalizer p_acb_dft_cyc_clear x -- return $ AcbDftCyc x -- withAcbDftCyc (AcbDftCyc p) f = do -- withForeignPtr p $ \fp -> (AcbDftCyc p,) <$> f fp -- withNewAcbDftCyc len prec f = do -- x <- newAcbDftCyc len prec -- withAcbDftCyc x f -- -------------------------------------------------------------------------------- -- -- | /acb_dft_cyc/ /w/ /v/ /n/ /prec/ -- -- -- -- Computes the DFT of /v/ into /w/, where /v/ and /w/ have size /n/, using -- -- each prime factor of \(m\) of \(n\) to decompose with the subgroup -- -- \(H=m\mathbb Z/n\mathbb Z\). -- foreign import ccall "acb_dft.h acb_dft_cyc" -- acb_dft_cyc :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- -- | /acb_dft_cyc_init/ /t/ /len/ /prec/ -- -- -- foreign import ccall "acb_dft.h acb_dft_cyc_init" -- acb_dft_cyc_init :: Ptr CAcbDftCyc -> CLong -> CLong -> IO () -- -- | /acb_dft_cyc_clear/ /t/ -- -- -- -- Initialize a decomposition of \(\mathbb Z/n\mathbb Z\) into cyclic -- -- subgroups. The length /len/ is stored as /t->n/. -- foreign import ccall "acb_dft.h acb_dft_cyc_clear" -- acb_dft_cyc_clear :: Ptr CAcbDftCyc -> IO () -- foreign import ccall "acb_dft.h &acb_dft_cyc_clear" -- p_acb_dft_cyc_clear :: FunPtr (Ptr CAcbDftCyc -> IO ()) -- -- | /acb_dft_cyc_precomp/ /w/ /v/ /t/ /prec/ -- -- -- -- Sets /w/ to the DFT of /v/ of size /t->n/, using the cyclic -- -- decomposition scheme /t/. -- foreign import ccall "acb_dft.h acb_dft_cyc_precomp" -- acb_dft_cyc_precomp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcbDftCyc -> CLong -> IO () -- -- Radix 2 decomposition ------------------------------------------------------- -- data AcbDftRad2 = AcbDftRad2 {-# UNPACK #-} !(ForeignPtr CAcbDftRad2) -- type CAcbDftRad2 = CFlint AcbDftRad2 -- instance Storable CAcbDftRad2 where -- sizeOf _ = #{size acb_dft_rad2_t} -- alignment _ = #{alignment acb_dft_rad2_t} -- peek = undefined -- poke = undefined -- newAcbDftRad2 len prec = do -- x <- mallocForeignPtr -- withForeignPtr x $ \x -> do -- acb_dft_rad2_init x len prec -- addForeignPtrFinalizer p_acb_dft_rad2_clear x -- return $ AcbDftRad2 x -- withAcbDftRad2 (AcbDftRad2 p) f = do -- withForeignPtr p $ \fp -> (AcbDftRad2 p,) <$> f fp -- withNewAcbDftRad2 len prec f = do -- x <- newAcbDftRad2 len prec -- withAcbDftRad2 x f -- -------------------------------------------------------------------------------- -- -- | /acb_dft_rad2/ /w/ /v/ /e/ /prec/ -- -- -- -- Computes the DFT of /v/ into /w/, where /v/ and /w/ have size \(2^e\), -- -- using a radix 2 FFT. -- foreign import ccall "acb_dft.h acb_dft_rad2" -- acb_dft_rad2 :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- -- | /acb_dft_inverse_rad2/ /w/ /v/ /e/ /prec/ -- -- -- -- Computes the inverse DFT of /v/ into /w/, where /v/ and /w/ have size -- -- \(2^e\), using a radix 2 FFT. -- foreign import ccall "acb_dft.h acb_dft_inverse_rad2" -- acb_dft_inverse_rad2 :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- -- | /acb_dft_rad2_init/ /t/ /e/ /prec/ -- -- -- foreign import ccall "acb_dft.h acb_dft_rad2_init" -- acb_dft_rad2_init :: Ptr CAcbDftRad2 -> CInt -> CLong -> IO () -- -- | /acb_dft_rad2_clear/ /t/ -- -- -- -- Initialize and clear a radix 2 FFT of size \(2^e\), stored as /t->n/. -- foreign import ccall "acb_dft.h acb_dft_rad2_clear" -- acb_dft_rad2_clear :: Ptr CAcbDftRad2 -> IO () -- foreign import ccall "acb_dft.h &acb_dft_rad2_clear" -- p_acb_dft_rad2_clear :: FunPtr (Ptr CAcbDftRad2 -> IO ()) -- -- | /acb_dft_rad2_precomp/ /w/ /v/ /t/ /prec/ -- -- -- -- Sets /w/ to the DFT of /v/ of size /t->n/, using the precomputed radix 2 -- -- scheme /t/. -- foreign import ccall "acb_dft.h acb_dft_rad2_precomp" -- acb_dft_rad2_precomp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcbDftRad2 -> CLong -> IO () -- -- Bluestein transform --------------------------------------------------------- -- data AcbDftBluestein = AcbDftBluestein {-# UNPACK #-} !(ForeignPtr CAcbDftBluestein) -- type CAcbDftBluestein = CFlint AcbDftBluestein -- instance Storable CAcbDftBluestein where -- sizeOf _ = #{size acb_dft_bluestein_t} -- alignment _ = #{alignment acb_dft_bluestein_t} -- peek = undefined -- poke = undefined -- newAcbDftBluestein len prec = do -- x <- mallocForeignPtr -- withForeignPtr x $ \x -> do -- acb_dft_bluestein_init x len prec -- addForeignPtrFinalizer p_acb_dft_bluestein_clear x -- return $ AcbDftBluestein x -- withAcbDftBluestein (AcbDftBluestein p) f = do -- withForeignPtr p $ \fp -> (AcbDftBluestein p,) <$> f fp -- withNewAcbDftBluestein len prec f = do -- x <- newAcbDftBluestein len prec -- withAcbDftBluestein x f -- -------------------------------------------------------------------------------- -- -- | /acb_dft_bluestein/ /w/ /v/ /n/ /prec/ -- -- -- -- Computes the DFT of /v/ into /w/, where /v/ and /w/ have size /n/, by -- -- conversion to a radix 2 one using Bluestein\'s convolution trick. -- foreign import ccall "acb_dft.h acb_dft_bluestein" -- acb_dft_bluestein :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- -- | /acb_dft_bluestein_init/ /t/ /len/ /prec/ -- -- -- foreign import ccall "acb_dft.h acb_dft_bluestein_init" -- acb_dft_bluestein_init :: Ptr CAcbDftBluestein -> CLong -> CLong -> IO () -- -- | /acb_dft_bluestein_clear/ /t/ -- -- -- -- Initialize and clear a Bluestein scheme to compute DFT of size /len/. -- foreign import ccall "acb_dft.h acb_dft_bluestein_clear" -- acb_dft_bluestein_clear :: Ptr CAcbDftBluestein -> IO () -- foreign import ccall "acb_dft.h &acb_dft_bluestein_clear" -- p_acb_dft_bluestein_clear :: FunPtr (Ptr CAcbDftBluestein -> IO ()) -- -- | /acb_dft_bluestein_precomp/ /w/ /v/ /t/ /prec/ -- -- -- -- Sets /w/ to the DFT of /v/ of size /t->n/, using the precomputed -- -- Bluestein scheme /t/. -- foreign import ccall "acb_dft.h acb_dft_bluestein_precomp" -- acb_dft_bluestein_precomp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcbDftBluestein -> CLong -> IO ()