{-# LINE 1 "src/Data/Number/Flint/Acb/Hypgeom/FFI.hsc" #-} {-| module : Data.Number.Flint.Acb.HypGeom.FFI copyright : (c) 2022 Hartmut Monien license : GNU GPL, version 2 or above (see LICENSE) maintainer : hmonien@uni-bonn.de -} module Data.Number.Flint.Acb.Hypgeom.FFI ( -- * Hypergeometric functions of complex variables -- * Rising factorials acb_hypgeom_rising_ui_forward , acb_hypgeom_rising_ui_bs , acb_hypgeom_rising_ui_rs , acb_hypgeom_rising_ui_rec , acb_hypgeom_rising_ui , acb_hypgeom_rising , acb_hypgeom_rising_ui_jet_powsum , acb_hypgeom_rising_ui_jet_bs , acb_hypgeom_rising_ui_jet_rs , acb_hypgeom_rising_ui_jet , acb_hypgeom_log_rising_ui , acb_hypgeom_log_rising_ui_jet -- * Gamma function , acb_hypgeom_gamma_stirling_sum_horner , acb_hypgeom_gamma_stirling_sum_improved , acb_hypgeom_gamma_stirling , acb_hypgeom_gamma_taylor , acb_hypgeom_gamma , acb_hypgeom_rgamma , acb_hypgeom_lgamma -- * Convergent series , acb_hypgeom_pfq_bound_factor , acb_hypgeom_pfq_choose_n , acb_hypgeom_pfq_sum_forward , acb_hypgeom_pfq_sum_rs , acb_hypgeom_pfq_sum_bs , acb_hypgeom_pfq_sum_fme , acb_hypgeom_pfq_sum , acb_hypgeom_pfq_sum_bs_invz , acb_hypgeom_pfq_sum_invz , acb_hypgeom_pfq_direct , acb_hypgeom_pfq_series_sum_forward , acb_hypgeom_pfq_series_sum_bs , acb_hypgeom_pfq_series_sum_rs , acb_hypgeom_pfq_series_sum , acb_hypgeom_pfq_series_direct -- * Asymptotic series , acb_hypgeom_u_asymp , acb_hypgeom_u_use_asymp -- * Generalized hypergeometric function , acb_hypgeom_pfq -- * Confluent hypergeometric functions , acb_hypgeom_u_1f1_series , acb_hypgeom_u_1f1 , acb_hypgeom_u , acb_hypgeom_m_asymp , acb_hypgeom_m_1f1 , acb_hypgeom_m , acb_hypgeom_1f1 , acb_hypgeom_0f1_asymp , acb_hypgeom_0f1_direct , acb_hypgeom_0f1 -- * Error functions and Fresnel integrals , acb_hypgeom_erf_propagated_error , acb_hypgeom_erf_1f1a , acb_hypgeom_erf_1f1b , acb_hypgeom_erf_asymp , acb_hypgeom_erf , _acb_hypgeom_erf_series , acb_hypgeom_erf_series , acb_hypgeom_erfc , _acb_hypgeom_erfc_series , acb_hypgeom_erfc_series , acb_hypgeom_erfi , _acb_hypgeom_erfi_series , acb_hypgeom_erfi_series , acb_hypgeom_fresnel , _acb_hypgeom_fresnel_series , acb_hypgeom_fresnel_series -- * Bessel functions , acb_hypgeom_bessel_j_asymp , acb_hypgeom_bessel_j_0f1 , acb_hypgeom_bessel_j , acb_hypgeom_bessel_y , acb_hypgeom_bessel_jy -- * Modified Bessel functions , acb_hypgeom_bessel_i_asymp , acb_hypgeom_bessel_i_0f1 , acb_hypgeom_bessel_i , acb_hypgeom_bessel_i_scaled , acb_hypgeom_bessel_k_asymp , acb_hypgeom_bessel_k_0f1_series , acb_hypgeom_bessel_k_0f1 , acb_hypgeom_bessel_k , acb_hypgeom_bessel_k_scaled -- * Airy functions , acb_hypgeom_airy_direct , acb_hypgeom_airy_asymp , acb_hypgeom_airy_bound , acb_hypgeom_airy , acb_hypgeom_airy_jet , _acb_hypgeom_airy_series , acb_hypgeom_airy_series -- * Coulomb wave functions , acb_hypgeom_coulomb , acb_hypgeom_coulomb_jet , _acb_hypgeom_coulomb_series , acb_hypgeom_coulomb_series -- * Incomplete gamma and beta functions , acb_hypgeom_gamma_upper_asymp , acb_hypgeom_gamma_upper_1f1a , acb_hypgeom_gamma_upper_1f1b , acb_hypgeom_gamma_upper_singular , acb_hypgeom_gamma_upper , _acb_hypgeom_gamma_upper_series , acb_hypgeom_gamma_upper_series , acb_hypgeom_gamma_lower , _acb_hypgeom_gamma_lower_series , acb_hypgeom_gamma_lower_series , acb_hypgeom_beta_lower , _acb_hypgeom_beta_lower_series , acb_hypgeom_beta_lower_series -- * Exponential and trigonometric integrals , acb_hypgeom_expint , acb_hypgeom_ei_asymp , acb_hypgeom_ei_2f2 , acb_hypgeom_ei , _acb_hypgeom_ei_series , acb_hypgeom_ei_series , acb_hypgeom_si_asymp , acb_hypgeom_si_1f2 , acb_hypgeom_si , _acb_hypgeom_si_series , acb_hypgeom_si_series , acb_hypgeom_ci_asymp , acb_hypgeom_ci_2f3 , acb_hypgeom_ci , _acb_hypgeom_ci_series , acb_hypgeom_ci_series , acb_hypgeom_shi , _acb_hypgeom_shi_series , acb_hypgeom_shi_series , acb_hypgeom_chi_asymp , acb_hypgeom_chi_2f3 , acb_hypgeom_chi , _acb_hypgeom_chi_series , acb_hypgeom_chi_series , acb_hypgeom_li , _acb_hypgeom_li_series , acb_hypgeom_li_series -- * Gauss hypergeometric function , acb_hypgeom_2f1_continuation , acb_hypgeom_2f1_series_direct , acb_hypgeom_2f1_direct , acb_hypgeom_2f1_transform , acb_hypgeom_2f1_transform_limit , acb_hypgeom_2f1_corner , acb_hypgeom_2f1_choose , acb_hypgeom_2f1 -- * Orthogonal polynomials and functions , acb_hypgeom_chebyshev_t , acb_hypgeom_chebyshev_u , acb_hypgeom_jacobi_p , acb_hypgeom_gegenbauer_c , acb_hypgeom_laguerre_l , acb_hypgeom_hermite_h , acb_hypgeom_legendre_p , acb_hypgeom_legendre_q , acb_hypgeom_legendre_p_uiui_rec , acb_hypgeom_spherical_y -- * Dilogarithm , acb_hypgeom_dilog_zero_taylor , acb_hypgeom_dilog_zero , acb_hypgeom_dilog_transform , acb_hypgeom_dilog_continuation , acb_hypgeom_dilog_bitburst , acb_hypgeom_dilog ) where -- Hypergeometric functions of complex variables ------------------------------- import Foreign.C.Types import Foreign.ForeignPtr import Foreign.Ptr ( Ptr, FunPtr ) import Data.Number.Flint.Arb import Data.Number.Flint.Arb.Types import Data.Number.Flint.Acb import Data.Number.Flint.Acb.Types import Data.Number.Flint.Acb.Poly -- Rising factorials ----------------------------------------------------------- -- | /acb_hypgeom_rising_ui_forward/ /res/ /x/ /n/ /prec/ foreign import ccall "acb_hypgeom.h acb_hypgeom_rising_ui_forward" acb_hypgeom_rising_ui_forward :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () -- | /acb_hypgeom_rising_ui_bs/ /res/ /x/ /n/ /prec/ foreign import ccall "acb_hypgeom.h acb_hypgeom_rising_ui_bs" acb_hypgeom_rising_ui_bs :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () -- | /acb_hypgeom_rising_ui_rs/ /res/ /x/ /n/ /m/ /prec/ foreign import ccall "acb_hypgeom.h acb_hypgeom_rising_ui_rs" acb_hypgeom_rising_ui_rs :: Ptr CAcb -> Ptr CAcb -> CULong -> CULong -> CLong -> IO () -- | /acb_hypgeom_rising_ui_rec/ /res/ /x/ /n/ /prec/ foreign import ccall "acb_hypgeom.h acb_hypgeom_rising_ui_rec" acb_hypgeom_rising_ui_rec :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () -- | /acb_hypgeom_rising_ui/ /res/ /x/ /n/ /prec/ foreign import ccall "acb_hypgeom.h acb_hypgeom_rising_ui" acb_hypgeom_rising_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () -- | /acb_hypgeom_rising/ /res/ /x/ /n/ /prec/ -- -- Computes the rising factorial \((x)_n\). -- -- The /forward/ version uses the forward recurrence. The /bs/ version uses -- binary splitting. The /rs/ version uses rectangular splitting. It takes -- an extra tuning parameter /m/ which can be set to zero to choose -- automatically. The /rec/ version chooses an algorithm automatically, -- avoiding use of the gamma function (so that it can be used in the -- computation of the gamma function). The default versions (/rising_ui/ -- and /rising_ui/) choose an algorithm automatically and may additionally -- fall back on the gamma function. foreign import ccall "acb_hypgeom.h acb_hypgeom_rising" acb_hypgeom_rising :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_rising_ui_jet_powsum/ /res/ /x/ /n/ /len/ /prec/ foreign import ccall "acb_hypgeom.h acb_hypgeom_rising_ui_jet_powsum" acb_hypgeom_rising_ui_jet_powsum :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> CLong -> IO () -- | /acb_hypgeom_rising_ui_jet_bs/ /res/ /x/ /n/ /len/ /prec/ foreign import ccall "acb_hypgeom.h acb_hypgeom_rising_ui_jet_bs" acb_hypgeom_rising_ui_jet_bs :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> CLong -> IO () -- | /acb_hypgeom_rising_ui_jet_rs/ /res/ /x/ /n/ /m/ /len/ /prec/ foreign import ccall "acb_hypgeom.h acb_hypgeom_rising_ui_jet_rs" acb_hypgeom_rising_ui_jet_rs :: Ptr CAcb -> Ptr CAcb -> CULong -> CULong -> CLong -> CLong -> IO () -- | /acb_hypgeom_rising_ui_jet/ /res/ /x/ /n/ /len/ /prec/ -- -- Computes the jet of the rising factorial \((x)_n\), truncated to length -- /len/. In other words, constructs the polynomial -- \((X + x)_n \in \mathbb{R}[X]\), truncated if -- \(\operatorname{len} < n + 1\) (and zero-extended if -- \(\operatorname{len} > n + 1\)). -- -- The /powsum/ version computes the sequence of powers of /x/ and forms -- integral linear combinations of these. The /bs/ version uses binary -- splitting. The /rs/ version uses rectangular splitting. It takes an -- extra tuning parameter /m/ which can be set to zero to choose -- automatically. The default version chooses an algorithm automatically. foreign import ccall "acb_hypgeom.h acb_hypgeom_rising_ui_jet" acb_hypgeom_rising_ui_jet :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> CLong -> IO () -- | /acb_hypgeom_log_rising_ui/ /res/ /x/ /n/ /prec/ -- -- Computes the log-rising factorial -- \(\log \, (x)_n = \sum_{k=0}^{n-1} \log(x+k)\). -- -- This first computes the ordinary rising factorial and then determines -- the branch correction \(2 \pi i m\) with respect to the principal -- logarithm. The correction is computed using Hare\'s algorithm in -- floating-point arithmetic if this is safe; otherwise, a direct -- computation of \(\sum_{k=0}^{n-1} \arg(x+k)\) is used as a fallback. foreign import ccall "acb_hypgeom.h acb_hypgeom_log_rising_ui" acb_hypgeom_log_rising_ui :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> IO () -- | /acb_hypgeom_log_rising_ui_jet/ /res/ /x/ /n/ /len/ /prec/ -- -- Computes the jet of the log-rising factorial \(\log \, (x)_n\), -- truncated to length /len/. foreign import ccall "acb_hypgeom.h acb_hypgeom_log_rising_ui_jet" acb_hypgeom_log_rising_ui_jet :: Ptr CAcb -> Ptr CAcb -> CULong -> CLong -> CLong -> IO () -- Gamma function -------------------------------------------------------------- -- | /acb_hypgeom_gamma_stirling_sum_horner/ /s/ /z/ /N/ /prec/ foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_stirling_sum_horner" acb_hypgeom_gamma_stirling_sum_horner :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_gamma_stirling_sum_improved/ /s/ /z/ /N/ /K/ /prec/ -- -- Sets /res/ to the final sum in the Stirling series for the gamma -- function truncated before the term with index /N/, i.e. computes -- \(\sum_{n=1}^{N-1} B_{2n} / (2n(2n-1) z^{2n-1})\). The /horner/ version -- uses Horner scheme with gradual precision adjustments. The /improved/ -- version uses rectangular splitting for the low-index terms and reexpands -- the high-index terms as hypergeometric polynomials, using a splitting -- parameter /K/ (which can be set to 0 to use a default value). foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_stirling_sum_improved" acb_hypgeom_gamma_stirling_sum_improved :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_gamma_stirling/ /res/ /x/ /reciprocal/ /prec/ -- -- Sets /res/ to the gamma function of /x/ computed using the Stirling -- series together with argument reduction. If /reciprocal/ is set, the -- reciprocal gamma function is computed instead. foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_stirling" acb_hypgeom_gamma_stirling :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_gamma_taylor/ /res/ /x/ /reciprocal/ /prec/ -- -- Attempts to compute the gamma function of /x/ using Taylor series -- together with argument reduction. This is only supported if /x/ and -- /prec/ are both small enough. If successful, returns 1; otherwise, does -- nothing and returns 0. If /reciprocal/ is set, the reciprocal gamma -- function is computed instead. foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_taylor" acb_hypgeom_gamma_taylor :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO CInt -- | /acb_hypgeom_gamma/ /res/ /x/ /prec/ -- -- Sets /res/ to the gamma function of /x/ computed using a default -- algorithm choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma" acb_hypgeom_gamma :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_rgamma/ /res/ /x/ /prec/ -- -- Sets /res/ to the reciprocal gamma function of /x/ computed using a -- default algorithm choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_rgamma" acb_hypgeom_rgamma :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_lgamma/ /res/ /x/ /prec/ -- -- Sets /res/ to the principal branch of the log-gamma function of /x/ -- computed using a default algorithm choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_lgamma" acb_hypgeom_lgamma :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Convergent series ----------------------------------------------------------- -- In this section, we define -- -- \[`\] -- \[T(k) = \frac{\prod_{i=0}^{p-1} (a_i)_k}{\prod_{i=0}^{q-1} (b_i)_k} z^k\] -- -- and -- -- \[`\] -- \[{}_pf_{q}(a_0,\ldots,a_{p-1}; b_0 \ldots b_{q-1}; z) = {}_{p+1}F_{q}(a_0,\ldots,a_{p-1},1; b_0 \ldots b_{q-1}; z) = \sum_{k=0}^{\infty} T(k)\] -- -- For the conventional generalized hypergeometric function {}_pF_{q}, -- compute \({}_pf_{q+1}\) with the explicit parameter \(b_q = 1\), or -- remove a 1 from the \(a_i\) parameters if there is one. -- -- | /acb_hypgeom_pfq_bound_factor/ /C/ /a/ /p/ /b/ /q/ /z/ /n/ -- -- Computes a factor /C/ such that -- \(\left|\sum_{k=n}^{\infty} T(k)\right| \le C |T(n)|\). See -- @algorithms_hypergeometric_convergent@. As currently implemented, the -- bound becomes infinite when \(n\) is too small, even if the series -- converges. foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_bound_factor" acb_hypgeom_pfq_bound_factor :: Ptr CMag -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> CULong -> IO () -- | /acb_hypgeom_pfq_choose_n/ /a/ /p/ /b/ /q/ /z/ /prec/ -- -- Heuristically attempts to choose a number of terms /n/ to sum of a -- hypergeometric series at a working precision of /prec/ bits. -- -- Uses double precision arithmetic internally. As currently implemented, -- it can fail to produce a good result if the parameters are extremely -- large or extremely close to nonpositive integers. -- -- Numerical cancellation is assumed to be significant, so truncation is -- done when the current term is /prec/ bits smaller than the largest -- encountered term. -- -- This function will also attempt to pick a reasonable truncation point -- for divergent series. foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_choose_n" acb_hypgeom_pfq_choose_n :: Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> IO CLong -- | /acb_hypgeom_pfq_sum_forward/ /s/ /t/ /a/ /p/ /b/ /q/ /z/ /n/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_sum_forward" acb_hypgeom_pfq_sum_forward :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_sum_rs/ /s/ /t/ /a/ /p/ /b/ /q/ /z/ /n/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_sum_rs" acb_hypgeom_pfq_sum_rs :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_sum_bs/ /s/ /t/ /a/ /p/ /b/ /q/ /z/ /n/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_sum_bs" acb_hypgeom_pfq_sum_bs :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_sum_fme/ /s/ /t/ /a/ /p/ /b/ /q/ /z/ /n/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_sum_fme" acb_hypgeom_pfq_sum_fme :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_sum/ /s/ /t/ /a/ /p/ /b/ /q/ /z/ /n/ /prec/ -- -- Computes \(s = \sum_{k=0}^{n-1} T(k)\) and \(t = T(n)\). Does not allow -- aliasing between input and output variables. We require \(n \ge 0\). -- -- The /forward/ version computes the sum using forward recurrence. -- -- The /bs/ version computes the sum using binary splitting. -- -- The /rs/ version computes the sum in reverse order using rectangular -- splitting. It only computes a magnitude bound for the value of /t/. -- -- The /fme/ version uses fast multipoint evaluation. -- -- The default version automatically chooses an algorithm depending on the -- inputs. foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_sum" acb_hypgeom_pfq_sum :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_sum_bs_invz/ /s/ /t/ /a/ /p/ /b/ /q/ /w/ /n/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_sum_bs_invz" acb_hypgeom_pfq_sum_bs_invz :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_sum_invz/ /s/ /t/ /a/ /p/ /b/ /q/ /z/ /w/ /n/ /prec/ -- -- Like @acb_hypgeom_pfq_sum@, but taking advantage of \(w = 1/z\) possibly -- having few bits. foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_sum_invz" acb_hypgeom_pfq_sum_invz :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_direct/ /res/ /a/ /p/ /b/ /q/ /z/ /n/ /prec/ -- -- Computes -- -- \[{}_pf_{q}(z) -- = \sum_{k=0}^{\infty} T(k) -- = \sum_{k=0}^{n-1} T(k) + \varepsilon\] -- -- directly from the defining series, including a rigorous bound for the -- truncation error \(\varepsilon\) in the output. -- -- If \(n < 0\), this function chooses a number of terms automatically -- using @acb_hypgeom_pfq_choose_n@. foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_direct" acb_hypgeom_pfq_direct :: Ptr CAcb -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_series_sum_forward/ /s/ /t/ /a/ /p/ /b/ /q/ /z/ /regularized/ /n/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_series_sum_forward" acb_hypgeom_pfq_series_sum_forward :: Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr (Ptr CAcbPoly) -> CLong -> Ptr (Ptr CAcbPoly) -> CLong -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_series_sum_bs/ /s/ /t/ /a/ /p/ /b/ /q/ /z/ /regularized/ /n/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_series_sum_bs" acb_hypgeom_pfq_series_sum_bs :: Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr (Ptr CAcbPoly) -> CLong -> Ptr (Ptr CAcbPoly) -> CLong -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_series_sum_rs/ /s/ /t/ /a/ /p/ /b/ /q/ /z/ /regularized/ /n/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_series_sum_rs" acb_hypgeom_pfq_series_sum_rs :: Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr (Ptr CAcbPoly) -> CLong -> Ptr (Ptr CAcbPoly) -> CLong -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_series_sum/ /s/ /t/ /a/ /p/ /b/ /q/ /z/ /regularized/ /n/ /len/ /prec/ -- -- Computes \(s = \sum_{k=0}^{n-1} T(k)\) and \(t = T(n)\) given parameters -- and argument that are power series. Does not allow aliasing between -- input and output variables. We require \(n \ge 0\) and that /len/ is -- positive. -- -- If /regularized/ is set, the regularized sum is computed, avoiding -- division by zero at the poles of the gamma function. -- -- The /forward/, /bs/, /rs/ and default versions use forward recurrence, -- binary splitting, rectangular splitting, and an automatic algorithm -- choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_series_sum" acb_hypgeom_pfq_series_sum :: Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr (Ptr CAcbPoly) -> CLong -> Ptr (Ptr CAcbPoly) -> CLong -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_pfq_series_direct/ /res/ /a/ /p/ /b/ /q/ /z/ /regularized/ /n/ /len/ /prec/ -- -- Computes \({}_pf_{q}(z)\) directly using the defining series, given -- parameters and argument that are power series. The result is a power -- series of length /len/. We require that /len/ is positive. -- -- An error bound is computed automatically as a function of the number of -- terms /n/. If \(n < 0\), the number of terms is chosen automatically. -- -- If /regularized/ is set, the regularized hypergeometric function is -- computed instead. foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq_series_direct" acb_hypgeom_pfq_series_direct :: Ptr CAcbPoly -> Ptr (Ptr CAcbPoly) -> CLong -> Ptr (Ptr CAcbPoly) -> CLong -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> CLong -> IO () -- Asymptotic series ----------------------------------------------------------- -- U(a,b,z) is the confluent hypergeometric function of the second kind -- with the principal branch cut, and \(U^{*} = z^a U(a,b,z)\). For details -- about how error bounds are computed, see -- @algorithms_hypergeometric_asymptotic_confluent@. -- -- | /acb_hypgeom_u_asymp/ /res/ /a/ /b/ /z/ /n/ /prec/ -- -- Sets /res/ to \(U^{*}(a,b,z)\) computed using /n/ terms of the -- asymptotic series, with a rigorous bound for the error included in the -- output. We require \(n \ge 0\). foreign import ccall "acb_hypgeom.h acb_hypgeom_u_asymp" acb_hypgeom_u_asymp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_u_use_asymp/ /z/ /prec/ -- -- Heuristically determines whether the asymptotic series can be used to -- evaluate \(U(a,b,z)\) to /prec/ accurate bits (assuming that /a/ and /b/ -- are small). foreign import ccall "acb_hypgeom.h acb_hypgeom_u_use_asymp" acb_hypgeom_u_use_asymp :: Ptr CAcb -> CLong -> IO CInt -- Generalized hypergeometric function ----------------------------------------- -- | /acb_hypgeom_pfq/ /res/ /a/ /p/ /b/ /q/ /z/ /regularized/ /prec/ -- -- Computes the generalized hypergeometric function \({}_pF_{q}(z)\), or -- the regularized version if /regularized/ is set. -- -- This function automatically delegates to a specialized implementation -- when the order (/p/, /q/) is one of (0,0), (1,0), (0,1), (1,1), (2,1). -- Otherwise, it falls back to direct summation. -- -- While this is a top-level function meant to take care of special cases -- automatically, it does not generally perform the optimization of -- deleting parameters that appear in both /a/ and /b/. This can be done -- ahead of time by the user in applications where duplicate parameters are -- likely to occur. foreign import ccall "acb_hypgeom.h acb_hypgeom_pfq" acb_hypgeom_pfq :: Ptr CAcbPoly -> Ptr CAcb -> CLong -> Ptr CAcb -> CLong -> Ptr CAcb -> CInt -> CLong -> IO () -- Confluent hypergeometric functions ------------------------------------------ -- | /acb_hypgeom_u_1f1_series/ /res/ /a/ /b/ /z/ /len/ /prec/ -- -- Computes \(U(a,b,z)\) as a power series truncated to length /len/, given -- \(a, b, z \in \mathbb{C}[[x]]\). If \(b[0] \in \mathbb{Z}\), it computes -- one extra derivative and removes the singularity (it is then assumed -- that \(b[1] \ne 0\)). As currently implemented, the output is -- indeterminate if \(b\) is nonexact and contains an integer. foreign import ccall "acb_hypgeom.h acb_hypgeom_u_1f1_series" acb_hypgeom_u_1f1_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- | /acb_hypgeom_u_1f1/ /res/ /a/ /b/ /z/ /prec/ -- -- Computes \(U(a,b,z)\) as a sum of two convergent hypergeometric series. -- If \(b \in \mathbb{Z}\), it computes the limit value via -- @acb_hypgeom_u_1f1_series@. As currently implemented, the output is -- indeterminate if \(b\) is nonexact and contains an integer. foreign import ccall "acb_hypgeom.h acb_hypgeom_u_1f1" acb_hypgeom_u_1f1 :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_u/ /res/ /a/ /b/ /z/ /prec/ -- -- Computes \(U(a,b,z)\) using an automatic algorithm choice. The function -- @acb_hypgeom_u_asymp@ is used if \(a\) or \(a-b+1\) is a nonpositive -- integer (in which case the asymptotic series terminates), or if /z/ is -- sufficiently large. Otherwise @acb_hypgeom_u_1f1@ is used. foreign import ccall "acb_hypgeom.h acb_hypgeom_u" acb_hypgeom_u :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_m_asymp/ /res/ /a/ /b/ /z/ /regularized/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_m_asymp" acb_hypgeom_m_asymp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_m_1f1/ /res/ /a/ /b/ /z/ /regularized/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_m_1f1" acb_hypgeom_m_1f1 :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_m/ /res/ /a/ /b/ /z/ /regularized/ /prec/ -- -- Computes the confluent hypergeometric function -- \(M(a,b,z) = {}_1F_1(a,b,z)\), or -- \(\mathbf{M}(a,b,z) = \frac{1}{\Gamma(b)} {}_1F_1(a,b,z)\) if -- /regularized/ is set. foreign import ccall "acb_hypgeom.h acb_hypgeom_m" acb_hypgeom_m :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_1f1/ /res/ /a/ /b/ /z/ /regularized/ /prec/ -- -- Alias for @acb_hypgeom_m@. foreign import ccall "acb_hypgeom.h acb_hypgeom_1f1" acb_hypgeom_1f1 :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_0f1_asymp/ /res/ /a/ /z/ /regularized/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_0f1_asymp" acb_hypgeom_0f1_asymp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_0f1_direct/ /res/ /a/ /z/ /regularized/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_0f1_direct" acb_hypgeom_0f1_direct :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_0f1/ /res/ /a/ /z/ /regularized/ /prec/ -- -- Computes the confluent hypergeometric function \({}_0F_1(a,z)\), or -- \(\frac{1}{\Gamma(a)} {}_0F_1(a,z)\) if /regularized/ is set, using -- asymptotic expansions, direct summation, or an automatic algorithm -- choice. The /asymp/ version uses the asymptotic expansions of Bessel -- functions, together with the connection formulas -- -- \[`\] -- \[\frac{{}_0F_1(a,z)}{\Gamma(a)} = (-z)^{(1-a)/2} J_{a-1}(2 \sqrt{-z}) = -- z^{(1-a)/2} I_{a-1}(2 \sqrt{z}).\] -- -- The Bessel-/J/ function is used in the left half-plane and the -- Bessel-/I/ function is used in the right half-plane, to avoid loss of -- accuracy due to evaluating the square root on the branch cut. foreign import ccall "acb_hypgeom.h acb_hypgeom_0f1" acb_hypgeom_0f1 :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- Error functions and Fresnel integrals --------------------------------------- -- | /acb_hypgeom_erf_propagated_error/ /re/ /im/ /z/ -- -- Sets /re/ and /im/ to upper bounds for the error in the real and -- imaginary part resulting from approximating the error function of /z/ by -- the error function evaluated at the midpoint of /z/. Uses the first -- derivative. foreign import ccall "acb_hypgeom.h acb_hypgeom_erf_propagated_error" acb_hypgeom_erf_propagated_error :: Ptr CMag -> Ptr CMag -> Ptr CAcb -> IO () -- | /acb_hypgeom_erf_1f1a/ /res/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_erf_1f1a" acb_hypgeom_erf_1f1a :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_erf_1f1b/ /res/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_erf_1f1b" acb_hypgeom_erf_1f1b :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_erf_asymp/ /res/ /z/ /complementary/ /prec/ /prec2/ -- -- Computes the error function respectively using -- -- \[ -- \begin{aligned} -- \operatorname{erf}(z) &= \frac{2z}{\sqrt{\pi}} -- {}_1F_1(\tfrac{1}{2}, \tfrac{3}{2}, -z^2)\\ -- \operatorname{erf}(z) &= \frac{2z e^{-z^2}}{\sqrt{\pi}} -- {}_1F_1(1, \tfrac{3}{2}, z^2)\\ -- \operatorname{erf}(z) &= \frac{z}{\sqrt{z^2}} -- \left(1 - \frac{e^{-z^2}}{\sqrt{\pi}} -- U(\tfrac{1}{2}, \tfrac{1}{2}, z^2)\right) = -- \frac{z}{\sqrt{z^2}} - \frac{e^{-z^2}}{z \sqrt{\pi}} -- U^{*}(\tfrac{1}{2}, \tfrac{1}{2}, z^2). -- \end{aligned} -- \] -- -- The /asymp/ version takes a second precision to use for the /U/ term. It -- also takes an extra flag /complementary/, computing the complementary -- error function if set. foreign import ccall "acb_hypgeom.h acb_hypgeom_erf_asymp" acb_hypgeom_erf_asymp :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> CLong -> IO () -- | /acb_hypgeom_erf/ /res/ /z/ /prec/ -- -- Computes the error function using an automatic algorithm choice. If /z/ -- is too small to use the asymptotic expansion, a working precision -- sufficient to circumvent cancellation in the hypergeometric series is -- determined automatically, and a bound for the propagated error is -- computed with @acb_hypgeom_erf_propagated_error@. foreign import ccall "acb_hypgeom.h acb_hypgeom_erf" acb_hypgeom_erf :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /_acb_hypgeom_erf_series/ /res/ /z/ /zlen/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_erf_series" _acb_hypgeom_erf_series :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_erf_series/ /res/ /z/ /len/ /prec/ -- -- Computes the error function of the power series /z/, truncated to length -- /len/. foreign import ccall "acb_hypgeom.h acb_hypgeom_erf_series" acb_hypgeom_erf_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- | /acb_hypgeom_erfc/ /res/ /z/ /prec/ -- -- Computes the complementary error function -- \(\operatorname{erfc}(z) = 1 - \operatorname{erf}(z)\). This function -- avoids catastrophic cancellation for large positive /z/. foreign import ccall "acb_hypgeom.h acb_hypgeom_erfc" acb_hypgeom_erfc :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /_acb_hypgeom_erfc_series/ /res/ /z/ /zlen/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_erfc_series" _acb_hypgeom_erfc_series :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_erfc_series/ /res/ /z/ /len/ /prec/ -- -- Computes the complementary error function of the power series /z/, -- truncated to length /len/. foreign import ccall "acb_hypgeom.h acb_hypgeom_erfc_series" acb_hypgeom_erfc_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- | /acb_hypgeom_erfi/ /res/ /z/ /prec/ -- -- Computes the imaginary error function -- \(\operatorname{erfi}(z) = -i\operatorname{erf}(iz)\). This is a trivial -- wrapper of @acb_hypgeom_erf@. foreign import ccall "acb_hypgeom.h acb_hypgeom_erfi" acb_hypgeom_erfi :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /_acb_hypgeom_erfi_series/ /res/ /z/ /zlen/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_erfi_series" _acb_hypgeom_erfi_series :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_erfi_series/ /res/ /z/ /len/ /prec/ -- -- Computes the imaginary error function of the power series /z/, truncated -- to length /len/. foreign import ccall "acb_hypgeom.h acb_hypgeom_erfi_series" acb_hypgeom_erfi_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- | /acb_hypgeom_fresnel/ /res1/ /res2/ /z/ /normalized/ /prec/ -- -- Sets /res1/ to the Fresnel sine integral \(S(z)\) and /res2/ to the -- Fresnel cosine integral \(C(z)\). Optionally, just a single function can -- be computed by passing /NULL/ as the other output variable. The -- definition \(S(z) = \int_0^z \sin(t^2) dt\) is used if /normalized/ is -- 0, and \(S(z) = \int_0^z \sin(\tfrac{1}{2} \pi t^2) dt\) is used if -- /normalized/ is 1 (the latter is the Abramowitz & Stegun convention). -- \(C(z)\) is defined analogously. foreign import ccall "acb_hypgeom.h acb_hypgeom_fresnel" acb_hypgeom_fresnel :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /_acb_hypgeom_fresnel_series/ /res1/ /res2/ /z/ /zlen/ /normalized/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_fresnel_series" _acb_hypgeom_fresnel_series :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CInt -> CLong -> CLong -> IO () -- | /acb_hypgeom_fresnel_series/ /res1/ /res2/ /z/ /normalized/ /len/ /prec/ -- -- Sets /res1/ to the Fresnel sine integral and /res2/ to the Fresnel -- cosine integral of the power series /z/, truncated to length /len/. -- Optionally, just a single function can be computed by passing /NULL/ as -- the other output variable. foreign import ccall "acb_hypgeom.h acb_hypgeom_fresnel_series" acb_hypgeom_fresnel_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> IO () -- Bessel functions ------------------------------------------------------------ -- | /acb_hypgeom_bessel_j_asymp/ /res/ /nu/ /z/ /prec/ -- -- Computes the Bessel function of the first kind via -- @acb_hypgeom_u_asymp@. For all complex \(\nu, z\), we have -- -- \[`\] -- \[J_{\nu}(z) = \frac{z^{\nu}}{2^{\nu} e^{iz} \Gamma(\nu+1)} -- {}_1F_1(\nu+\tfrac{1}{2}, 2\nu+1, 2iz) = A_{+} B_{+} + A_{-} B_{-}\] -- -- where -- -- \[`\] -- \[A_{\pm} = z^{\nu} (z^2)^{-\tfrac{1}{2}-\nu} (\mp i z)^{\tfrac{1}{2}+\nu} (2 \pi)^{-1/2} = (\pm iz)^{-1/2-\nu} z^{\nu} (2 \pi)^{-1/2}\] -- -- \[`\] -- \[B_{\pm} = e^{\pm i z} U^{*}(\nu+\tfrac{1}{2}, 2\nu+1, \mp 2iz).\] -- -- Nicer representations of the factors \(A_{\pm}\) can be given depending -- conditionally on the parameters. If -- \(\nu + \tfrac{1}{2} = n \in \mathbb{Z}\), we have -- \(A_{\pm} = (\pm i)^{n} (2 \pi z)^{-1/2}\). And if -- \(\operatorname{Re}(z) > 0\), we have -- \(A_{\pm} = \exp(\mp i [(2\nu+1)/4] \pi) (2 \pi z)^{-1/2}\). foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_j_asymp" acb_hypgeom_bessel_j_asymp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_bessel_j_0f1/ /res/ /nu/ /z/ /prec/ -- -- Computes the Bessel function of the first kind from -- -- \[`\] -- \[J_{\nu}(z) = \frac{1}{\Gamma(\nu+1)} \left(\frac{z}{2}\right)^{\nu} -- {}_0F_1\left(\nu+1, -\frac{z^2}{4}\right).\] foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_j_0f1" acb_hypgeom_bessel_j_0f1 :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_bessel_j/ /res/ /nu/ /z/ /prec/ -- -- Computes the Bessel function of the first kind \(J_{\nu}(z)\) using an -- automatic algorithm choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_j" acb_hypgeom_bessel_j :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_bessel_y/ /res/ /nu/ /z/ /prec/ -- -- Computes the Bessel function of the second kind \(Y_{\nu}(z)\) from the -- formula -- -- \[`\] -- \[Y_{\nu}(z) = \frac{\cos(\nu \pi) J_{\nu}(z) - J_{-\nu}(z)}{\sin(\nu \pi)}\] -- -- unless \(\nu = n\) is an integer in which case the limit value -- -- \[`\] -- \[Y_n(z) = -\frac{2}{\pi} \left( i^n K_n(iz) + -- \left[\log(iz)-\log(z)\right] J_n(z) \right)\] -- -- is computed. As currently implemented, the output is indeterminate if -- \(\nu\) is nonexact and contains an integer. foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_y" acb_hypgeom_bessel_y :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_bessel_jy/ /res1/ /res2/ /nu/ /z/ /prec/ -- -- Sets /res1/ to \(J_{\nu}(z)\) and /res2/ to \(Y_{\nu}(z)\), computed -- simultaneously. From these values, the user can easily construct the -- Bessel functions of the third kind (Hankel functions) -- \(H_{\nu}^{(1)}(z), H_{\nu}^{(2)}(z) = J_{\nu}(z) \pm i Y_{\nu}(z)\). foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_jy" acb_hypgeom_bessel_jy :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Modified Bessel functions --------------------------------------------------- -- | /acb_hypgeom_bessel_i_asymp/ /res/ /nu/ /z/ /scaled/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_i_asymp" acb_hypgeom_bessel_i_asymp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_bessel_i_0f1/ /res/ /nu/ /z/ /scaled/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_i_0f1" acb_hypgeom_bessel_i_0f1 :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_bessel_i/ /res/ /nu/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_i" acb_hypgeom_bessel_i :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_bessel_i_scaled/ /res/ /nu/ /z/ /prec/ -- -- Computes the modified Bessel function of the first kind -- \(I_{\nu}(z) = z^{\nu} (iz)^{-\nu} J_{\nu}(iz)\) respectively using -- asymptotic series (see @acb_hypgeom_bessel_j_asymp@), the convergent -- series -- -- \[`\] -- \[I_{\nu}(z) = \frac{1}{\Gamma(\nu+1)} \left(\frac{z}{2}\right)^{\nu} -- {}_0F_1\left(\nu+1, \frac{z^2}{4}\right),\] -- -- or an automatic algorithm choice. -- -- The /scaled/ version computes the function \(e^{-z} I_{\nu}(z)\). The -- /asymp/ and /0f1/ functions implement both variants and allow choosing -- with a flag. foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_i_scaled" acb_hypgeom_bessel_i_scaled :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_bessel_k_asymp/ /res/ /nu/ /z/ /scaled/ /prec/ -- -- Computes the modified Bessel function of the second kind via via -- @acb_hypgeom_u_asymp@. For all \(\nu\) and all \(z \ne 0\), we have -- -- \[`\] -- \[K_{\nu}(z) = \left(\frac{2z}{\pi}\right)^{-1/2} e^{-z} -- U^{*}(\nu+\tfrac{1}{2}, 2\nu+1, 2z).\] -- -- If /scaled/ is set, computes the function \(e^{z} K_{\nu}(z)\). foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_k_asymp" acb_hypgeom_bessel_k_asymp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_bessel_k_0f1_series/ /res/ /nu/ /z/ /scaled/ /len/ /prec/ -- -- Computes the modified Bessel function of the second kind \(K_{\nu}(z)\) -- as a power series truncated to length /len/, given -- \(\nu, z \in \mathbb{C}[[x]]\). Uses the formula -- -- \[`\] -- \[K_{\nu}(z) = \frac{1}{2} \frac{\pi}{\sin(\pi \nu)} \left[ -- \left(\frac{z}{2}\right)^{-\nu} -- {}_0{\widetilde F}_1\left(1-\nu, \frac{z^2}{4}\right) -- - -- \left(\frac{z}{2}\right)^{\nu} -- {}_0{\widetilde F}_1\left(1+\nu, \frac{z^2}{4}\right) -- \right].\] -- -- If \(\nu[0] \in \mathbb{Z}\), it computes one extra derivative and -- removes the singularity (it is then assumed that \(\nu[1] \ne 0\)). As -- currently implemented, the output is indeterminate if \(\nu[0]\) is -- nonexact and contains an integer. -- -- If /scaled/ is set, computes the function \(e^{z} K_{\nu}(z)\). foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_k_0f1_series" acb_hypgeom_bessel_k_0f1_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> IO () -- | /acb_hypgeom_bessel_k_0f1/ /res/ /nu/ /z/ /scaled/ /prec/ -- -- Computes the modified Bessel function of the second kind from -- -- \[`\] -- \[K_{\nu}(z) = \frac{1}{2} \left[ -- \left(\frac{z}{2}\right)^{-\nu} -- \Gamma(\nu) -- {}_0F_1\left(1-\nu, \frac{z^2}{4}\right) -- - -- \left(\frac{z}{2}\right)^{\nu} -- \frac{\pi}{\nu \sin(\pi \nu) \Gamma(\nu)} -- {}_0F_1\left(\nu+1, \frac{z^2}{4}\right) -- \right]\] -- -- if \(\nu \notin \mathbb{Z}\). If \(\nu \in \mathbb{Z}\), it computes the -- limit value via @acb_hypgeom_bessel_k_0f1_series@. As currently -- implemented, the output is indeterminate if \(\nu\) is nonexact and -- contains an integer. -- -- If /scaled/ is set, computes the function \(e^{z} K_{\nu}(z)\). foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_k_0f1" acb_hypgeom_bessel_k_0f1 :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_bessel_k/ /res/ /nu/ /z/ /prec/ -- -- Computes the modified Bessel function of the second kind \(K_{\nu}(z)\) -- using an automatic algorithm choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_k" acb_hypgeom_bessel_k :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_bessel_k_scaled/ /res/ /nu/ /z/ /prec/ -- -- Computes the function \(e^{z} K_{\nu}(z)\). foreign import ccall "acb_hypgeom.h acb_hypgeom_bessel_k_scaled" acb_hypgeom_bessel_k_scaled :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Airy functions -------------------------------------------------------------- -- The Airy functions are linearly independent solutions of the -- differential equation \(y'' - zy = 0\). All solutions are entire -- functions. The standard solutions are denoted -- \(\operatorname{Ai}(z), \operatorname{Bi}(z)\). For negative /z/, both -- functions are oscillatory. For positive /z/, the first function -- decreases exponentially while the second increases exponentially. -- -- The Airy functions can be expressed in terms of Bessel functions of -- fractional order, but this is inconvenient since such formulas only hold -- piecewise (due to the Stokes phenomenon). Computation of the Airy -- functions can also be optimized more than Bessel functions in general. -- We therefore provide a dedicated interface for evaluating Airy -- functions. -- -- The following methods optionally compute (operatorname{Ai}(z), -- operatorname{Ai}\'(z), operatorname{Bi}(z), operatorname{Bi}\'(z)) -- simultaneously. Any of the four function values can be omitted by -- passing /NULL/ for the unwanted output variables, speeding up the -- evaluation. -- -- | /acb_hypgeom_airy_direct/ /ai/ /ai_prime/ /bi/ /bi_prime/ /z/ /n/ /prec/ -- -- Computes the Airy functions using direct series expansions truncated at -- /n/ terms. Error bounds are included in the output. foreign import ccall "acb_hypgeom.h acb_hypgeom_airy_direct" acb_hypgeom_airy_direct :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_airy_asymp/ /ai/ /ai_prime/ /bi/ /bi_prime/ /z/ /n/ /prec/ -- -- Computes the Airy functions using asymptotic expansions truncated at /n/ -- terms. Error bounds are included in the output. For details about how -- the error bounds are computed, see -- @algorithms_hypergeometric_asymptotic_airy@. foreign import ccall "acb_hypgeom.h acb_hypgeom_airy_asymp" acb_hypgeom_airy_asymp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /acb_hypgeom_airy_bound/ /ai/ /ai_prime/ /bi/ /bi_prime/ /z/ -- -- Computes bounds for the Airy functions using first-order asymptotic -- expansions together with error bounds. This function uses some shortcuts -- to make it slightly faster than calling @acb_hypgeom_airy_asymp@ with -- \(n = 1\). foreign import ccall "acb_hypgeom.h acb_hypgeom_airy_bound" acb_hypgeom_airy_bound :: Ptr CMag -> Ptr CMag -> Ptr CMag -> Ptr CMag -> Ptr CAcb -> IO () -- | /acb_hypgeom_airy/ /ai/ /ai_prime/ /bi/ /bi_prime/ /z/ /prec/ -- -- Computes Airy functions using an automatic algorithm choice. -- -- We use @acb_hypgeom_airy_asymp@ whenever this gives full accuracy and -- @acb_hypgeom_airy_direct@ otherwise. In the latter case, we first use -- hardware double precision arithmetic to determine an accurate estimate -- of the working precision needed to compute the Airy functions accurately -- for given /z/. This estimate is obtained by comparing the leading-order -- asymptotic estimate of the Airy functions with the magnitude of the -- largest term in the power series. The estimate is generic in the sense -- that it does not take into account vanishing near the roots of the -- functions. We subsequently evaluate the power series at the midpoint of -- /z/ and bound the propagated error using derivatives. Derivatives are -- bounded using @acb_hypgeom_airy_bound@. foreign import ccall "acb_hypgeom.h acb_hypgeom_airy" acb_hypgeom_airy :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_airy_jet/ /ai/ /bi/ /z/ /len/ /prec/ -- -- Writes to /ai/ and /bi/ the respective Taylor expansions of the Airy -- functions at the point /z/, truncated to length /len/. Either of the -- outputs can be /NULL/ to avoid computing that function. The variable /z/ -- is not allowed to be aliased with the outputs. To simplify the -- implementation, this method does not compute the series expansions of -- the primed versions directly; these are easily obtained by computing one -- extra coefficient and differentiating the output with -- @_acb_poly_derivative@. foreign import ccall "acb_hypgeom.h acb_hypgeom_airy_jet" acb_hypgeom_airy_jet :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /_acb_hypgeom_airy_series/ /ai/ /ai_prime/ /bi/ /bi_prime/ /z/ /zlen/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_airy_series" _acb_hypgeom_airy_series :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_airy_series/ /ai/ /ai_prime/ /bi/ /bi_prime/ /z/ /len/ /prec/ -- -- Computes the Airy functions evaluated at the power series /z/, truncated -- to length /len/. As with the other Airy methods, any of the outputs can -- be /NULL/. foreign import ccall "acb_hypgeom.h acb_hypgeom_airy_series" acb_hypgeom_airy_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- Coulomb wave functions ------------------------------------------------------ -- Coulomb wave functions are solutions of the Coulomb wave equation -- -- \[`\] -- \[y'' + \left(1 - \frac{2 \eta}{z} - \frac{\ell(\ell+1)}{z^2}\right) y = 0\] -- -- which is the radial Schrödinger equation for a charged particle in a -- Coulomb potential \(1/z\), where \(\ell\) is the orbital angular -- momentum and eta is the Sommerfeld parameter. The standard solutions are -- named \(F_{\ell}(\eta,z)\) (regular at the origin \(z = 0\)) and -- \(G_{\ell}(\eta,z)\) (irregular at the origin). The irregular solutions -- H^{pm}_{ell}(eta,z) = G_{ell}(eta,z) pm i F_{ell}(eta,z) are also used. -- -- Coulomb wave functions are special cases of confluent hypergeometric -- functions. The normalization constants and connection formulas are -- discussed in < [DYF1999]>, < [Gas2018]>, < [Mic2007]> and chapter 33 in -- < [NIST2012]>. In this implementation, we define the analytic -- continuations of all the functions so that the branch cut with respect -- to /z/ is placed on the negative real axis. Precise definitions are -- given in <http://fungrim.org/topic/Coulomb_wave_functions/> -- -- The following methods optionally compute F_{ell}(eta,z), G_{ell}(eta,z), -- H^{+}_{ell}(eta,z), H^{-}_{ell}(eta,z) simultaneously. Any of the four -- function values can be omitted by passing /NULL/ for the unwanted output -- variables. The redundant functions \(H^{\pm}\) are provided explicitly -- since taking the linear combination of /F/ and /G/ suffers from -- cancellation in parts of the complex plane. -- -- | /acb_hypgeom_coulomb/ /F/ /G/ /Hpos/ /Hneg/ /l/ /eta/ /z/ /prec/ -- -- Writes to /F/, /G/, /Hpos/, /Hneg/ the values of the respective Coulomb -- wave functions. Any of the outputs can be /NULL/. foreign import ccall "acb_hypgeom.h acb_hypgeom_coulomb" acb_hypgeom_coulomb :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_coulomb_jet/ /F/ /G/ /Hpos/ /Hneg/ /l/ /eta/ /z/ /len/ /prec/ -- -- Writes to /F/, /G/, /Hpos/, /Hneg/ the respective Taylor expansions of -- the Coulomb wave functions at the point /z/, truncated to length /len/. -- Any of the outputs can be /NULL/. foreign import ccall "acb_hypgeom.h acb_hypgeom_coulomb_jet" acb_hypgeom_coulomb_jet :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> IO () -- | /_acb_hypgeom_coulomb_series/ /F/ /G/ /Hpos/ /Hneg/ /l/ /eta/ /z/ /zlen/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_coulomb_series" _acb_hypgeom_coulomb_series :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_coulomb_series/ /F/ /G/ /Hpos/ /Hneg/ /l/ /eta/ /z/ /len/ /prec/ -- -- Computes the Coulomb wave functions evaluated at the power series /z/, -- truncated to length /len/. Any of the outputs can be /NULL/. foreign import ccall "acb_hypgeom.h acb_hypgeom_coulomb_series" acb_hypgeom_coulomb_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcb -> Ptr CAcb -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- Incomplete gamma and beta functions ----------------------------------------- -- | /acb_hypgeom_gamma_upper_asymp/ /res/ /s/ /z/ /regularized/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_upper_asymp" acb_hypgeom_gamma_upper_asymp :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_gamma_upper_1f1a/ /res/ /s/ /z/ /regularized/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_upper_1f1a" acb_hypgeom_gamma_upper_1f1a :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_gamma_upper_1f1b/ /res/ /s/ /z/ /regularized/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_upper_1f1b" acb_hypgeom_gamma_upper_1f1b :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_gamma_upper_singular/ /res/ /s/ /z/ /regularized/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_upper_singular" acb_hypgeom_gamma_upper_singular :: Ptr CAcb -> CLong -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_gamma_upper/ /res/ /s/ /z/ /regularized/ /prec/ -- -- If /regularized/ is 0, computes the upper incomplete gamma function -- \(\Gamma(s,z)\). -- -- If /regularized/ is 1, computes the regularized upper incomplete gamma -- function \(Q(s,z) = \Gamma(s,z) / \Gamma(s)\). -- -- If /regularized/ is 2, computes the generalized exponential integral -- \(z^{-s} \Gamma(s,z) = E_{1-s}(z)\) instead (this option is mainly -- intended for internal use; @acb_hypgeom_expint@ is the intended -- interface for computing the exponential integral). -- -- The different methods respectively implement the formulas -- -- \[`\] -- \[\Gamma(s,z) = e^{-z} U(1-s,1-s,z)\] -- -- \[`\] -- \[\Gamma(s,z) = \Gamma(s) - \frac{z^s}{s} {}_1F_1(s, s+1, -z)\] -- -- \[`\] -- \[\Gamma(s,z) = \Gamma(s) - \frac{z^s e^{-z}}{s} {}_1F_1(1, s+1, z)\] -- -- \[`\] -- \[\Gamma(s,z) = \frac{(-1)^n}{n!} (\psi(n+1) - \log(z)) -- + \frac{(-1)^n}{(n+1)!} z \, {}_2F_2(1,1,2,2+n,-z) -- - z^{-n} \sum_{k=0}^{n-1} \frac{(-z)^k}{(k-n) k!}, -- \quad n = -s \in \mathbb{Z}_{\ge 0}\] -- -- and an automatic algorithm choice. The automatic version also handles -- other special input such as \(z = 0\) and \(s = 1, 2, 3\). The -- /singular/ version evaluates the finite sum directly and therefore -- assumes that /s/ is not too large. foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_upper" acb_hypgeom_gamma_upper :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /_acb_hypgeom_gamma_upper_series/ /res/ /s/ /z/ /zlen/ /regularized/ /n/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_gamma_upper_series" _acb_hypgeom_gamma_upper_series :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CInt -> CLong -> CLong -> IO () -- | /acb_hypgeom_gamma_upper_series/ /res/ /s/ /z/ /regularized/ /n/ /prec/ -- -- Sets /res/ to an upper incomplete gamma function where /s/ is a constant -- and /z/ is a power series, truncated to length /n/. The /regularized/ -- argument has the same interpretation as in @acb_hypgeom_gamma_upper@. foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_upper_series" acb_hypgeom_gamma_upper_series :: Ptr CAcbPoly -> Ptr CAcb -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> IO () -- | /acb_hypgeom_gamma_lower/ /res/ /s/ /z/ /regularized/ /prec/ -- -- If /regularized/ is 0, computes the lower incomplete gamma function -- \(\gamma(s,z) = \frac{z^s}{s} {}_1F_1(s, s+1, -z)\). -- -- If /regularized/ is 1, computes the regularized lower incomplete gamma -- function \(P(s,z) = \gamma(s,z) / \Gamma(s)\). -- -- If /regularized/ is 2, computes a further regularized lower incomplete -- gamma function \(\gamma^{*}(s,z) = z^{-s} P(s,z)\). foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_lower" acb_hypgeom_gamma_lower :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /_acb_hypgeom_gamma_lower_series/ /res/ /s/ /z/ /zlen/ /regularized/ /n/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_gamma_lower_series" _acb_hypgeom_gamma_lower_series :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CInt -> CLong -> CLong -> IO () -- | /acb_hypgeom_gamma_lower_series/ /res/ /s/ /z/ /regularized/ /n/ /prec/ -- -- Sets /res/ to an lower incomplete gamma function where /s/ is a constant -- and /z/ is a power series, truncated to length /n/. The /regularized/ -- argument has the same interpretation as in @acb_hypgeom_gamma_lower@. foreign import ccall "acb_hypgeom.h acb_hypgeom_gamma_lower_series" acb_hypgeom_gamma_lower_series :: Ptr CAcbPoly -> Ptr CAcb -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> IO () -- | /acb_hypgeom_beta_lower/ /res/ /a/ /b/ /z/ /regularized/ /prec/ -- -- Computes the (lower) incomplete beta function, defined by -- \(B(a,b;z) = \int_0^z t^{a-1} (1-t)^{b-1}\), optionally the regularized -- incomplete beta function \(I(a,b;z) = B(a,b;z) / B(a,b;1)\). -- -- In general, the integral must be interpreted using analytic -- continuation. The precise definitions for all parameter values are -- -- \[`\] -- \[B(a,b;z) = \frac{z^a}{a} {}_2F_1(a, 1-b, a+1, z)\] -- -- \[`\] -- \[I(a,b;z) = \frac{\Gamma(a+b)}{\Gamma(b)} z^a {}_2{\widetilde F}_1(a, 1-b, a+1, z).\] -- -- Note that both functions with this definition are undefined for -- nonpositive integer /a/, and /I/ is undefined for nonpositive integer -- \(a + b\). foreign import ccall "acb_hypgeom.h acb_hypgeom_beta_lower" acb_hypgeom_beta_lower :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /_acb_hypgeom_beta_lower_series/ /res/ /a/ /b/ /z/ /zlen/ /regularized/ /n/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_beta_lower_series" _acb_hypgeom_beta_lower_series :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> CInt -> CLong -> CLong -> IO () -- | /acb_hypgeom_beta_lower_series/ /res/ /a/ /b/ /z/ /regularized/ /n/ /prec/ -- -- Sets /res/ to the lower incomplete beta function \(B(a,b;z)\) -- (optionally the regularized version \(I(a,b;z)\)) where /a/ and /b/ are -- constants and /z/ is a power series, truncating the result to length -- /n/. The underscore method requires positive lengths and does not -- support aliasing. foreign import ccall "acb_hypgeom.h acb_hypgeom_beta_lower_series" acb_hypgeom_beta_lower_series :: Ptr CAcbPoly -> Ptr CAcb -> Ptr CAcb -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> IO () -- Exponential and trigonometric integrals ------------------------------------- -- The branch cut conventions of the following functions match Mathematica. -- -- | /acb_hypgeom_expint/ /res/ /s/ /z/ /prec/ -- -- Computes the generalized exponential integral \(E_s(z)\). This is a -- trivial wrapper of @acb_hypgeom_gamma_upper@. foreign import ccall "acb_hypgeom.h acb_hypgeom_expint" acb_hypgeom_expint :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_ei_asymp/ /res/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_ei_asymp" acb_hypgeom_ei_asymp :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_ei_2f2/ /res/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_ei_2f2" acb_hypgeom_ei_2f2 :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_ei/ /res/ /z/ /prec/ -- -- Computes the exponential integral \(\operatorname{Ei}(z)\), respectively -- using -- -- \[`\] -- \[\operatorname{Ei}(z) = -e^z U(1,1,-z) - \log(-z) -- + \frac{1}{2} \left(\log(z) - \log\left(\frac{1}{z}\right) \right)\] -- -- \[`\] -- \[\operatorname{Ei}(z) = z {}_2F_2(1, 1; 2, 2; z) + \gamma -- + \frac{1}{2} \left(\log(z) - \log\left(\frac{1}{z}\right) \right)\] -- -- and an automatic algorithm choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_ei" acb_hypgeom_ei :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /_acb_hypgeom_ei_series/ /res/ /z/ /zlen/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_ei_series" _acb_hypgeom_ei_series :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_ei_series/ /res/ /z/ /len/ /prec/ -- -- Computes the exponential integral of the power series /z/, truncated to -- length /len/. foreign import ccall "acb_hypgeom.h acb_hypgeom_ei_series" acb_hypgeom_ei_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- | /acb_hypgeom_si_asymp/ /res/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_si_asymp" acb_hypgeom_si_asymp :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_si_1f2/ /res/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_si_1f2" acb_hypgeom_si_1f2 :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_si/ /res/ /z/ /prec/ -- -- Computes the sine integral \(\operatorname{Si}(z)\), respectively using -- -- \[`\] -- \[\operatorname{Si}(z) = \frac{i}{2} \left[ -- e^{iz} U(1,1,-iz) - e^{-iz} U(1,1,iz) + -- \log(-iz) - \log(iz) \right]\] -- -- \[`\] -- \[\operatorname{Si}(z) = z {}_1F_2(\tfrac{1}{2}; \tfrac{3}{2}, \tfrac{3}{2}; -\tfrac{z^2}{4})\] -- -- and an automatic algorithm choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_si" acb_hypgeom_si :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /_acb_hypgeom_si_series/ /res/ /z/ /zlen/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_si_series" _acb_hypgeom_si_series :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_si_series/ /res/ /z/ /len/ /prec/ -- -- Computes the sine integral of the power series /z/, truncated to length -- /len/. foreign import ccall "acb_hypgeom.h acb_hypgeom_si_series" acb_hypgeom_si_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- | /acb_hypgeom_ci_asymp/ /res/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_ci_asymp" acb_hypgeom_ci_asymp :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_ci_2f3/ /res/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_ci_2f3" acb_hypgeom_ci_2f3 :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_ci/ /res/ /z/ /prec/ -- -- Computes the cosine integral \(\operatorname{Ci}(z)\), respectively -- using -- -- \[`\] -- \[\operatorname{Ci}(z) = \log(z) - \frac{1}{2} \left[ -- e^{iz} U(1,1,-iz) + e^{-iz} U(1,1,iz) + -- \log(-iz) + \log(iz) \right]\] -- -- \[`\] -- \[\operatorname{Ci}(z) = -\tfrac{z^2}{4} -- {}_2F_3(1, 1; 2, 2, \tfrac{3}{2}; -\tfrac{z^2}{4}) -- + \log(z) + \gamma\] -- -- and an automatic algorithm choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_ci" acb_hypgeom_ci :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /_acb_hypgeom_ci_series/ /res/ /z/ /zlen/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_ci_series" _acb_hypgeom_ci_series :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_ci_series/ /res/ /z/ /len/ /prec/ -- -- Computes the cosine integral of the power series /z/, truncated to -- length /len/. foreign import ccall "acb_hypgeom.h acb_hypgeom_ci_series" acb_hypgeom_ci_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- | /acb_hypgeom_shi/ /res/ /z/ /prec/ -- -- Computes the hyperbolic sine integral -- \(\operatorname{Shi}(z) = -i \operatorname{Si}(iz)\). This is a trivial -- wrapper of @acb_hypgeom_si@. foreign import ccall "acb_hypgeom.h acb_hypgeom_shi" acb_hypgeom_shi :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /_acb_hypgeom_shi_series/ /res/ /z/ /zlen/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_shi_series" _acb_hypgeom_shi_series :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_shi_series/ /res/ /z/ /len/ /prec/ -- -- Computes the hyperbolic sine integral of the power series /z/, truncated -- to length /len/. foreign import ccall "acb_hypgeom.h acb_hypgeom_shi_series" acb_hypgeom_shi_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- | /acb_hypgeom_chi_asymp/ /res/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_chi_asymp" acb_hypgeom_chi_asymp :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_chi_2f3/ /res/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_chi_2f3" acb_hypgeom_chi_2f3 :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_chi/ /res/ /z/ /prec/ -- -- Computes the hyperbolic cosine integral \(\operatorname{Chi}(z)\), -- respectively using -- -- \[`\] -- \[\operatorname{Chi}(z) = -\frac{1}{2} \left[ -- e^{z} U(1,1,-z) + e^{-z} U(1,1,z) + -- \log(-z) - \log(z) \right]\] -- -- \[`\] -- \[\operatorname{Chi}(z) = \tfrac{z^2}{4} -- {}_2F_3(1, 1; 2, 2, \tfrac{3}{2}; \tfrac{z^2}{4}) -- + \log(z) + \gamma\] -- -- and an automatic algorithm choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_chi" acb_hypgeom_chi :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /_acb_hypgeom_chi_series/ /res/ /z/ /zlen/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_chi_series" _acb_hypgeom_chi_series :: Ptr CAcb -> Ptr CAcb -> CLong -> CLong -> CLong -> IO () -- | /acb_hypgeom_chi_series/ /res/ /z/ /len/ /prec/ -- -- Computes the hyperbolic cosine integral of the power series /z/, -- truncated to length /len/. foreign import ccall "acb_hypgeom.h acb_hypgeom_chi_series" acb_hypgeom_chi_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> CLong -> CLong -> IO () -- | /acb_hypgeom_li/ /res/ /z/ /offset/ /prec/ -- -- If /offset/ is zero, computes the logarithmic integral -- \(\operatorname{li}(z) = \operatorname{Ei}(\log(z))\). -- -- If /offset/ is nonzero, computes the offset logarithmic integral -- \(\operatorname{Li}(z) = \operatorname{li}(z) - \operatorname{li}(2)\). foreign import ccall "acb_hypgeom.h acb_hypgeom_li" acb_hypgeom_li :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /_acb_hypgeom_li_series/ /res/ /z/ /zlen/ /offset/ /len/ /prec/ -- foreign import ccall "acb_hypgeom.h _acb_hypgeom_li_series" _acb_hypgeom_li_series :: Ptr CAcb -> Ptr CAcb -> CLong -> CInt -> CLong -> CLong -> IO () -- | /acb_hypgeom_li_series/ /res/ /z/ /offset/ /len/ /prec/ -- -- Computes the logarithmic integral (optionally the offset version) of the -- power series /z/, truncated to length /len/. foreign import ccall "acb_hypgeom.h acb_hypgeom_li_series" acb_hypgeom_li_series :: Ptr CAcbPoly -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> IO () -- Gauss hypergeometric function ----------------------------------------------- -- The following methods compute the Gauss hypergeometric function -- -- \[`\] -- \[F(z) = {}_2F_1(a,b,c,z) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k} \frac{z^k}{k!}\] -- -- or the regularized version operatorname{mathbf{F}}(z) = -- operatorname{mathbf{F}}(a,b,c,z) = {}_2F_1(a,b,c,z) \/ Gamma(c) if the -- flag /regularized/ is set. -- -- | /acb_hypgeom_2f1_continuation/ /res0/ /res1/ /a/ /b/ /c/ /z0/ /z1/ /f0/ /f1/ /prec/ -- -- Given \(F(z_0), F'(z_0)\) in /f0/, /f1/, sets /res0/ and /res1/ to -- \(F(z_1), F'(z_1)\) by integrating the hypergeometric differential -- equation along a straight-line path. The evaluation points should be -- well-isolated from the singular points 0 and 1. foreign import ccall "acb_hypgeom.h acb_hypgeom_2f1_continuation" acb_hypgeom_2f1_continuation :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_2f1_series_direct/ /res/ /a/ /b/ /c/ /z/ /regularized/ /len/ /prec/ -- -- Computes \(F(z)\) of the given power series truncated to length /len/, -- using direct summation of the hypergeometric series. foreign import ccall "acb_hypgeom.h acb_hypgeom_2f1_series_direct" acb_hypgeom_2f1_series_direct :: Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> Ptr CAcbPoly -> CInt -> CLong -> CLong -> IO () -- | /acb_hypgeom_2f1_direct/ /res/ /a/ /b/ /c/ /z/ /regularized/ /prec/ -- -- Computes \(F(z)\) using direct summation of the hypergeometric series. foreign import ccall "acb_hypgeom.h acb_hypgeom_2f1_direct" acb_hypgeom_2f1_direct :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_2f1_transform/ /res/ /a/ /b/ /c/ /z/ /flags/ /which/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_2f1_transform" acb_hypgeom_2f1_transform :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CInt -> CLong -> IO () -- | /acb_hypgeom_2f1_transform_limit/ /res/ /a/ /b/ /c/ /z/ /regularized/ /which/ /prec/ -- -- Computes \(F(z)\) using an argument transformation determined by the -- flag /which/. Legal values are 1 for \(z/(z-1)\), 2 for \(1/z\), 3 for -- \(1/(1-z)\), 4 for \(1-z\), and 5 for \(1-1/z\). -- -- The /transform_limit/ version assumes that /which/ is not 1. If /which/ -- is 2 or 3, it assumes that \(b-a\) represents an exact integer. If -- /which/ is 4 or 5, it assumes that \(c-a-b\) represents an exact -- integer. In these cases, it computes the correct limit value. -- -- See @acb_hypgeom_2f1@ for the meaning of /flags/. foreign import ccall "acb_hypgeom.h acb_hypgeom_2f1_transform_limit" acb_hypgeom_2f1_transform_limit :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CInt -> CLong -> IO () -- | /acb_hypgeom_2f1_corner/ /res/ /a/ /b/ /c/ /z/ /regularized/ /prec/ -- -- Computes \(F(z)\) near the corner cases \(\exp(\pm \pi i \sqrt{3})\) by -- analytic continuation. foreign import ccall "acb_hypgeom.h acb_hypgeom_2f1_corner" acb_hypgeom_2f1_corner :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_2f1_choose/ /z/ -- -- Chooses a method to compute the function based on the location of /z/ in -- the complex plane. If the return value is 0, direct summation should be -- used. If the return value is 1 to 5, the transformation with this index -- in @acb_hypgeom_2f1_transform@ should be used. If the return value is 6, -- the corner case algorithm should be used. foreign import ccall "acb_hypgeom.h acb_hypgeom_2f1_choose" acb_hypgeom_2f1_choose :: Ptr CAcb -> IO CInt -- | /acb_hypgeom_2f1/ /res/ /a/ /b/ /c/ /z/ /flags/ /prec/ -- -- Computes \(F(z)\) or \(\operatorname{\mathbf{F}}(z)\) using an automatic -- algorithm choice. -- -- The following bit fields can be set in /flags/: -- -- - /ACB_HYPGEOM_2F1_REGULARIZED/ - computes the regularized -- hypergeometric function \(\operatorname{\mathbf{F}}(z)\). Setting -- /flags/ to 1 is the same as just toggling this option. -- - /ACB_HYPGEOM_2F1_AB/ - \(a-b\) is an integer. -- - /ACB_HYPGEOM_2F1_ABC/ - \(a+b-c\) is an integer. -- - /ACB_HYPGEOM_2F1_AC/ - \(a-c\) is an integer. -- - /ACB_HYPGEOM_2F1_BC/ - \(b-c\) is an integer. -- -- The last four flags can be set to indicate that the respective parameter -- differences are known to represent exact integers, even if the input -- intervals are inexact. This allows the correct limits to be evaluated -- when applying transformation formulas. For example, to evaluate -- \({}_2F_1(\sqrt{2}, 1/2, \sqrt{2}+3/2, 9/10)\), the /ABC/ flag should be -- set. If not set, the result will be an indeterminate interval due to -- internally dividing by an interval containing zero. If the parameters -- are exact floating-point numbers (including exact integers or -- half-integers), then the limits are computed automatically, and setting -- these flags is unnecessary. -- -- Currently, only the /AB/ and /ABC/ flags are used this way; the /AC/ and -- /BC/ flags might be used in the future. foreign import ccall "acb_hypgeom.h acb_hypgeom_2f1" acb_hypgeom_2f1 :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- Orthogonal polynomials and functions ---------------------------------------- -- | /acb_hypgeom_chebyshev_t/ /res/ /n/ /z/ /prec/ -- foreign import ccall "acb_hypgeom.h acb_hypgeom_chebyshev_t" acb_hypgeom_chebyshev_t :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_chebyshev_u/ /res/ /n/ /z/ /prec/ -- -- Computes the Chebyshev polynomial (or Chebyshev function) of first or -- second kind -- -- \[`\] -- \[T_n(z) = {}_2F_1\left(-n,n,\frac{1}{2},\frac{1-z}{2}\right)\] -- -- \[`\] -- \[U_n(z) = (n+1) {}_2F_1\left(-n,n+2,\frac{3}{2},\frac{1-z}{2}\right).\] -- -- The hypergeometric series definitions are only used for computation near -- the point 1. In general, trigonometric representations are used. For -- word-size integer /n/, @acb_chebyshev_t_ui@ and @acb_chebyshev_u_ui@ are -- called. foreign import ccall "acb_hypgeom.h acb_hypgeom_chebyshev_u" acb_hypgeom_chebyshev_u :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_jacobi_p/ /res/ /n/ /a/ /b/ /z/ /prec/ -- -- Computes the Jacobi polynomial (or Jacobi function) -- -- \[`\] -- \[P_n^{(a,b)}(z)=\frac{(a+1)_n}{\Gamma(n+1)} {}_2F_1\left(-n,n+a+b+1,a+1,\frac{1-z}{2}\right).\] -- -- For nonnegative integer /n/, this is a polynomial in /a/, /b/ and /z/, -- even when the parameters are such that the hypergeometric series is -- undefined. In such cases, the polynomial is evaluated using direct -- methods. foreign import ccall "acb_hypgeom.h acb_hypgeom_jacobi_p" acb_hypgeom_jacobi_p :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_gegenbauer_c/ /res/ /n/ /m/ /z/ /prec/ -- -- Computes the Gegenbauer polynomial (or Gegenbauer function) -- -- \[`\] -- \[C_n^{m}(z)=\frac{(2m)_n}{\Gamma(n+1)} {}_2F_1\left(-n,2m+n,m+\frac{1}{2},\frac{1-z}{2}\right).\] -- -- For nonnegative integer /n/, this is a polynomial in /m/ and /z/, even -- when the parameters are such that the hypergeometric series is -- undefined. In such cases, the polynomial is evaluated using direct -- methods. foreign import ccall "acb_hypgeom.h acb_hypgeom_gegenbauer_c" acb_hypgeom_gegenbauer_c :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_laguerre_l/ /res/ /n/ /m/ /z/ /prec/ -- -- Computes the Laguerre polynomial (or Laguerre function) -- -- \[`\] -- \[L_n^{m}(z)=\frac{(m+1)_n}{\Gamma(n+1)} {}_1F_1\left(-n,m+1,z\right).\] -- -- For nonnegative integer /n/, this is a polynomial in /m/ and /z/, even -- when the parameters are such that the hypergeometric series is -- undefined. In such cases, the polynomial is evaluated using direct -- methods. -- -- There are at least two incompatible ways to define the Laguerre function -- when /n/ is a negative integer. One possibility when \(m = 0\) is to -- define \(L_{-n}^0(z) = e^z L_{n-1}^0(-z)\). Another possibility is to -- cover this case with the recurrence relation -- \(L_{n-1}^m(z) + L_n^{m-1}(z) = L_n^m(z)\). Currently, we leave this -- case undefined (returning indeterminate). foreign import ccall "acb_hypgeom.h acb_hypgeom_laguerre_l" acb_hypgeom_laguerre_l :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_hermite_h/ /res/ /n/ /z/ /prec/ -- -- Computes the Hermite polynomial (or Hermite function) -- -- \[`\] -- \[H_n(z) = 2^n \sqrt{\pi} \left( -- \frac{1}{\Gamma((1-n)/2)} {}_1F_1\left(-\frac{n}{2},\frac{1}{2},z^2\right) -- - -- \frac{2z}{\Gamma(-n/2)} {}_1F_1\left(\frac{1-n}{2},\frac{3}{2},z^2\right)\right).\] foreign import ccall "acb_hypgeom.h acb_hypgeom_hermite_h" acb_hypgeom_hermite_h :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_legendre_p/ /res/ /n/ /m/ /z/ /type/ /prec/ -- -- Sets /res/ to the associated Legendre function of the first kind -- evaluated for degree /n/, order /m/, and argument /z/. When /m/ is zero, -- this reduces to the Legendre polynomial \(P_n(z)\). -- -- Many different branch cut conventions appear in the literature. If -- /type/ is 0, the version -- -- \[`\] -- \[P_n^m(z) = \frac{(1+z)^{m/2}}{(1-z)^{m/2}} -- \mathbf{F}\left(-n, n+1, 1-m, \frac{1-z}{2}\right)\] -- -- is computed, and if /type/ is 1, the alternative version -- -- \[`\] -- \[{\mathcal P}_n^m(z) = \frac{(z+1)^{m/2}}{(z-1)^{m/2}} -- \mathbf{F}\left(-n, n+1, 1-m, \frac{1-z}{2}\right).\] -- -- is computed. Type 0 and type 1 respectively correspond to type 2 and -- type 3 in /Mathematica/ and /mpmath/. foreign import ccall "acb_hypgeom.h acb_hypgeom_legendre_p" acb_hypgeom_legendre_p :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_legendre_q/ /res/ /n/ /m/ /z/ /type/ /prec/ -- -- Sets /res/ to the associated Legendre function of the second kind -- evaluated for degree /n/, order /m/, and argument /z/. When /m/ is zero, -- this reduces to the Legendre function \(Q_n(z)\). -- -- Many different branch cut conventions appear in the literature. If -- /type/ is 0, the version -- -- \[`\] -- \[Q_n^m(z) = \frac{\pi}{2 \sin(\pi m)} -- \left( \cos(\pi m) P_n^m(z) - -- \frac{\Gamma(1+m+n)}{\Gamma(1-m+n)} P_n^{-m}(z)\right)\] -- -- is computed, and if /type/ is 1, the alternative version -- -- \[`\] -- \[\mathcal{Q}_n^m(z) = \frac{\pi}{2 \sin(\pi m)} e^{\pi i m} -- \left( \mathcal{P}_n^m(z) - -- \frac{\Gamma(1+m+n)}{\Gamma(1-m+n)} \mathcal{P}_n^{-m}(z)\right)\] -- -- is computed. Type 0 and type 1 respectively correspond to type 2 and -- type 3 in /Mathematica/ and /mpmath/. -- -- When /m/ is an integer, either expression is interpreted as a limit. We -- make use of the connection formulas < [WQ3a]>, < [WQ3b]> and < [WQ3c]> -- to allow computing the function even in the limiting case. (The formula -- < [WQ3d]> would be useful, but is incorrect in the lower half plane.) foreign import ccall "acb_hypgeom.h acb_hypgeom_legendre_q" acb_hypgeom_legendre_q :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_legendre_p_uiui_rec/ /res/ /n/ /m/ /z/ /prec/ -- -- For nonnegative integer /n/ and /m/, uses recurrence relations to -- evaluate \((1-z^2)^{-m/2} P_n^m(z)\) which is a polynomial in /z/. foreign import ccall "acb_hypgeom.h acb_hypgeom_legendre_p_uiui_rec" acb_hypgeom_legendre_p_uiui_rec :: Ptr CAcb -> CULong -> CULong -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_spherical_y/ /res/ /n/ /m/ /theta/ /phi/ /prec/ -- -- Computes the spherical harmonic of degree /n/, order /m/, latitude angle -- /theta/, and longitude angle /phi/, normalized such that -- -- \[`\] -- \[Y_n^m(\theta, \phi) = \sqrt{\frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!}} e^{im\phi} P_n^m(\cos(\theta)).\] -- -- The definition is extended to negative /m/ and /n/ by symmetry. This -- function is a polynomial in \(\cos(\theta)\) and \(\sin(\theta)\). We -- evaluate it using @acb_hypgeom_legendre_p_uiui_rec@. foreign import ccall "acb_hypgeom.h acb_hypgeom_spherical_y" acb_hypgeom_spherical_y :: Ptr CAcb -> CLong -> CLong -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- Dilogarithm ----------------------------------------------------------------- -- The dilogarithm function is given by -- \(\operatorname{Li}_2(z) = -\int_0^z \frac{\log(1-t)}{t} dt = z {}_3F_2(1,1,1,2,2,z)\). -- -- | /acb_hypgeom_dilog_zero_taylor/ /res/ /z/ /prec/ -- -- Computes the dilogarithm for /z/ close to 0 using the hypergeometric -- series (effective only when \(|z| \ll 1\)). foreign import ccall "acb_hypgeom.h acb_hypgeom_dilog_zero_taylor" acb_hypgeom_dilog_zero_taylor :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_dilog_zero/ /res/ /z/ /prec/ -- -- Computes the dilogarithm for /z/ close to 0, using the bit-burst -- algorithm instead of the hypergeometric series directly at very high -- precision. foreign import ccall "acb_hypgeom.h acb_hypgeom_dilog_zero" acb_hypgeom_dilog_zero :: Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_dilog_transform/ /res/ /z/ /algorithm/ /prec/ -- -- Computes the dilogarithm by applying one of the transformations \(1/z\), -- \(1-z\), \(z/(z-1)\), \(1/(1-z)\), indexed by /algorithm/ from 1 to 4, -- and calling @acb_hypgeom_dilog_zero@ with the reduced variable. -- Alternatively, for /algorithm/ between 5 and 7, starts from the -- respective point \(\pm i\), \((1\pm i)/2\), \((1\pm i)/2\) (with the -- sign chosen according to the midpoint of /z/) and computes the -- dilogarithm by the bit-burst method. foreign import ccall "acb_hypgeom.h acb_hypgeom_dilog_transform" acb_hypgeom_dilog_transform :: Ptr CAcb -> Ptr CAcb -> CInt -> CLong -> IO () -- | /acb_hypgeom_dilog_continuation/ /res/ /a/ /z/ /prec/ -- -- Computes \(\operatorname{Li}_2(z) - \operatorname{Li}_2(a)\) using -- Taylor expansion at /a/. Binary splitting is used. Both /a/ and /z/ -- should be well isolated from the points 0 and 1, except that /a/ may be -- exactly 0. If the straight line path from /a/ to /b/ crosses the branch -- cut, this method provides continuous analytic continuation instead of -- computing the principal branch. foreign import ccall "acb_hypgeom.h acb_hypgeom_dilog_continuation" acb_hypgeom_dilog_continuation :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_dilog_bitburst/ /res/ /z0/ /z/ /prec/ -- -- Sets /z0/ to a point with short bit expansion close to /z/ and sets -- /res/ to \(\operatorname{Li}_2(z) - \operatorname{Li}_2(z_0)\), computed -- using the bit-burst algorithm. foreign import ccall "acb_hypgeom.h acb_hypgeom_dilog_bitburst" acb_hypgeom_dilog_bitburst :: Ptr CAcb -> Ptr CAcb -> Ptr CAcb -> CLong -> IO () -- | /acb_hypgeom_dilog/ /res/ /z/ /prec/ -- -- Computes the dilogarithm using a default algorithm choice. foreign import ccall "acb_hypgeom.h acb_hypgeom_dilog" acb_hypgeom_dilog :: Ptr CAcb -> Ptr CAcb -> CLong -> IO ()