{-# LINE 1 "src/Data/Number/Flint/Arb/Fmpz/Poly/FFI.hsc" #-} {-| module : Data.Number.Flint.Arb.Fmpz.Poly.FFI copyright : (c) 2022 Hartmut Monien license : GNU GPL, version 2 or above (see LICENSE) maintainer : hmonien@uni-bonn.de -} module Data.Number.Flint.Arb.Fmpz.Poly.FFI ( -- * Extra methods for integer polynomials -- * Evaluation _arb_fmpz_poly_evaluate_arb_horner , arb_fmpz_poly_evaluate_arb_horner , _arb_fmpz_poly_evaluate_arb_rectangular , arb_fmpz_poly_evaluate_arb_rectangular , _arb_fmpz_poly_evaluate_arb , arb_fmpz_poly_evaluate_arb , _arb_fmpz_poly_evaluate_acb_horner , arb_fmpz_poly_evaluate_acb_horner , _arb_fmpz_poly_evaluate_acb_rectangular , arb_fmpz_poly_evaluate_acb_rectangular , _arb_fmpz_poly_evaluate_acb , arb_fmpz_poly_evaluate_acb -- * Utility methods , arb_fmpz_poly_deflation , arb_fmpz_poly_deflate -- * Polynomial roots , arb_fmpz_poly_complex_roots , arb_fmpz_poly_roots_verbose -- * Special polynomials , arb_fmpz_poly_cos_minpoly , arb_fmpz_poly_gauss_period_minpoly ) where -- Extra methods for integer polynomials --------------------------------------- import Foreign.C.String import Foreign.C.Types import Foreign.ForeignPtr import Foreign.Ptr ( Ptr, FunPtr ) import Foreign.Marshal ( free ) import Foreign.Storable import Data.Number.Flint.Flint import Data.Number.Flint.Fmpz import Data.Number.Flint.Fmpz.Poly import Data.Number.Flint.Fmpq.Poly import Data.Number.Flint.Arb import Data.Number.Flint.Arb.Types import Data.Number.Flint.Arb.Poly import Data.Number.Flint.Acb import Data.Number.Flint.Acb.Types import Data.Number.Flint.Acb.Poly -- Flags ----------------------------------------------------------------------- type ArbFmpzPolyFlags = CInt arb_fmpz_poly_roots_verbose :: ArbFmpzPolyFlags arb_fmpz_poly_roots_verbose :: ArbFmpzPolyFlags arb_fmpz_poly_roots_verbose = ArbFmpzPolyFlags 1 {-# LINE 64 "src/Data/Number/Flint/Arb/Fmpz/Poly/FFI.hsc" #-} -- Evaluation ------------------------------------------------------------------ -- | /_arb_fmpz_poly_evaluate_arb_horner/ /res/ /poly/ /len/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h _arb_fmpz_poly_evaluate_arb_horner" _arb_fmpz_poly_evaluate_arb_horner :: Ptr CArb -> Ptr CFmpz -> CLong -> Ptr CArb -> CLong -> IO () -- | /arb_fmpz_poly_evaluate_arb_horner/ /res/ /poly/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_evaluate_arb_horner" arb_fmpz_poly_evaluate_arb_horner :: Ptr CArb -> Ptr CFmpzPoly -> Ptr CArb -> CLong -> IO () -- | /_arb_fmpz_poly_evaluate_arb_rectangular/ /res/ /poly/ /len/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h _arb_fmpz_poly_evaluate_arb_rectangular" _arb_fmpz_poly_evaluate_arb_rectangular :: Ptr CArb -> Ptr CFmpz -> CLong -> Ptr CArb -> CLong -> IO () -- | /arb_fmpz_poly_evaluate_arb_rectangular/ /res/ /poly/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_evaluate_arb_rectangular" arb_fmpz_poly_evaluate_arb_rectangular :: Ptr CArb -> Ptr CFmpzPoly -> Ptr CArb -> CLong -> IO () -- | /_arb_fmpz_poly_evaluate_arb/ /res/ /poly/ /len/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h _arb_fmpz_poly_evaluate_arb" _arb_fmpz_poly_evaluate_arb :: Ptr CArb -> Ptr CFmpz -> CLong -> Ptr CArb -> CLong -> IO () -- | /arb_fmpz_poly_evaluate_arb/ /res/ /poly/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_evaluate_arb" arb_fmpz_poly_evaluate_arb :: Ptr CArb -> Ptr CFmpzPoly -> Ptr CArb -> CLong -> IO () -- | /_arb_fmpz_poly_evaluate_acb_horner/ /res/ /poly/ /len/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h _arb_fmpz_poly_evaluate_acb_horner" _arb_fmpz_poly_evaluate_acb_horner :: Ptr CAcb -> Ptr CFmpz -> CLong -> Ptr CAcb -> CLong -> IO () -- | /arb_fmpz_poly_evaluate_acb_horner/ /res/ /poly/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_evaluate_acb_horner" arb_fmpz_poly_evaluate_acb_horner :: Ptr CAcb -> Ptr CFmpzPoly -> Ptr CAcb -> CLong -> IO () -- | /_arb_fmpz_poly_evaluate_acb_rectangular/ /res/ /poly/ /len/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h _arb_fmpz_poly_evaluate_acb_rectangular" _arb_fmpz_poly_evaluate_acb_rectangular :: Ptr CAcb -> Ptr CFmpz -> CLong -> Ptr CAcb -> CLong -> IO () -- | /arb_fmpz_poly_evaluate_acb_rectangular/ /res/ /poly/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_evaluate_acb_rectangular" arb_fmpz_poly_evaluate_acb_rectangular :: Ptr CAcb -> Ptr CFmpzPoly -> Ptr CAcb -> CLong -> IO () -- | /_arb_fmpz_poly_evaluate_acb/ /res/ /poly/ /len/ /x/ /prec/ -- foreign import ccall "arb_fmpz_poly.h _arb_fmpz_poly_evaluate_acb" _arb_fmpz_poly_evaluate_acb :: Ptr CAcb -> Ptr CFmpz -> CLong -> Ptr CAcb -> CLong -> IO () -- | /arb_fmpz_poly_evaluate_acb/ /res/ /poly/ /x/ /prec/ -- -- Evaluates /poly/ (given by a polynomial object or an array with /len/ -- coefficients) at the given real or complex number, respectively using -- Horner\'s rule, rectangular splitting, or a default algorithm choice. foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_evaluate_acb" arb_fmpz_poly_evaluate_acb :: Ptr CAcb -> Ptr CFmpzPoly -> Ptr CAcb -> CLong -> IO () -- Utility methods ------------------------------------------------------------- -- | /arb_fmpz_poly_deflation/ /poly/ -- -- Finds the maximal exponent by which /poly/ can be deflated. foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_deflation" arb_fmpz_poly_deflation :: Ptr CFmpzPoly -> IO CULong -- | /arb_fmpz_poly_deflate/ /res/ /poly/ /deflation/ -- -- Sets /res/ to a copy of /poly/ deflated by the exponent /deflation/. foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_deflate" arb_fmpz_poly_deflate :: Ptr CFmpzPoly -> Ptr CFmpzPoly -> CULong -> IO () -- Polynomial roots ------------------------------------------------------------ -- | /arb_fmpz_poly_complex_roots/ /roots/ /poly/ /flags/ /prec/ -- -- Writes to /roots/ all the real and complex roots of the polynomial -- /poly/, computed to at least /prec/ accurate bits. The root enclosures -- are guaranteed to be disjoint, so that all roots are isolated. -- -- The real roots are written first in ascending order (with the imaginary -- parts set exactly to zero). The following nonreal roots are written in -- arbitrary order, but with conjugate pairs grouped together (the root in -- the upper plane leading the root in the lower plane). -- -- The input polynomial /must/ be squarefree. For a general polynomial, -- compute the squarefree part \(f / \gcd(f,f')\) or do a full squarefree -- factorization to obtain the multiplicities of the roots: -- -- > fmpz_poly_factor_t fac; -- > fmpz_poly_factor_init(fac); -- > fmpz_poly_factor_squarefree(fac, poly); -- > -- > for (i = 0; i < fac->num; i++) -- > { -- > deg = fmpz_poly_degree(fac->p + i); -- > flint_printf("%wd roots of multiplicity %wd\n", deg, fac->exp[i]); -- > roots = _acb_vec_init(deg); -- > arb_fmpz_poly_complex_roots(roots, fac->p + i, 0, prec); -- > _acb_vec_clear(roots, deg); -- > } -- > -- > fmpz_poly_factor_clear(fac); -- -- All roots are refined to a relative accuracy of at least /prec/ bits. -- The output values will generally have higher actual precision, depending -- on the precision needed for isolation and the precision used internally -- by the algorithm. -- -- This implementation should be adequate for general use, but it is not -- currently competitive with state-of-the-art isolation methods for -- finding real roots alone. -- -- The following /flags/ are supported: -- -- - /arb_fmpz_poly_roots_verbose/ foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_complex_roots" arb_fmpz_poly_complex_roots :: Ptr CAcb -> Ptr CFmpzPoly -> CInt -> CLong -> IO () -- Special polynomials --------------------------------------------------------- -- Note: see also the methods available in FLINT (e.g. for cyclotomic -- polynomials). -- -- | /arb_fmpz_poly_cos_minpoly/ /res/ /n/ -- -- Sets /res/ to the monic minimal polynomial of \(2 \cos(2 \pi / n)\). -- This is a wrapper of FLINT\'s /fmpz_poly_cos_minpoly/, provided here for -- backward compatibility. foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_cos_minpoly" arb_fmpz_poly_cos_minpoly :: Ptr CFmpzPoly -> CULong -> IO () -- | /arb_fmpz_poly_gauss_period_minpoly/ /res/ /q/ /n/ -- -- Sets /res/ to the minimal polynomial of the Gaussian periods -- \(\sum_{a \in H} \zeta^a\) where \(\zeta = \exp(2 \pi i / q)\) and /H/ -- are the cosets of the subgroups of order \(d = (q - 1) / n\) of -- \((\mathbb{Z}/q\mathbb{Z})^{\times}\). The resulting polynomial has -- degree /n/. When \(d = 1\), the result is the cyclotomic polynomial -- \(\Phi_q\). -- -- The implementation assumes that /q/ is prime, and that /n/ is a divisor -- of \(q - 1\) such that /n/ is coprime with /d/. If any condition is not -- met, /res/ is set to the zero polynomial. -- -- This method provides a fast (in practice) way to construct finite field -- extensions of prescribed degree. If /q/ satisfies the conditions stated -- above and \((q-1)/f\) additionally is coprime with /n/, where /f/ is the -- multiplicative order of /p/ mod /q/, then the Gaussian period minimal -- polynomial is irreducible over \(\operatorname{GF}(p)\) < [CP2005]>. foreign import ccall "arb_fmpz_poly.h arb_fmpz_poly_gauss_period_minpoly" arb_fmpz_poly_gauss_period_minpoly :: Ptr CFmpzPoly -> CULong -> CULong -> IO ()