{-# LINE 1 "src/Data/Number/Flint/Fmpz/Factor/FFI.hsc" #-} {-| module : Data.Number.Flint.Fmpz.Factor.FFI copyright : (c) 2022 Hartmut Monien license : GNU GPL, version 2 or above (see LICENSE) maintainer : hmonien@uni-bonn.de -} module Data.Number.Flint.Fmpz.Factor.FFI ( -- * Integer factorisation -- * Memory management newFmpzFactor , withFmpzFactor , withNewFmpzFactor , fmpz_factor_init , fmpz_factor_clear -- * Output , fmpz_factor_get_str , fmpz_factor_print , fmpz_factor_fprint -- * Modification , _fmpz_factor_append_ui , _fmpz_factor_append -- * Factoring integers , fmpz_factor , fmpz_factor_smooth , fmpz_factor_si , fmpz_factor_trial_range , fmpz_factor_trial , fmpz_factor_refine , fmpz_factor_expand_iterative , fmpz_factor_pp1 , fmpz_factor_pollard_brent_single , fmpz_factor_pollard_brent -- * Elliptic curve (ECM) method , Ecm (..) , CEcm (..) , fmpz_factor_ecm_init , fmpz_factor_ecm_clear , fmpz_factor_ecm_addmod , fmpz_factor_ecm_submod , fmpz_factor_ecm_double , fmpz_factor_ecm_add , fmpz_factor_ecm_mul_montgomery_ladder , fmpz_factor_ecm_select_curve , fmpz_factor_ecm_stage_I , fmpz_factor_ecm_stage_II , fmpz_factor_ecm ) where -- Integer factorisation ------------------------------------------------------- import Foreign.C.String import Foreign.C.Types import Foreign.ForeignPtr import Foreign.Ptr ( Ptr, FunPtr, plusPtr ) import Foreign.Storable import Foreign.Marshal ( free ) import Data.Number.Flint.Flint import Data.Number.Flint.Fmpz -- FmpzFactor ------------------------------------------------------------------ newFmpzFactor :: IO FmpzFactor newFmpzFactor = do ForeignPtr CFmpzFactor x <- IO (ForeignPtr CFmpzFactor) forall a. Storable a => IO (ForeignPtr a) mallocForeignPtr ForeignPtr CFmpzFactor -> (Ptr CFmpzFactor -> IO ()) -> IO () forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CFmpzFactor x Ptr CFmpzFactor -> IO () fmpz_factor_init FinalizerPtr CFmpzFactor -> ForeignPtr CFmpzFactor -> IO () forall a. FinalizerPtr a -> ForeignPtr a -> IO () addForeignPtrFinalizer FinalizerPtr CFmpzFactor p_fmpz_factor_clear ForeignPtr CFmpzFactor x FmpzFactor -> IO FmpzFactor forall a. a -> IO a forall (m :: * -> *) a. Monad m => a -> m a return (FmpzFactor -> IO FmpzFactor) -> FmpzFactor -> IO FmpzFactor forall a b. (a -> b) -> a -> b $ ForeignPtr CFmpzFactor -> FmpzFactor FmpzFactor ForeignPtr CFmpzFactor x {-# INLINE withFmpzFactor #-} withFmpzFactor :: FmpzFactor -> (Ptr CFmpzFactor -> IO a) -> IO (FmpzFactor, a) withFmpzFactor (FmpzFactor ForeignPtr CFmpzFactor x) Ptr CFmpzFactor -> IO a f = do ForeignPtr CFmpzFactor -> (Ptr CFmpzFactor -> IO (FmpzFactor, a)) -> IO (FmpzFactor, a) forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CFmpzFactor x ((Ptr CFmpzFactor -> IO (FmpzFactor, a)) -> IO (FmpzFactor, a)) -> (Ptr CFmpzFactor -> IO (FmpzFactor, a)) -> IO (FmpzFactor, a) forall a b. (a -> b) -> a -> b $ \Ptr CFmpzFactor xp -> Ptr CFmpzFactor -> IO a f Ptr CFmpzFactor xp IO a -> (a -> IO (FmpzFactor, a)) -> IO (FmpzFactor, a) forall a b. IO a -> (a -> IO b) -> IO b forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= (FmpzFactor, a) -> IO (FmpzFactor, a) forall a. a -> IO a forall (m :: * -> *) a. Monad m => a -> m a return ((FmpzFactor, a) -> IO (FmpzFactor, a)) -> (a -> (FmpzFactor, a)) -> a -> IO (FmpzFactor, a) forall b c a. (b -> c) -> (a -> b) -> a -> c . (ForeignPtr CFmpzFactor -> FmpzFactor FmpzFactor ForeignPtr CFmpzFactor x,) {-# INLINE withNewFmpzFactor #-} withNewFmpzFactor :: (Ptr CFmpzFactor -> IO a) -> IO (FmpzFactor, a) withNewFmpzFactor Ptr CFmpzFactor -> IO a f = do FmpzFactor x <- IO FmpzFactor newFmpzFactor FmpzFactor -> (Ptr CFmpzFactor -> IO a) -> IO (FmpzFactor, a) forall {a}. FmpzFactor -> (Ptr CFmpzFactor -> IO a) -> IO (FmpzFactor, a) withFmpzFactor FmpzFactor x Ptr CFmpzFactor -> IO a f -- Ecm ------------------------------------------------------------------------- data Ecm = Ecm {-# UNPACK #-} !(ForeignPtr CEcm) type CEcm = CFlint Ecm -- Factoring integers ---------------------------------------------------------- -- An integer may be represented in factored form using the @fmpz_factor_t@ -- data structure. This consists of two @fmpz@ vectors representing bases -- and exponents, respectively. Canonically, the bases will be prime -- numbers sorted in ascending order and the exponents will be positive. A -- separate @int@ field holds the sign, which may be \(-1\), \(0\) or -- \(1\). -- -- | /fmpz_factor_init/ /factor/ -- -- Initialises an @fmpz_factor_t@ structure. foreign import ccall "fmpz_factor.h fmpz_factor_init" fmpz_factor_init :: Ptr CFmpzFactor -> IO () -- | /fmpz_factor_clear/ /factor/ -- -- Clears an @fmpz_factor_t@ structure. foreign import ccall "fmpz_factor.h fmpz_factor_clear" fmpz_factor_clear :: Ptr CFmpzFactor -> IO () foreign import ccall "fmpz_factor.h &fmpz_factor_clear" p_fmpz_factor_clear :: FunPtr (Ptr CFmpzFactor -> IO ()) -- Output ---------------------------------------------------------------------- -- | /fmpz_factor_get_str/ /factor/ -- -- Get string representation of factorization foreign import ccall "fmpz_factor_get_str" fmpz_factor_get_str :: Ptr CFmpzFactor -> IO CString -- | /fmpz_factor_print/ /factor/ -- -- Print factorization fmpz_factor_print :: Ptr CFmpzFactor -> IO CInt fmpz_factor_print = (Ptr CFmpzFactor -> IO CString) -> Ptr CFmpzFactor -> IO CInt forall a. (Ptr a -> IO CString) -> Ptr a -> IO CInt printCStr Ptr CFmpzFactor -> IO CString fmpz_factor_get_str -- | /fmpz_factor_fprint/ /factor/ -- -- Print factorization to file foreign import ccall "fmpz_factor_fprint" fmpz_factor_fprint :: Ptr CFile -> Ptr CFmpzFactor -> IO () -------------------------------------------------------------------------------- -- | /_fmpz_factor_append_ui/ /factor/ /p/ /exp/ -- -- Append a factor \(p\) to the given exponent to the @fmpz_factor_t@ -- structure @factor@. foreign import ccall "fmpz_factor.h _fmpz_factor_append_ui" _fmpz_factor_append_ui :: Ptr CFmpzFactor -> CMpLimb -> CULong -> IO () -- | /_fmpz_factor_append/ /factor/ /p/ /exp/ -- -- Append a factor \(p\) to the given exponent to the @fmpz_factor_t@ -- structure @factor@. foreign import ccall "fmpz_factor.h _fmpz_factor_append" _fmpz_factor_append :: Ptr CFmpzFactor -> Ptr CFmpz -> CULong -> IO () -- | /fmpz_factor/ /factor/ /n/ -- -- Factors \(n\) into prime numbers. If \(n\) is zero or negative, the sign -- field of the @factor@ object will be set accordingly. foreign import ccall "fmpz_factor.h fmpz_factor" fmpz_factor :: Ptr CFmpzFactor -> Ptr CFmpz -> IO () -- | /fmpz_factor_smooth/ /factor/ /n/ /bits/ /proved/ -- -- Factors \(n\) into prime numbers up to approximately the given number of -- bits and possibly one additional cofactor, which may or may not be -- prime. -- -- If the number is definitely factored fully, the return value is \(1\), -- otherwise the final factor (which may have exponent greater than \(1\)) -- is composite and needs to be factored further. -- -- If the number has a factor of around the given number of bits, there is -- at least a two-thirds chance of finding it. Smaller factors should be -- found with a much higher probability. -- -- The amount of time spent factoring can be controlled by lowering or -- increasing @bits@. However, the quadratic sieve may be faster if @bits@ -- is set to more than one third of the number of bits of \(n\). -- -- The function uses trial factoring up to @bits = 15@, followed by a -- primality test and a perfect power test to check if the factorisation is -- complete. If @bits@ is at least 16, it proceeds to use the elliptic -- curve method to look for larger factors. -- -- The behavior of primality testing is determined by the @proved@ -- parameter: -- -- If @proved@ is set to \(1\) the function will prove all factors prime -- (other than the last factor, if the return value is \(0\)). -- -- If @proved@ is set to \(0\), the function will only check that factors -- are probable primes. -- -- If @proved@ is set to \(-1\), the function will not test primality after -- performing trial division. A perfect power test is still performed. -- -- As an exception to the rules stated above, this function will call -- @n_factor@ internally if \(n\) or the remainder after trial division is -- smaller than one word, guaranteeing a complete factorisation. foreign import ccall "fmpz_factor.h fmpz_factor_smooth" fmpz_factor_smooth :: Ptr CFmpzFactor -> Ptr CFmpz -> CLong -> CInt -> IO CInt -- | /fmpz_factor_si/ /factor/ /n/ -- -- Like @fmpz_factor@, but takes a machine integer \(n\) as input. foreign import ccall "fmpz_factor.h fmpz_factor_si" fmpz_factor_si :: Ptr CFmpzFactor -> CLong -> IO () -- | /fmpz_factor_trial_range/ /factor/ /n/ /start/ /num_primes/ -- -- Factors \(n\) into prime factors using trial division. If \(n\) is zero -- or negative, the sign field of the @factor@ object will be set -- accordingly. -- -- The algorithm starts with the given start index in the @flint_primes@ -- table and uses at most @num_primes@ primes from that point. -- -- The function returns 1 if \(n\) is completely factored, otherwise it -- returns \(0\). foreign import ccall "fmpz_factor.h fmpz_factor_trial_range" fmpz_factor_trial_range :: Ptr CFmpzFactor -> Ptr CFmpz -> CULong -> CULong -> IO CInt -- | /fmpz_factor_trial/ /factor/ /n/ /num_primes/ -- -- Factors \(n\) into prime factors using trial division. If \(n\) is zero -- or negative, the sign field of the @factor@ object will be set -- accordingly. -- -- The algorithm uses the given number of primes, which must be in the -- range \([0, 3512]\). An exception is raised if a number outside this -- range is passed. -- -- The function returns 1 if \(n\) is completely factored, otherwise it -- returns \(0\). -- -- The final entry in the factor struct is set to the cofactor after -- removing prime factors, if this is not \(1\). foreign import ccall "fmpz_factor.h fmpz_factor_trial" fmpz_factor_trial :: Ptr CFmpzFactor -> Ptr CFmpz -> CLong -> IO CInt -- | /fmpz_factor_refine/ /res/ /f/ -- -- Attempts to improve a partial factorization of an integer by -- \"refining\" the factorization @f@ to a more complete factorization -- @res@ whose bases are pairwise relatively prime. -- -- This function does not require its input to be in canonical form, nor -- does it guarantee that the resulting factorization will be canonical. foreign import ccall "fmpz_factor.h fmpz_factor_refine" fmpz_factor_refine :: Ptr CFmpzFactor -> Ptr CFmpzFactor -> IO () -- | /fmpz_factor_expand_iterative/ /n/ /factor/ -- -- Evaluates an integer in factored form back to an @fmpz_t@. -- -- This currently exponentiates the bases separately and multiplies them -- together one by one, although much more efficient algorithms exist. foreign import ccall "fmpz_factor.h fmpz_factor_expand_iterative" fmpz_factor_expand_iterative :: Ptr CFmpz -> Ptr CFmpzFactor -> IO () -- | /fmpz_factor_pp1/ /factor/ /n/ /B1/ /B2_sqrt/ /c/ -- -- Use Williams\' \(p + 1\) method to factor \(n\), using a prime bound in -- stage 1 of @B1@ and a prime limit in stage 2 of at least the square of -- @B2_sqrt@. If a factor is found, the function returns \(1\) and @factor@ -- is set to the factor that is found. Otherwise, the function returns -- \(0\). -- -- The value \(c\) should be a random value greater than \(2\). Successive -- calls to the function with different values of \(c\) give additional -- chances to factor \(n\) with roughly exponentially decaying probability -- of finding a factor which has been missed (if \(p+1\) or \(p-1\) is not -- smooth for any prime factors \(p\) of \(n\) then the function will not -- ever succeed). foreign import ccall "fmpz_factor.h fmpz_factor_pp1" fmpz_factor_pp1 :: Ptr CFmpz -> Ptr CFmpz -> CULong -> CULong -> CULong -> IO CInt -- | /fmpz_factor_pollard_brent_single/ /p_factor/ /n_in/ /yi/ /ai/ /max_iters/ -- -- Pollard Rho algorithm for integer factorization. Assumes that the \(n\) -- is not prime. @factor@ is set as the factor if found. Takes as input the -- initial value \(y\), to start polynomial evaluation and \(a\), the -- constant of the polynomial used. It is not assured that the factor found -- will be prime. Does not compute the complete factorization, just one -- factor. Returns the number of limbs of factor if factorization is -- successful (non trivial factor is found), else returns 0. -- -- @max_iters@ is the number of iterations tried in process of finding the -- cycle. If the algorithm fails to find a non trivial factor in one call, -- it tries again (this time with a different set of random values). foreign import ccall "fmpz_factor.h fmpz_factor_pollard_brent_single" fmpz_factor_pollard_brent_single :: Ptr CFmpz -> Ptr CFmpz -> Ptr CFmpz -> Ptr CFmpz -> CMpLimb -> IO CInt -- | /fmpz_factor_pollard_brent/ /factor/ /state/ /n/ /max_tries/ /max_iters/ -- -- Pollard Rho algorithm for integer factorization. Assumes that the \(n\) -- is not prime. @factor@ is set as the factor if found. It is not assured -- that the factor found will be prime. Does not compute the complete -- factorization, just one factor. Returns the number of limbs of factor if -- factorization is successful (non trivial factor is found), else returns -- 0. -- -- @max_iters@ is the number of iterations tried in process of finding the -- cycle. If the algorithm fails to find a non trivial factor in one call, -- it tries again (this time with a different set of random values). This -- process is repeated a maximum of @max_tries@ times. -- -- The algorithm used is a modification of the original Pollard Rho -- algorithm, suggested by Richard Brent. It can be found in the paper -- available at <https://maths-people.anu.edu.au/~brent/pd/rpb051i.pdf> foreign import ccall "fmpz_factor.h fmpz_factor_pollard_brent" fmpz_factor_pollard_brent :: Ptr CFmpz -> Ptr CFRandState -> Ptr CFmpz -> CMpLimb -> CMpLimb -> IO CInt -- Elliptic curve (ECM) method ------------------------------------------------- -- Factoring of @fmpz@ integers using ECM -- -- | /fmpz_factor_ecm_init/ /ecm_inf/ /sz/ -- -- Initializes the @ecm_t@ struct. This is needed in some functions and -- carries data between subsequent calls. foreign import ccall "fmpz_factor.h fmpz_factor_ecm_init" fmpz_factor_ecm_init :: Ptr CEcm -> CMpLimb -> IO () -- | /fmpz_factor_ecm_clear/ /ecm_inf/ -- -- Clears the @ecm_t@ struct. foreign import ccall "fmpz_factor.h fmpz_factor_ecm_clear" fmpz_factor_ecm_clear :: Ptr CEcm -> IO () -- | /fmpz_factor_ecm_addmod/ /a/ /b/ /c/ /n/ /n_size/ -- -- Sets \(a\) to \((b + c)\) @%@ \(n\). This is not a normal add mod -- function, it assumes \(n\) is normalized (highest bit set) and \(b\) and -- \(c\) are reduced modulo \(n\). -- -- Used for arithmetic operations in @fmpz_factor_ecm@. foreign import ccall "fmpz_factor.h fmpz_factor_ecm_addmod" fmpz_factor_ecm_addmod :: Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> CMpLimb -> IO () -- | /fmpz_factor_ecm_submod/ /x/ /a/ /b/ /n/ /n_size/ -- -- Sets \(x\) to \((a - b)\) @%@ \(n\). This is not a normal subtract mod -- function, it assumes \(n\) is normalized (highest bit set) and \(b\) and -- \(c\) are reduced modulo \(n\). -- -- Used for arithmetic operations in @fmpz_factor_ecm@. foreign import ccall "fmpz_factor.h fmpz_factor_ecm_submod" fmpz_factor_ecm_submod :: Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> CMpLimb -> IO () -- | /fmpz_factor_ecm_double/ /x/ /z/ /x0/ /z0/ /n/ /ecm_inf/ -- -- Sets the point \((x : z)\) to two times \((x_0 : z_0)\) modulo \(n\) -- according to the formula -- -- \[`\] -- \[x = (x_0 + z_0)^2 \cdot (x_0 - z_0)^2 \mod n,\] -- -- \[`\] -- \[z = 4 x_0 z_0 \left((x_0 - z_0)^2 + 4a_{24}x_0z_0\right) \mod n.\] -- -- @ecm_inf@ is used just to use temporary @mp_ptr@\'s in the structure. -- This group doubling is valid only for points expressed in Montgomery -- projective coordinates. foreign import ccall "fmpz_factor.h fmpz_factor_ecm_double" fmpz_factor_ecm_double :: Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CEcm -> IO () -- | /fmpz_factor_ecm_add/ /x/ /z/ /x1/ /z1/ /x2/ /z2/ /x0/ /z0/ /n/ /ecm_inf/ -- -- Sets the point \((x : z)\) to the sum of \((x_1 : z_1)\) and -- \((x_2 : z_2)\) modulo \(n\), given the difference \((x_0 : z_0)\) -- according to the formula -- -- \[`\] -- \[\begin{aligned} -- x = 4z_0(x_1x_2 - z_1z_2)^2 \mod n, \\ z = 4x_0(x_2z_1 - x_1z_2)^2 \mod n. -- \end{aligned}\] -- -- @ecm_inf@ is used just to use temporary @mp_ptr@\'s in the structure. -- This group addition is valid only for points expressed in Montgomery -- projective coordinates. foreign import ccall "fmpz_factor.h fmpz_factor_ecm_add" fmpz_factor_ecm_add :: Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CEcm -> IO () -- | /fmpz_factor_ecm_mul_montgomery_ladder/ /x/ /z/ /x0/ /z0/ /k/ /n/ /ecm_inf/ -- -- Montgomery ladder algorithm for scalar multiplication of elliptic -- points. -- -- Sets the point \((x : z)\) to \(k(x_0 : z_0)\) modulo \(n\). -- -- @ecm_inf@ is used just to use temporary @mp_ptr@\'s in the structure. -- Valid only for points expressed in Montgomery projective coordinates. foreign import ccall "fmpz_factor.h fmpz_factor_ecm_mul_montgomery_ladder" fmpz_factor_ecm_mul_montgomery_ladder :: Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CMp -> CMpLimb -> Ptr CMp -> Ptr CEcm -> IO () -- | /fmpz_factor_ecm_select_curve/ /f/ /sigma/ /n/ /ecm_inf/ -- -- Selects a random elliptic curve given a random integer @sigma@, -- according to Suyama\'s parameterization. If the factor is found while -- selecting the curve, the number of limbs required to store the factor is -- returned, otherwise \(0\). -- -- It could be possible that the selected curve is unsuitable for further -- computations, in such a case, \(-1\) is returned. -- -- Also selects the initial point \(x_0\), and the value of \((a + 2)/4\), -- where \(a\) is a curve parameter. Sets \(z_0\) as \(1\). All these are -- stored in the @ecm_t@ struct. -- -- The curve selected is of Montgomery form, the points selected satisfy -- the curve and are projective coordinates. foreign import ccall "fmpz_factor.h fmpz_factor_ecm_select_curve" fmpz_factor_ecm_select_curve :: Ptr CMp -> Ptr CMp -> Ptr CMp -> Ptr CEcm -> IO CInt -- | /fmpz_factor_ecm_stage_I/ /f/ /prime_array/ /num/ /B1/ /n/ /ecm_inf/ -- -- Stage I implementation of the ECM algorithm. -- -- @f@ is set as the factor if found. @num@ is number of prime numbers -- \(\le\) the bound @B1@. @prime_array@ is an array of first @B1@ primes. -- \(n\) is the number being factored. -- -- If the factor is found, number of words required to store the factor is -- returned, otherwise \(0\). foreign import ccall "fmpz_factor.h fmpz_factor_ecm_stage_I" fmpz_factor_ecm_stage_I :: Ptr CMp -> Ptr CMpLimb -> CMpLimb -> CMpLimb -> Ptr CMp -> Ptr CEcm -> IO CInt -- | /fmpz_factor_ecm_stage_II/ /f/ /B1/ /B2/ /P/ /n/ /ecm_inf/ -- -- Stage II implementation of the ECM algorithm. -- -- @f@ is set as the factor if found. @B1@, @B2@ are the two bounds. @P@ is -- the primorial (approximately equal to \(\sqrt{B2}\)). \(n\) is the -- number being factored. -- -- If the factor is found, number of words required to store the factor is -- returned, otherwise \(0\). foreign import ccall "fmpz_factor.h fmpz_factor_ecm_stage_II" fmpz_factor_ecm_stage_II :: Ptr CMp -> CMpLimb -> CMpLimb -> CMpLimb -> Ptr CMp -> Ptr CEcm -> IO CInt -- | /fmpz_factor_ecm/ /f/ /curves/ /B1/ /B2/ /state/ /n_in/ -- -- Outer wrapper function for the ECM algorithm. In case @f@ can fit in a -- single unsigned word, a call to @n_factor_ecm@ is made. -- -- The function calls stage I and II, and the precomputations (builds -- @prime_array@ for stage I, @GCD_table@ and @prime_table@ for stage II). -- -- @f@ is set as the factor if found. @curves@ is the number of random -- curves being tried. @B1@, @B2@ are the two bounds or stage I and stage -- II. \(n\) is the number being factored. -- -- If a factor is found in stage I, \(1\) is returned. If a factor is found -- in stage II, \(2\) is returned. If a factor is found while selecting the -- curve, \(-1\) is returned. Otherwise \(0\) is returned. foreign import ccall "fmpz_factor.h fmpz_factor_ecm" fmpz_factor_ecm :: Ptr CFmpz -> CMpLimb -> CMpLimb -> CMpLimb -> Ptr CFRandState -> Ptr CFmpz -> IO CInt