{-# LINE 1 "src/Data/Number/Flint/Fq/Embed/FFI.hsc" #-} {-| module : Data.Number.Flint.Fq.Embed.FFI copyright : (c) 2022 Hartmut Monien license : GNU GPL, version 2 or above (see LICENSE) maintainer : hmonien@uni-bonn.de -} module Data.Number.Flint.Fq.Embed.FFI ( -- * Computing isomorphisms and embeddings of finite fields fq_embed_gens , _fq_embed_gens_naive , fq_embed_matrices , fq_embed_trace_matrix , fq_embed_composition_matrix , fq_embed_composition_matrix_sub , fq_embed_mul_matrix , fq_embed_mono_to_dual_matrix , fq_embed_dual_to_mono_matrix , fq_modulus_pow_series_inv , fq_modulus_derivative_inv ) where import Foreign.Ptr import Foreign.C.Types import Data.Number.Flint.Fmpz.Mod.Poly import Data.Number.Flint.Fmpz.Mod.Mat import Data.Number.Flint.Fq -- Computing isomorphisms and embeddings of finite fields ---------------------- -- | /fq_embed_gens/ /gen_sub/ /gen_sup/ /minpoly/ /sub_ctx/ /sup_ctx/ -- -- Given two contexts @sub_ctx@ and @sup_ctx@, such that @degree(sub_ctx)@ -- divides @degree(sup_ctx)@, compute: -- -- - an element @gen_sub@ in @sub_ctx@ such that @gen_sub@ generates the -- finite field defined by @sub_ctx@, -- - its minimal polynomial @minpoly@, -- - a root @gen_sup@ of @minpoly@ inside the field defined by @sup_ctx@. -- -- These data uniquely define an embedding of @sub_ctx@ into @sup_ctx@. foreign import ccall "fq_embed.h fq_embed_gens" fq_embed_gens :: Ptr CFq -> Ptr CFq -> Ptr CFmpzModPoly -> Ptr CFqCtx -> Ptr CFqCtx -> IO () -- | /_fq_embed_gens_naive/ /gen_sub/ /gen_sup/ /minpoly/ /sub_ctx/ /sup_ctx/ -- -- Given two contexts @sub_ctx@ and @sup_ctx@, such that @degree(sub_ctx)@ -- divides @degree(sup_ctx)@, compute an embedding of @sub_ctx@ into -- @sup_ctx@ defined as follows: -- -- - @gen_sub@ is the canonical generator of @sup_ctx@ (i.e., the class -- of \(X\)), -- - @minpoly@ is the defining polynomial of @sub_ctx@, -- - @gen_sup@ is a root of @minpoly@ inside the field defined by -- @sup_ctx@. foreign import ccall "fq_embed.h _fq_embed_gens_naive" _fq_embed_gens_naive :: Ptr CFq -> Ptr CFq -> Ptr CFmpzModPoly -> Ptr CFqCtx -> Ptr CFqCtx -> IO () -- | /fq_embed_matrices/ /embed/ /project/ /gen_sub/ /sub_ctx/ /gen_sup/ /sup_ctx/ /gen_minpoly/ -- -- Given: -- -- - two contexts @sub_ctx@ and @sup_ctx@, of respective degrees \(m\) -- and \(n\), such that \(m\) divides \(n\); -- - a generator @gen_sub@ of @sub_ctx@, its minimal polynomial -- @gen_minpoly@, and a root @gen_sup@ of @gen_minpoly@ in @sup_ctx@, -- as returned by @fq_embed_gens@; -- -- Compute: -- -- - the \(n\times m\) matrix @embed@ mapping @gen_sub@ to @gen_sup@, and -- all their powers accordingly; -- - an \(m\times n\) matrix @project@ such that @project@ \(\times\) -- @embed@ is the \(m\times m\) identity matrix. foreign import ccall "fq_embed.h fq_embed_matrices" fq_embed_matrices :: Ptr CFmpzModMat -> Ptr CFmpzModMat -> Ptr CFq -> Ptr CFqCtx -> Ptr CFq -> Ptr CFqCtx -> Ptr CFmpzModPoly -> IO () -- | /fq_embed_trace_matrix/ /res/ /basis/ /sub_ctx/ /sup_ctx/ -- -- Given: -- -- - two contexts @sub_ctx@ and @sup_ctx@, of degrees \(m\) and \(n\), -- such that \(m\) divides \(n\); -- - an \(n\times m\) matrix @basis@ that maps @sub_ctx@ to an isomorphic -- subfield in @sup_ctx@; -- -- Compute the \(m\times n\) matrix of the trace from @sup_ctx@ to -- @sub_ctx@. -- -- This matrix is computed as -- -- @embed_dual_to_mono_matrix(_, sub_ctx)@ \(\times\) @basis@t \(\times\) -- @embed_mono_to_dual_matrix(_, sup_ctx)@. -- -- __Note:__ if \(m=n\), @basis@ represents a Frobenius, and the result is -- its inverse matrix. foreign import ccall "fq_embed.h fq_embed_trace_matrix" fq_embed_trace_matrix :: Ptr CFmpzModMat -> Ptr CFmpzModMat -> Ptr CFqCtx -> Ptr CFqCtx -> IO () -- | /fq_embed_composition_matrix/ /matrix/ /gen/ /ctx/ -- -- Compute the /composition matrix/ of @gen@. -- -- For an element \(a\in\mathbf{F}_{p^n}\), its composition matrix is the -- matrix whose columns are \(a^0, a^1, \ldots, a^{n-1}\). foreign import ccall "fq_embed.h fq_embed_composition_matrix" fq_embed_composition_matrix :: Ptr CFmpzModMat -> Ptr CFq -> Ptr CFqCtx -> IO () -- | /fq_embed_composition_matrix_sub/ /matrix/ /gen/ /ctx/ /trunc/ -- -- Compute the /composition matrix/ of @gen@, truncated to @trunc@ columns. foreign import ccall "fq_embed.h fq_embed_composition_matrix_sub" fq_embed_composition_matrix_sub :: Ptr CFmpzModMat -> Ptr CFq -> Ptr CFqCtx -> CLong -> IO () -- | /fq_embed_mul_matrix/ /matrix/ /gen/ /ctx/ -- -- Compute the /multiplication matrix/ of @gen@. -- -- For an element \(a\) in \(\mathbf{F}_{p^n}=\mathbf{F}_p[x]\), its -- multiplication matrix is the matrix whose columns are \(a, ax, -- \dots, ax^{n-1}\). foreign import ccall "fq_embed.h fq_embed_mul_matrix" fq_embed_mul_matrix :: Ptr CFmpzModMat -> Ptr CFq -> Ptr CFqCtx -> IO () -- | /fq_embed_mono_to_dual_matrix/ /res/ /ctx/ -- -- Compute the change of basis matrix from the monomial basis of @ctx@ to -- its dual basis. foreign import ccall "fq_embed.h fq_embed_mono_to_dual_matrix" fq_embed_mono_to_dual_matrix :: Ptr CFmpzModMat -> Ptr CFqCtx -> IO () -- | /fq_embed_dual_to_mono_matrix/ /res/ /ctx/ -- -- Compute the change of basis matrix from the dual basis of @ctx@ to its -- monomial basis. foreign import ccall "fq_embed.h fq_embed_dual_to_mono_matrix" fq_embed_dual_to_mono_matrix :: Ptr CFmpzModMat -> Ptr CFqCtx -> IO () -- | /fq_modulus_pow_series_inv/ /res/ /ctx/ /trunc/ -- -- Compute the power series inverse of the reverse of the modulus of @ctx@ -- up to \(O(x^\texttt{trunc})\). foreign import ccall "fq_embed.h fq_modulus_pow_series_inv" fq_modulus_pow_series_inv :: Ptr CFmpzModPoly -> Ptr CFqCtx -> CLong -> IO () -- | /fq_modulus_derivative_inv/ /m_prime/ /m_prime_inv/ /ctx/ -- -- Compute the derivative @m_prime@ of the modulus of @ctx@ as an element -- of @ctx@, and its inverse @m_prime_inv@. foreign import ccall "fq_embed.h fq_modulus_derivative_inv" fq_modulus_derivative_inv :: Ptr CFq -> Ptr CFq -> Ptr CFqCtx -> IO ()