{-# LINE 1 "src/Data/Number/Flint/Fq/NMod/Poly/FFI.hsc" #-} {-| module : Data.Number.Flint.Fq.NMod.Poly.FFi copyright : (c) 2022 Hartmut Monien license : GNU GPL, version 2 or above (see LICENSE) maintainer : hmonien@uni-bonn.de -} module Data.Number.Flint.Fq.NMod.Poly.FFI ( -- * Univariate polynomials over finite fields (word-size characteristic) FqNModPoly (..) , CFqNModPoly (..) , newFqNModPoly , withFqNModPoly -- * Memory management , fq_nmod_poly_init , fq_nmod_poly_init2 , fq_nmod_poly_realloc , fq_nmod_poly_fit_length , _fq_nmod_poly_set_length , fq_nmod_poly_clear , _fq_nmod_poly_normalise , _fq_nmod_poly_normalise2 , fq_nmod_poly_truncate , fq_nmod_poly_set_trunc , _fq_nmod_poly_reverse , fq_nmod_poly_reverse -- * Polynomial parameters , fq_nmod_poly_degree , fq_nmod_poly_length , fq_nmod_poly_lead -- * Randomisation , fq_nmod_poly_randtest , fq_nmod_poly_randtest_not_zero , fq_nmod_poly_randtest_monic , fq_nmod_poly_randtest_irreducible -- * Assignment and basic manipulation , _fq_nmod_poly_set , fq_nmod_poly_set , fq_nmod_poly_set_fq_nmod , fq_nmod_poly_set_fmpz_mod_poly , fq_nmod_poly_set_nmod_poly , fq_nmod_poly_swap , _fq_nmod_poly_zero , fq_nmod_poly_zero , fq_nmod_poly_one , fq_nmod_poly_gen , fq_nmod_poly_make_monic , _fq_nmod_poly_make_monic -- * Getting and setting coefficients , fq_nmod_poly_get_coeff , fq_nmod_poly_set_coeff , fq_nmod_poly_set_coeff_fmpz -- * Comparison , fq_nmod_poly_equal , fq_nmod_poly_equal_trunc , fq_nmod_poly_is_zero , fq_nmod_poly_is_one , fq_nmod_poly_is_gen , fq_nmod_poly_is_unit , fq_nmod_poly_equal_fq_nmod -- * Addition and subtraction , _fq_nmod_poly_add , fq_nmod_poly_add , fq_nmod_poly_add_si , fq_nmod_poly_add_series , _fq_nmod_poly_sub , fq_nmod_poly_sub , fq_nmod_poly_sub_series , _fq_nmod_poly_neg , fq_nmod_poly_neg -- * Scalar multiplication and division , _fq_nmod_poly_scalar_mul_fq_nmod , fq_nmod_poly_scalar_mul_fq_nmod , _fq_nmod_poly_scalar_addmul_fq_nmod , fq_nmod_poly_scalar_addmul_fq_nmod , _fq_nmod_poly_scalar_submul_fq_nmod , fq_nmod_poly_scalar_submul_fq_nmod --, _fq_nmod_poly_scalar_div_fq --, fq_nmod_poly_scalar_div_fq -- * Multiplication , _fq_nmod_poly_mul_classical , fq_nmod_poly_mul_classical --, _fq_nmod_poly_mul_reorder --, fq_nmod_poly_mul_reorder , _fq_nmod_poly_mul_univariate , fq_nmod_poly_mul_univariate , _fq_nmod_poly_mul_KS , fq_nmod_poly_mul_KS , _fq_nmod_poly_mul , fq_nmod_poly_mul , _fq_nmod_poly_mullow_classical , fq_nmod_poly_mullow_classical , _fq_nmod_poly_mullow_univariate , fq_nmod_poly_mullow_univariate , _fq_nmod_poly_mullow_KS , fq_nmod_poly_mullow_KS , _fq_nmod_poly_mullow , fq_nmod_poly_mullow , _fq_nmod_poly_mulhigh_classical , fq_nmod_poly_mulhigh_classical , _fq_nmod_poly_mulhigh , fq_nmod_poly_mulhigh , _fq_nmod_poly_mulmod , fq_nmod_poly_mulmod , _fq_nmod_poly_mulmod_preinv , fq_nmod_poly_mulmod_preinv -- * Squaring , _fq_nmod_poly_sqr_classical , fq_nmod_poly_sqr_classical , _fq_nmod_poly_sqr_KS , fq_nmod_poly_sqr_KS , _fq_nmod_poly_sqr , fq_nmod_poly_sqr -- * Powering , _fq_nmod_poly_pow , fq_nmod_poly_pow , _fq_nmod_poly_powmod_ui_binexp , fq_nmod_poly_powmod_ui_binexp , _fq_nmod_poly_powmod_ui_binexp_preinv , fq_nmod_poly_powmod_ui_binexp_preinv , _fq_nmod_poly_powmod_fmpz_binexp , fq_nmod_poly_powmod_fmpz_binexp , _fq_nmod_poly_powmod_fmpz_binexp_preinv , fq_nmod_poly_powmod_fmpz_binexp_preinv , _fq_nmod_poly_powmod_fmpz_sliding_preinv , fq_nmod_poly_powmod_fmpz_sliding_preinv , _fq_nmod_poly_powmod_x_fmpz_preinv , fq_nmod_poly_powmod_x_fmpz_preinv , _fq_nmod_poly_pow_trunc_binexp , fq_nmod_poly_pow_trunc_binexp , _fq_nmod_poly_pow_trunc , fq_nmod_poly_pow_trunc -- * Shifting , _fq_nmod_poly_shift_left , fq_nmod_poly_shift_left , _fq_nmod_poly_shift_right , fq_nmod_poly_shift_right -- * Norms , _fq_nmod_poly_hamming_weight , fq_nmod_poly_hamming_weight -- * Euclidean division , _fq_nmod_poly_divrem , fq_nmod_poly_divrem , fq_nmod_poly_divrem_f , _fq_nmod_poly_rem , fq_nmod_poly_rem , _fq_nmod_poly_div , fq_nmod_poly_div , _fq_nmod_poly_div_newton_n_preinv , fq_nmod_poly_div_newton_n_preinv , _fq_nmod_poly_divrem_newton_n_preinv , fq_nmod_poly_divrem_newton_n_preinv , _fq_nmod_poly_inv_series_newton , fq_nmod_poly_inv_series_newton , _fq_nmod_poly_inv_series , fq_nmod_poly_inv_series , _fq_nmod_poly_div_series , fq_nmod_poly_div_series -- * Greatest common divisor , fq_nmod_poly_gcd , _fq_nmod_poly_gcd , _fq_nmod_poly_gcd_euclidean_f , fq_nmod_poly_gcd_euclidean_f , _fq_nmod_poly_xgcd , fq_nmod_poly_xgcd , _fq_nmod_poly_xgcd_euclidean_f , fq_nmod_poly_xgcd_euclidean_f -- * Divisibility testing , _fq_nmod_poly_divides , fq_nmod_poly_divides -- * Derivative , _fq_nmod_poly_derivative , fq_nmod_poly_derivative -- * Square root , _fq_nmod_poly_invsqrt_series , fq_nmod_poly_invsqrt_series , _fq_nmod_poly_sqrt_series , fq_nmod_poly_sqrt_series , _fq_nmod_poly_sqrt , fq_nmod_poly_sqrt -- * Evaluation , _fq_nmod_poly_evaluate_fq_nmod , fq_nmod_poly_evaluate_fq_nmod -- * Composition , _fq_nmod_poly_compose , fq_nmod_poly_compose , _fq_nmod_poly_compose_mod_horner , fq_nmod_poly_compose_mod_horner , _fq_nmod_poly_compose_mod_horner_preinv , fq_nmod_poly_compose_mod_horner_preinv , _fq_nmod_poly_compose_mod_brent_kung , fq_nmod_poly_compose_mod_brent_kung , _fq_nmod_poly_compose_mod_brent_kung_preinv , fq_nmod_poly_compose_mod_brent_kung_preinv , _fq_nmod_poly_compose_mod , fq_nmod_poly_compose_mod , _fq_nmod_poly_compose_mod_preinv , fq_nmod_poly_compose_mod_preinv , _fq_nmod_poly_reduce_matrix_mod_poly , _fq_nmod_poly_precompute_matrix , fq_nmod_poly_precompute_matrix , _fq_nmod_poly_compose_mod_brent_kung_precomp_preinv , fq_nmod_poly_compose_mod_brent_kung_precomp_preinv -- * Output , _fq_nmod_poly_fprint_pretty , fq_nmod_poly_fprint_pretty , _fq_nmod_poly_print_pretty , fq_nmod_poly_print_pretty , _fq_nmod_poly_fprint , fq_nmod_poly_fprint , _fq_nmod_poly_print , fq_nmod_poly_print , _fq_nmod_poly_get_str , fq_nmod_poly_get_str , _fq_nmod_poly_get_str_pretty , fq_nmod_poly_get_str_pretty -- * Inflation and deflation , fq_nmod_poly_inflate , fq_nmod_poly_deflate , fq_nmod_poly_deflation ) where -- univariate polynomials over finite fields (word-size characteristic) -------- import Foreign.C.String import Foreign.C.Types import qualified Foreign.Concurrent import Foreign.ForeignPtr import Foreign.Ptr ( Ptr, FunPtr, plusPtr ) import Foreign.Storable import Foreign.Marshal ( free ) import Data.Number.Flint.Flint import Data.Number.Flint.Fmpz import Data.Number.Flint.Fmpz.Mod.Poly import Data.Number.Flint.NMod.Poly import Data.Number.Flint.Fq import Data.Number.Flint.Fq.Poly import Data.Number.Flint.Fq.NMod import Data.Number.Flint.Fq.NMod.Types -- fq_nmod_poly_t -------------------------------------------------------------- instance Storable CFqNModPoly where {-# INLINE sizeOf #-} sizeOf :: CFqNModPoly -> Int sizeOf CFqNModPoly _ = (Int 24) {-# LINE 250 "src/Data/Number/Flint/Fq/NMod/Poly/FFI.hsc" #-} {-# INLINE alignment #-} alignment :: CFqNModPoly -> Int alignment CFqNModPoly _ = Int 8 {-# LINE 252 "src/Data/Number/Flint/Fq/NMod/Poly/FFI.hsc" #-} peek = undefined poke :: Ptr CFqNModPoly -> CFqNModPoly -> IO () poke = Ptr CFqNModPoly -> CFqNModPoly -> IO () forall a. HasCallStack => a undefined newFqNModPoly :: FqNModCtx -> IO FqNModPoly newFqNModPoly ctx :: FqNModCtx ctx@(FqNModCtx ForeignPtr CFqNModCtx ftx) = do ForeignPtr CFqNModPoly x <- IO (ForeignPtr CFqNModPoly) forall a. Storable a => IO (ForeignPtr a) mallocForeignPtr ForeignPtr CFqNModPoly -> (Ptr CFqNModPoly -> IO ()) -> IO () forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CFqNModPoly x ((Ptr CFqNModPoly -> IO ()) -> IO ()) -> (Ptr CFqNModPoly -> IO ()) -> IO () forall a b. (a -> b) -> a -> b $ \Ptr CFqNModPoly x -> do FqNModCtx -> (Ptr CFqNModCtx -> IO ()) -> IO (FqNModCtx, ()) forall {a}. FqNModCtx -> (Ptr CFqNModCtx -> IO a) -> IO (FqNModCtx, a) withFqNModCtx FqNModCtx ctx ((Ptr CFqNModCtx -> IO ()) -> IO (FqNModCtx, ())) -> (Ptr CFqNModCtx -> IO ()) -> IO (FqNModCtx, ()) forall a b. (a -> b) -> a -> b $ \Ptr CFqNModCtx ctx -> do Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () fq_nmod_poly_init Ptr CFqNModPoly x Ptr CFqNModCtx ctx FinalizerEnvPtr CFqNModPoly CFqNModCtx -> Ptr CFqNModPoly -> ForeignPtr CFqNModCtx -> IO () forall env a. FinalizerEnvPtr env a -> Ptr env -> ForeignPtr a -> IO () addForeignPtrFinalizerEnv FinalizerEnvPtr CFqNModPoly CFqNModCtx p_fq_nmod_poly_clear Ptr CFqNModPoly x ForeignPtr CFqNModCtx ftx FqNModPoly -> IO FqNModPoly forall a. a -> IO a forall (m :: * -> *) a. Monad m => a -> m a return (FqNModPoly -> IO FqNModPoly) -> FqNModPoly -> IO FqNModPoly forall a b. (a -> b) -> a -> b $ ForeignPtr CFqNModPoly -> FqNModPoly FqNModPoly ForeignPtr CFqNModPoly x {-# INLINE withFqNModPoly #-} withFqNModPoly :: FqNModPoly -> (Ptr CFqNModPoly -> IO a) -> IO (FqNModPoly, a) withFqNModPoly (FqNModPoly ForeignPtr CFqNModPoly x) Ptr CFqNModPoly -> IO a f = do ForeignPtr CFqNModPoly -> (Ptr CFqNModPoly -> IO (FqNModPoly, a)) -> IO (FqNModPoly, a) forall a b. ForeignPtr a -> (Ptr a -> IO b) -> IO b withForeignPtr ForeignPtr CFqNModPoly x ((Ptr CFqNModPoly -> IO (FqNModPoly, a)) -> IO (FqNModPoly, a)) -> (Ptr CFqNModPoly -> IO (FqNModPoly, a)) -> IO (FqNModPoly, a) forall a b. (a -> b) -> a -> b $ \Ptr CFqNModPoly px -> Ptr CFqNModPoly -> IO a f Ptr CFqNModPoly px IO a -> (a -> IO (FqNModPoly, a)) -> IO (FqNModPoly, a) forall a b. IO a -> (a -> IO b) -> IO b forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= (FqNModPoly, a) -> IO (FqNModPoly, a) forall a. a -> IO a forall (m :: * -> *) a. Monad m => a -> m a return ((FqNModPoly, a) -> IO (FqNModPoly, a)) -> (a -> (FqNModPoly, a)) -> a -> IO (FqNModPoly, a) forall b c a. (b -> c) -> (a -> b) -> a -> c . (ForeignPtr CFqNModPoly -> FqNModPoly FqNModPoly ForeignPtr CFqNModPoly x,) -- Memory management ----------------------------------------------------------- -- | /fq_nmod_poly_init/ /poly/ /ctx/ -- -- Initialises @poly@ for use, with context ctx, and setting its length to -- zero. A corresponding call to @fq_nmod_poly_clear@ must be made after -- finishing with the @fq_nmod_poly_t@ to free the memory used by the -- polynomial. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_init" fq_nmod_poly_init :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_init2/ /poly/ /alloc/ /ctx/ -- -- Initialises @poly@ with space for at least @alloc@ coefficients and sets -- the length to zero. The allocated coefficients are all set to zero. A -- corresponding call to @fq_nmod_poly_clear@ must be made after finishing -- with the @fq_nmod_poly_t@ to free the memory used by the polynomial. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_init2" fq_nmod_poly_init2 :: Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_realloc/ /poly/ /alloc/ /ctx/ -- -- Reallocates the given polynomial to have space for @alloc@ coefficients. -- If @alloc@ is zero the polynomial is cleared and then reinitialised. If -- the current length is greater than @alloc@ the polynomial is first -- truncated to length @alloc@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_realloc" fq_nmod_poly_realloc :: Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_fit_length/ /poly/ /len/ /ctx/ -- -- If @len@ is greater than the number of coefficients currently allocated, -- then the polynomial is reallocated to have space for at least @len@ -- coefficients. No data is lost when calling this function. -- -- The function efficiently deals with the case where @fit_length@ is -- called many times in small increments by at least doubling the number of -- allocated coefficients when length is larger than the number of -- coefficients currently allocated. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_fit_length" fq_nmod_poly_fit_length :: Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_set_length/ /poly/ /newlen/ /ctx/ -- -- Sets the coefficients of @poly@ beyond @len@ to zero and sets the length -- of @poly@ to @len@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_set_length" _fq_nmod_poly_set_length :: Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_clear/ /poly/ /ctx/ -- -- Clears the given polynomial, releasing any memory used. It must be -- reinitialised in order to be used again. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_clear" fq_nmod_poly_clear :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () foreign import ccall "fq_nmod_poly.h &fq_nmod_poly_clear" p_fq_nmod_poly_clear :: FunPtr (Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO ()) -- | /_fq_nmod_poly_normalise/ /poly/ /ctx/ -- -- Sets the length of @poly@ so that the top coefficient is non-zero. If -- all coefficients are zero, the length is set to zero. This function is -- mainly used internally, as all functions guarantee normalisation. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_normalise" _fq_nmod_poly_normalise :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_normalise2/ /poly/ /length/ /ctx/ -- -- Sets the length @length@ of @(poly,length)@ so that the top coefficient -- is non-zero. If all coefficients are zero, the length is set to zero. -- This function is mainly used internally, as all functions guarantee -- normalisation. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_normalise2" _fq_nmod_poly_normalise2 :: Ptr (Ptr CFqNMod) -> Ptr CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_truncate/ /poly/ /newlen/ /ctx/ -- -- Truncates the polynomial to length at most @n@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_truncate" fq_nmod_poly_truncate :: Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_set_trunc/ /poly1/ /poly2/ /newlen/ /ctx/ -- -- Sets @poly1@ to @poly2@ truncated to length \(n\). foreign import ccall "fq_nmod_poly.h fq_nmod_poly_set_trunc" fq_nmod_poly_set_trunc :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqCtx -> IO () -- | /_fq_nmod_poly_reverse/ /output/ /input/ /len/ /m/ /ctx/ -- -- Sets @output@ to the reverse of @input@, which is of length @len@, but -- thinking of it as a polynomial of length @m@, notionally zero-padded if -- necessary. The length @m@ must be non-negative, but there are no other -- restrictions. The polynomial @output@ must have space for @m@ -- coefficients. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_reverse" _fq_nmod_poly_reverse :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_reverse/ /output/ /input/ /m/ /ctx/ -- -- Sets @output@ to the reverse of @input@, thinking of it as a polynomial -- of length @m@, notionally zero-padded if necessary). The length @m@ must -- be non-negative, but there are no other restrictions. The output -- polynomial will be set to length @m@ and then normalised. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_reverse" fq_nmod_poly_reverse :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- Polynomial parameters ------------------------------------------------------- -- | /fq_nmod_poly_degree/ /poly/ /ctx/ -- -- Returns the degree of the polynomial @poly@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_degree" fq_nmod_poly_degree :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CLong -- | /fq_nmod_poly_length/ /poly/ /ctx/ -- -- Returns the length of the polynomial @poly@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_length" fq_nmod_poly_length :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CLong -- | /fq_nmod_poly_lead/ /poly/ /ctx/ -- -- Returns a pointer to the leading coefficient of @poly@, or @NULL@ if -- @poly@ is the zero polynomial. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_lead" fq_nmod_poly_lead :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO (Ptr (Ptr CFqNMod)) -- Randomisation --------------------------------------------------------------- -- | /fq_nmod_poly_randtest/ /f/ /state/ /len/ /ctx/ -- -- Sets \(f\) to a random polynomial of length at most @len@ with entries -- in the field described by @ctx@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_randtest" fq_nmod_poly_randtest :: Ptr CFqNModPoly -> Ptr CFRandState -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_randtest_not_zero/ /f/ /state/ /len/ /ctx/ -- -- Same as @fq_nmod_poly_randtest@ but guarantees that the polynomial is -- not zero. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_randtest_not_zero" fq_nmod_poly_randtest_not_zero :: Ptr CFqNModPoly -> Ptr CFRandState -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_randtest_monic/ /f/ /state/ /len/ /ctx/ -- -- Sets \(f\) to a random monic polynomial of length @len@ with entries in -- the field described by @ctx@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_randtest_monic" fq_nmod_poly_randtest_monic :: Ptr CFqNModPoly -> Ptr CFRandState -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_randtest_irreducible/ /f/ /state/ /len/ /ctx/ -- -- Sets \(f\) to a random monic, irreducible polynomial of length @len@ -- with entries in the field described by @ctx@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_randtest_irreducible" fq_nmod_poly_randtest_irreducible :: Ptr CFqNModPoly -> Ptr CFRandState -> CLong -> Ptr CFqNModCtx -> IO () -- Assignment and basic manipulation ------------------------------------------- -- | /_fq_nmod_poly_set/ /rop/ /op/ /len/ /ctx/ -- -- Sets @(rop, len@) to @(op, len)@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_set" _fq_nmod_poly_set :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_set/ /poly1/ /poly2/ /ctx/ -- -- Sets the polynomial @poly1@ to the polynomial @poly2@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_set" fq_nmod_poly_set :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_set_fq_nmod/ /poly/ /c/ /ctx/ -- -- Sets the polynomial @poly@ to @c@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_set_fq_nmod" fq_nmod_poly_set_fq_nmod :: Ptr CFqNModPoly -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_set_fmpz_mod_poly/ /rop/ /op/ /ctx/ -- -- Sets the polynomial @rop@ to the polynomial @op@ foreign import ccall "fq_nmod_poly.h fq_nmod_poly_set_fmpz_mod_poly" fq_nmod_poly_set_fmpz_mod_poly :: Ptr CFqNModPoly -> Ptr CFmpzModPoly -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_set_nmod_poly/ /rop/ /op/ /ctx/ -- -- Sets the polynomial @rop@ to the polynomial @op@ foreign import ccall "fq_nmod_poly.h fq_nmod_poly_set_nmod_poly" fq_nmod_poly_set_nmod_poly :: Ptr CFqNModPoly -> Ptr CNModPoly -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_swap/ /op1/ /op2/ /ctx/ -- -- Swaps the two polynomials @op1@ and @op2@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_swap" fq_nmod_poly_swap :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_zero/ /rop/ /len/ /ctx/ -- -- Sets @(rop, len)@ to the zero polynomial. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_zero" _fq_nmod_poly_zero :: Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_zero/ /poly/ /ctx/ -- -- Sets @poly@ to the zero polynomial. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_zero" fq_nmod_poly_zero :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_one/ /poly/ /ctx/ -- -- Sets @poly@ to the constant polynomial \(1\). foreign import ccall "fq_nmod_poly.h fq_nmod_poly_one" fq_nmod_poly_one :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_gen/ /poly/ /ctx/ -- -- Sets @poly@ to the polynomial \(x\). foreign import ccall "fq_nmod_poly.h fq_nmod_poly_gen" fq_nmod_poly_gen :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_make_monic/ /rop/ /op/ /ctx/ -- -- Sets @rop@ to @op@, normed to have leading coefficient 1. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_make_monic" fq_nmod_poly_make_monic :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_make_monic/ /rop/ /op/ /length/ /ctx/ -- -- Sets @rop@ to @(op,length)@, normed to have leading coefficient 1. -- Assumes that @rop@ has enough space for the polynomial, assumes that -- @op@ is not zero (and thus has an invertible leading coefficient). foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_make_monic" _fq_nmod_poly_make_monic :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- Getting and setting coefficients -------------------------------------------- -- | /fq_nmod_poly_get_coeff/ /x/ /poly/ /n/ /ctx/ -- -- Sets \(x\) to the coefficient of \(X^n\) in @poly@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_get_coeff" fq_nmod_poly_get_coeff :: Ptr CFqNMod -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_set_coeff/ /poly/ /n/ /x/ /ctx/ -- -- Sets the coefficient of \(X^n\) in @poly@ to \(x\). foreign import ccall "fq_nmod_poly.h fq_nmod_poly_set_coeff" fq_nmod_poly_set_coeff :: Ptr CFqNModPoly -> CLong -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_set_coeff_fmpz/ /poly/ /n/ /x/ /ctx/ -- -- Sets the coefficient of \(X^n\) in the polynomial to \(x\), assuming -- \(n \geq 0\). foreign import ccall "fq_nmod_poly.h fq_nmod_poly_set_coeff_fmpz" fq_nmod_poly_set_coeff_fmpz :: Ptr CFqNModPoly -> CLong -> Ptr CFmpz -> Ptr CFqNModCtx -> IO () -- Comparison ------------------------------------------------------------------ -- | /fq_nmod_poly_equal/ /poly1/ /poly2/ /ctx/ -- -- Returns nonzero if the two polynomials @poly1@ and @poly2@ are equal, -- otherwise return zero. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_equal" fq_nmod_poly_equal :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CInt -- | /fq_nmod_poly_equal_trunc/ /poly1/ /poly2/ /n/ /ctx/ -- -- Notionally truncate @poly1@ and @poly2@ to length \(n\) and return -- nonzero if they are equal, otherwise return zero. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_equal_trunc" fq_nmod_poly_equal_trunc :: Ptr CFqPoly -> Ptr CFqPoly -> CLong -> Ptr CFqCtx -> IO CInt -- | /fq_nmod_poly_is_zero/ /poly/ /ctx/ -- -- Returns whether the polynomial @poly@ is the zero polynomial. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_is_zero" fq_nmod_poly_is_zero :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CInt -- | /fq_nmod_poly_is_one/ /op/ -- -- Returns whether the polynomial @poly@ is equal to the constant -- polynomial \(1\). foreign import ccall "fq_nmod_poly.h fq_nmod_poly_is_one" fq_nmod_poly_is_one :: Ptr CFqNModPoly -> IO CInt -- | /fq_nmod_poly_is_gen/ /op/ /ctx/ -- -- Returns whether the polynomial @poly@ is equal to the polynomial \(x\). foreign import ccall "fq_nmod_poly.h fq_nmod_poly_is_gen" fq_nmod_poly_is_gen :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CInt -- | /fq_nmod_poly_is_unit/ /op/ /ctx/ -- -- Returns whether the polynomial @poly@ is a unit in the polynomial ring -- \(\mathbf{F}_q[X]\), i.e. if it has degree \(0\) and is non-zero. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_is_unit" fq_nmod_poly_is_unit :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CInt -- | /fq_nmod_poly_equal_fq_nmod/ /poly/ /c/ /ctx/ -- -- Returns whether the polynomial @poly@ is equal the (constant) -- \(\mathbf{F}_q\) element @c@ foreign import ccall "fq_nmod_poly.h fq_nmod_poly_equal_fq_nmod" fq_nmod_poly_equal_fq_nmod :: Ptr CFqNModPoly -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO CInt -- Addition and subtraction ---------------------------------------------------- -- | /_fq_nmod_poly_add/ /res/ /poly1/ /len1/ /poly2/ /len2/ /ctx/ -- -- Sets @res@ to the sum of @(poly1,len1)@ and @(poly2,len2)@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_add" _fq_nmod_poly_add :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_add/ /res/ /poly1/ /poly2/ /ctx/ -- -- Sets @res@ to the sum of @poly1@ and @poly2@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_add" fq_nmod_poly_add :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_add_si/ /res/ /poly1/ /c/ /ctx/ -- -- Sets @res@ to the sum of @poly1@ and @c@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_add_si" fq_nmod_poly_add_si :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_add_series/ /res/ /poly1/ /poly2/ /n/ /ctx/ -- -- Notionally truncate @poly1@ and @poly2@ to length @n@ and set @res@ to -- the sum. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_add_series" fq_nmod_poly_add_series :: Ptr CFqPoly -> Ptr CFqPoly -> Ptr CFqPoly -> CLong -> Ptr CFqCtx -> IO () -- | /_fq_nmod_poly_sub/ /res/ /poly1/ /len1/ /poly2/ /len2/ /ctx/ -- -- Sets @res@ to the difference of @(poly1,len1)@ and @(poly2,len2)@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_sub" _fq_nmod_poly_sub :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_sub/ /res/ /poly1/ /poly2/ /ctx/ -- -- Sets @res@ to the difference of @poly1@ and @poly2@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_sub" fq_nmod_poly_sub :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_sub_series/ /res/ /poly1/ /poly2/ /n/ /ctx/ -- -- Notionally truncate @poly1@ and @poly2@ to length @n@ and set @res@ to -- the difference. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_sub_series" fq_nmod_poly_sub_series :: Ptr CFqPoly -> Ptr CFqPoly -> Ptr CFqPoly -> CLong -> Ptr CFqCtx -> IO () -- | /_fq_nmod_poly_neg/ /rop/ /op/ /len/ /ctx/ -- -- Sets @rop@ to the additive inverse of @(poly,len)@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_neg" _fq_nmod_poly_neg :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_neg/ /res/ /poly/ /ctx/ -- -- Sets @res@ to the additive inverse of @poly@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_neg" fq_nmod_poly_neg :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- Scalar multiplication and division ------------------------------------------ -- | /_fq_nmod_poly_scalar_mul_fq_nmod/ /rop/ /op/ /len/ /x/ /ctx/ -- -- Sets @(rop,len)@ to the product of @(op,len)@ by the scalar @x@, in the -- context defined by @ctx@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_scalar_mul_fq_nmod" _fq_nmod_poly_scalar_mul_fq_nmod :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_scalar_mul_fq_nmod/ /rop/ /op/ /x/ /ctx/ -- -- Sets @rop@ to the product of @op@ by the scalar @x@, in the context -- defined by @ctx@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_scalar_mul_fq_nmod" fq_nmod_poly_scalar_mul_fq_nmod :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_scalar_addmul_fq_nmod/ /rop/ /op/ /len/ /x/ /ctx/ -- -- Adds to @(rop,len)@ the product of @(op,len)@ by the scalar @x@, in the -- context defined by @ctx@. In particular, assumes the same length for -- @op@ and @rop@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_scalar_addmul_fq_nmod" _fq_nmod_poly_scalar_addmul_fq_nmod :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_scalar_addmul_fq_nmod/ /rop/ /op/ /x/ /ctx/ -- -- Adds to @rop@ the product of @op@ by the scalar @x@, in the context -- defined by @ctx@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_scalar_addmul_fq_nmod" fq_nmod_poly_scalar_addmul_fq_nmod :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_scalar_submul_fq_nmod/ /rop/ /op/ /len/ /x/ /ctx/ -- -- Subtracts from @(rop,len)@ the product of @(op,len)@ by the scalar @x@, -- in the context defined by @ctx@. In particular, assumes the same length -- for @op@ and @rop@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_scalar_submul_fq_nmod" _fq_nmod_poly_scalar_submul_fq_nmod :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_scalar_submul_fq_nmod/ /rop/ /op/ /x/ /ctx/ -- -- Subtracts from @rop@ the product of @op@ by the scalar @x@, in the -- context defined by @ctx@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_scalar_submul_fq_nmod" fq_nmod_poly_scalar_submul_fq_nmod :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- -- | /_fq_nmod_poly_scalar_div_fq/ /rop/ /op/ /len/ /x/ /ctx/ -- -- -- -- Sets @(rop,len)@ to the quotient of @(op,len)@ by the scalar @x@, in the -- -- context defined by @ctx@. An exception is raised if @x@ is zero. -- foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_scalar_div_fq" -- _fq_nmod_poly_scalar_div_fq :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- -- | /fq_nmod_poly_scalar_div_fq/ /rop/ /op/ /x/ /ctx/ -- -- -- -- Sets @rop@ to the quotient of @op@ by the scalar @x@, in the context -- -- defined by @ctx@. An exception is raised if @x@ is zero. -- foreign import ccall "fq_nmod_poly.h fq_nmod_poly_scalar_div_fq" -- fq_nmod_poly_scalar_div_fq :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- Multiplication -------------------------------------------------------------- -- | /_fq_nmod_poly_mul_classical/ /rop/ /op1/ /len1/ /op2/ /len2/ /ctx/ -- -- Sets @(rop, len1 + len2 - 1)@ to the product of @(op1, len1)@ and -- @(op2, len2)@, assuming that @len1@ is at least @len2@ and neither is -- zero. -- -- Permits zero padding. Does not support aliasing of @rop@ with either -- @op1@ or @op2@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mul_classical" _fq_nmod_poly_mul_classical :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mul_classical/ /rop/ /op1/ /op2/ /ctx/ -- -- Sets @rop@ to the product of @op1@ and @op2@ using classical polynomial -- multiplication. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mul_classical" fq_nmod_poly_mul_classical :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- -- | /_fq_nmod_poly_mul_reorder/ /rop/ /op1/ /len1/ /op2/ /len2/ /ctx/ -- -- -- -- Sets @(rop, len1 + len2 - 1)@ to the product of @(op1, len1)@ and -- -- @(op2, len2)@, assuming that @len1@ and @len2@ are non-zero. -- -- -- -- Permits zero padding. Supports aliasing. -- foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mul_reorder" -- _fq_nmod_poly_mul_reorder :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- -- | /fq_nmod_poly_mul_reorder/ /rop/ /op1/ /op2/ /ctx/ -- -- -- -- Sets @rop@ to the product of @op1@ and @op2@, reordering the two -- -- indeterminates \(X\) and \(Y\) when viewing the polynomials as elements -- -- of \(\mathbf{F}_p[X,Y]\). -- -- -- -- Suppose \(\mathbf{F}_q = \mathbf{F}_p[X]/ (f(X))\) and recall that -- -- elements of \(\mathbf{F}_q\) are internally represented by elements of -- -- type @fmpz_poly@. For small degree extensions but polynomials in -- -- \(\mathbf{F}_q[Y]\) of large degree \(n\), we change the representation -- -- to -- -- -- -- \[`\] -- -- \[\begin{aligned} -- -- \begin{split} -- -- g(Y) & = \sum_{i=0}^{n} a_i(X) Y^i \\ -- -- & = \sum_{j=0}^{d} \sum_{i=0}^{n} \text{Coeff}(a_i(X), j) Y^i. -- -- \end{split} -- -- \end{aligned}\] -- -- -- -- This allows us to use a poor algorithm (such as classical -- -- multiplication) in the \(X\)-direction and leverage the existing fast -- -- integer multiplication routines in the \(Y\)-direction where the -- -- polynomial degree \(n\) is large. -- foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mul_reorder" -- fq_nmod_poly_mul_reorder :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mul_univariate/ /rop/ /op1/ /len1/ /op2/ /len2/ /ctx/ -- -- Sets @(rop, len1 + len2 - 1)@ to the product of @(op1, len1)@ and -- @(op2, len2)@. -- -- Permits zero padding and makes no assumptions on @len1@ and @len2@. -- Supports aliasing. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mul_univariate" _fq_nmod_poly_mul_univariate :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mul_univariate/ /rop/ /op1/ /op2/ /ctx/ -- -- Sets @rop@ to the product of @op1@ and @op2@ using a bivariate to -- univariate transformation and reducing this problem to multiplying two -- univariate polynomials. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mul_univariate" fq_nmod_poly_mul_univariate :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mul_KS/ /rop/ /op1/ /len1/ /op2/ /len2/ /ctx/ -- -- Sets @(rop, len1 + len2 - 1)@ to the product of @(op1, len1)@ and -- @(op2, len2)@. -- -- Permits zero padding and places no assumptions on the lengths @len1@ and -- @len2@. Supports aliasing. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mul_KS" _fq_nmod_poly_mul_KS :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mul_KS/ /rop/ /op1/ /op2/ /ctx/ -- -- Sets @rop@ to the product of @op1@ and @op2@ using Kronecker -- substitution, that is, by encoding each coefficient in -- \(\mathbf{F}_{q}\) as an integer and reducing this problem to -- multiplying two polynomials over the integers. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mul_KS" fq_nmod_poly_mul_KS :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mul/ /rop/ /op1/ /len1/ /op2/ /len2/ /ctx/ -- -- Sets @(rop, len1 + len2 - 1)@ to the product of @(op1, len1)@ and -- @(op2, len2)@, choosing an appropriate algorithm. -- -- Permits zero padding. Does not support aliasing. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mul" _fq_nmod_poly_mul :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mul/ /rop/ /op1/ /op2/ /ctx/ -- -- Sets @rop@ to the product of @op1@ and @op2@, choosing an appropriate -- algorithm. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mul" fq_nmod_poly_mul :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mullow_classical/ /rop/ /op1/ /len1/ /op2/ /len2/ /n/ /ctx/ -- -- Sets @(rop, n)@ to the first \(n\) coefficients of @(op1, len1)@ -- multiplied by @(op2, len2)@. -- -- Assumes @0 \< n \<= len1 + len2 - 1@. Assumes neither @len1@ nor @len2@ -- is zero. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mullow_classical" _fq_nmod_poly_mullow_classical :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mullow_classical/ /rop/ /op1/ /op2/ /n/ /ctx/ -- -- Sets @rop@ to the product of @op1@ and @op2@, computed using the -- classical or schoolbook method. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mullow_classical" fq_nmod_poly_mullow_classical :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mullow_univariate/ /rop/ /op1/ /len1/ /op2/ /len2/ /n/ /ctx/ -- -- Sets @(rop, n)@ to the lowest \(n\) coefficients of the product of -- @(op1, len1)@ and @(op2, len2)@, computed using a bivariate to -- univariate transformation. -- -- Assumes that @len1@ and @len2@ are positive, but does allow for the -- polynomials to be zero-padded. The polynomials may be zero, too. Assumes -- \(n\) is positive. Supports aliasing between @rop@, @op1@ and @op2@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mullow_univariate" _fq_nmod_poly_mullow_univariate :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mullow_univariate/ /rop/ /op1/ /op2/ /n/ /ctx/ -- -- Sets @rop@ to the lowest \(n\) coefficients of the product of @poly1@ -- and @poly2@, computed using a bivariate to univariate transformation. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mullow_univariate" fq_nmod_poly_mullow_univariate :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mullow_KS/ /rop/ /op1/ /len1/ /op2/ /len2/ /n/ /ctx/ -- -- Sets @(rop, n)@ to the lowest \(n\) coefficients of the product of -- @(op1, len1)@ and @(op2, len2)@. -- -- Assumes that @len1@ and @len2@ are positive, but does allow for the -- polynomials to be zero-padded. The polynomials may be zero, too. Assumes -- \(n\) is positive. Supports aliasing between @rop@, @op1@ and @op2@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mullow_KS" _fq_nmod_poly_mullow_KS :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mullow_KS/ /rop/ /op1/ /op2/ /n/ /ctx/ -- -- Sets @rop@ to the product of @op1@ and @op2@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mullow_KS" fq_nmod_poly_mullow_KS :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mullow/ /rop/ /op1/ /len1/ /op2/ /len2/ /n/ /ctx/ -- -- Sets @(rop, n)@ to the lowest \(n\) coefficients of the product of -- @(op1, len1)@ and @(op2, len2)@. -- -- Assumes @0 \< n \<= len1 + len2 - 1@. Allows for zero-padding in the -- inputs. Does not support aliasing between the inputs and the output. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mullow" _fq_nmod_poly_mullow :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mullow/ /rop/ /op1/ /op2/ /n/ /ctx/ -- -- Sets @rop@ to the lowest \(n\) coefficients of the product of @op1@ and -- @op2@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mullow" fq_nmod_poly_mullow :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mulhigh_classical/ /res/ /poly1/ /len1/ /poly2/ /len2/ /start/ /ctx/ -- -- Computes the product of @(poly1, len1)@ and @(poly2, len2)@ and writes -- the coefficients from @start@ onwards into the high coefficients of -- @res@, the remaining coefficients being arbitrary but reduced. Assumes -- that @len1 >= len2 > 0@. Aliasing of inputs and output is not permitted. -- Algorithm is classical multiplication. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mulhigh_classical" _fq_nmod_poly_mulhigh_classical :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mulhigh_classical/ /res/ /poly1/ /poly2/ /start/ /ctx/ -- -- Computes the product of @poly1@ and @poly2@ and writes the coefficients -- from @start@ onwards into the high coefficients of @res@, the remaining -- coefficients being arbitrary but reduced. Algorithm is classical -- multiplication. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mulhigh_classical" fq_nmod_poly_mulhigh_classical :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mulhigh/ /res/ /poly1/ /len1/ /poly2/ /len2/ /start/ /ctx/ -- -- Computes the product of @(poly1, len1)@ and @(poly2, len2)@ and writes -- the coefficients from @start@ onwards into the high coefficients of -- @res@, the remaining coefficients being arbitrary but reduced. Assumes -- that @len1 >= len2 > 0@. Aliasing of inputs and output is not permitted. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mulhigh" _fq_nmod_poly_mulhigh :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mulhigh/ /res/ /poly1/ /poly2/ /start/ /ctx/ -- -- Computes the product of @poly1@ and @poly2@ and writes the coefficients -- from @start@ onwards into the high coefficients of @res@, the remaining -- coefficients being arbitrary but reduced. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mulhigh" fq_nmod_poly_mulhigh :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mulmod/ /res/ /poly1/ /len1/ /poly2/ /len2/ /f/ /lenf/ /ctx/ -- -- Sets @res@ to the remainder of the product of @poly1@ and @poly2@ upon -- polynomial division by @f@. -- -- It is required that @len1 + len2 - lenf > 0@, which is equivalent to -- requiring that the result will actually be reduced. Otherwise, simply -- use @_fq_nmod_poly_mul@ instead. -- -- Aliasing of @f@ and @res@ is not permitted. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mulmod" _fq_nmod_poly_mulmod :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mulmod/ /res/ /poly1/ /poly2/ /f/ /ctx/ -- -- Sets @res@ to the remainder of the product of @poly1@ and @poly2@ upon -- polynomial division by @f@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mulmod" fq_nmod_poly_mulmod :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_mulmod_preinv/ /res/ /poly1/ /len1/ /poly2/ /len2/ /f/ /lenf/ /finv/ /lenfinv/ /ctx/ -- -- Sets @res@ to the remainder of the product of @poly1@ and @poly2@ upon -- polynomial division by @f@. -- -- It is required that @finv@ is the inverse of the reverse of @f@ mod -- @x^lenf@. -- -- Aliasing of @res@ with any of the inputs is not permitted. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_mulmod_preinv" _fq_nmod_poly_mulmod_preinv :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_mulmod_preinv/ /res/ /poly1/ /poly2/ /f/ /finv/ /ctx/ -- -- Sets @res@ to the remainder of the product of @poly1@ and @poly2@ upon -- polynomial division by @f@. @finv@ is the inverse of the reverse of @f@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_mulmod_preinv" fq_nmod_poly_mulmod_preinv :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- Squaring -------------------------------------------------------------------- -- | /_fq_nmod_poly_sqr_classical/ /rop/ /op/ /len/ /ctx/ -- -- Sets @(rop, 2*len - 1)@ to the square of @(op, len)@, assuming that -- @(op,len)@ is not zero and using classical polynomial multiplication. -- -- Permits zero padding. Does not support aliasing of @rop@ with either -- @op1@ or @op2@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_sqr_classical" _fq_nmod_poly_sqr_classical :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_sqr_classical/ /rop/ /op/ /ctx/ -- -- Sets @rop@ to the square of @op@ using classical polynomial -- multiplication. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_sqr_classical" fq_nmod_poly_sqr_classical :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_sqr_KS/ /rop/ /op/ /len/ /ctx/ -- -- Sets @(rop, 2*len - 1)@ to the square of @(op, len)@. -- -- Permits zero padding and places no assumptions on the lengths @len1@ and -- @len2@. Supports aliasing. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_sqr_KS" _fq_nmod_poly_sqr_KS :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_sqr_KS/ /rop/ /op/ /ctx/ -- -- Sets @rop@ to the square @op@ using Kronecker substitution, that is, by -- encoding each coefficient in \(\mathbf{F}_{q}\) as an integer and -- reducing this problem to multiplying two polynomials over the integers. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_sqr_KS" fq_nmod_poly_sqr_KS :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_sqr/ /rop/ /op/ /len/ /ctx/ -- -- Sets @(rop, 2* len - 1)@ to the square of @(op, len)@, choosing an -- appropriate algorithm. -- -- Permits zero padding. Does not support aliasing. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_sqr" _fq_nmod_poly_sqr :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_sqr/ /rop/ /op/ /ctx/ -- -- Sets @rop@ to the square of @op@, choosing an appropriate algorithm. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_sqr" fq_nmod_poly_sqr :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- Powering -------------------------------------------------------------------- -- | /_fq_nmod_poly_pow/ /rop/ /op/ /len/ /e/ /ctx/ -- -- Sets @rop = op^e@, assuming that @e, len > 0@ and that @rop@ has space -- for @e*(len - 1) + 1@ coefficients. Does not support aliasing. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_pow" _fq_nmod_poly_pow :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> CULong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_pow/ /rop/ /op/ /e/ /ctx/ -- -- Computes @rop = op^e@. If \(e\) is zero, returns one, so that in -- particular @0^0 = 1@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_pow" fq_nmod_poly_pow :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CULong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_powmod_ui_binexp/ /res/ /poly/ /e/ /f/ /lenf/ /ctx/ -- -- Sets @res@ to @poly@ raised to the power @e@ modulo @f@, using binary -- exponentiation. We require @e > 0@. -- -- We require @lenf > 1@. It is assumed that @poly@ is already reduced -- modulo @f@ and zero-padded as necessary to have length exactly -- @lenf - 1@. The output @res@ must have room for @lenf - 1@ coefficients. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_powmod_ui_binexp" _fq_nmod_poly_powmod_ui_binexp :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CULong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_powmod_ui_binexp/ /res/ /poly/ /e/ /f/ /ctx/ -- -- Sets @res@ to @poly@ raised to the power @e@ modulo @f@, using binary -- exponentiation. We require @e >= 0@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_powmod_ui_binexp" fq_nmod_poly_powmod_ui_binexp :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CULong -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_powmod_ui_binexp_preinv/ /res/ /poly/ /e/ /f/ /lenf/ /finv/ /lenfinv/ /ctx/ -- -- Sets @res@ to @poly@ raised to the power @e@ modulo @f@, using binary -- exponentiation. We require @e > 0@. We require @finv@ to be the inverse -- of the reverse of @f@. -- -- We require @lenf > 1@. It is assumed that @poly@ is already reduced -- modulo @f@ and zero-padded as necessary to have length exactly -- @lenf - 1@. The output @res@ must have room for @lenf - 1@ coefficients. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_powmod_ui_binexp_preinv" _fq_nmod_poly_powmod_ui_binexp_preinv :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CULong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_powmod_ui_binexp_preinv/ /res/ /poly/ /e/ /f/ /finv/ /ctx/ -- -- Sets @res@ to @poly@ raised to the power @e@ modulo @f@, using binary -- exponentiation. We require @e >= 0@. We require @finv@ to be the inverse -- of the reverse of @f@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_powmod_ui_binexp_preinv" fq_nmod_poly_powmod_ui_binexp_preinv :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CULong -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_powmod_fmpz_binexp/ /res/ /poly/ /e/ /f/ /lenf/ /ctx/ -- -- Sets @res@ to @poly@ raised to the power @e@ modulo @f@, using binary -- exponentiation. We require @e > 0@. -- -- We require @lenf > 1@. It is assumed that @poly@ is already reduced -- modulo @f@ and zero-padded as necessary to have length exactly -- @lenf - 1@. The output @res@ must have room for @lenf - 1@ coefficients. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_powmod_fmpz_binexp" _fq_nmod_poly_powmod_fmpz_binexp :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> Ptr CFmpz -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_powmod_fmpz_binexp/ /res/ /poly/ /e/ /f/ /ctx/ -- -- Sets @res@ to @poly@ raised to the power @e@ modulo @f@, using binary -- exponentiation. We require @e >= 0@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_powmod_fmpz_binexp" fq_nmod_poly_powmod_fmpz_binexp :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFmpz -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_powmod_fmpz_binexp_preinv/ /res/ /poly/ /e/ /f/ /lenf/ /finv/ /lenfinv/ /ctx/ -- -- Sets @res@ to @poly@ raised to the power @e@ modulo @f@, using binary -- exponentiation. We require @e > 0@. We require @finv@ to be the inverse -- of the reverse of @f@. -- -- We require @lenf > 1@. It is assumed that @poly@ is already reduced -- modulo @f@ and zero-padded as necessary to have length exactly -- @lenf - 1@. The output @res@ must have room for @lenf - 1@ coefficients. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_powmod_fmpz_binexp_preinv" _fq_nmod_poly_powmod_fmpz_binexp_preinv :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> Ptr CFmpz -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_powmod_fmpz_binexp_preinv/ /res/ /poly/ /e/ /f/ /finv/ /ctx/ -- -- Sets @res@ to @poly@ raised to the power @e@ modulo @f@, using binary -- exponentiation. We require @e >= 0@. We require @finv@ to be the inverse -- of the reverse of @f@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_powmod_fmpz_binexp_preinv" fq_nmod_poly_powmod_fmpz_binexp_preinv :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFmpz -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_powmod_fmpz_sliding_preinv/ /res/ /poly/ /e/ /k/ /f/ /lenf/ /finv/ /lenfinv/ /ctx/ -- -- Sets @res@ to @poly@ raised to the power @e@ modulo @f@, using -- sliding-window exponentiation with window size @k@. We require @e > 0@. -- We require @finv@ to be the inverse of the reverse of @f@. If @k@ is set -- to zero, then an \"optimum\" size will be selected automatically base on -- @e@. -- -- We require @lenf > 1@. It is assumed that @poly@ is already reduced -- modulo @f@ and zero-padded as necessary to have length exactly -- @lenf - 1@. The output @res@ must have room for @lenf - 1@ coefficients. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_powmod_fmpz_sliding_preinv" _fq_nmod_poly_powmod_fmpz_sliding_preinv :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> Ptr CFmpz -> CULong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_powmod_fmpz_sliding_preinv/ /res/ /poly/ /e/ /k/ /f/ /finv/ /ctx/ -- -- Sets @res@ to @poly@ raised to the power @e@ modulo @f@, using -- sliding-window exponentiation with window size @k@. We require @e >= 0@. -- We require @finv@ to be the inverse of the reverse of @f@. If @k@ is set -- to zero, then an \"optimum\" size will be selected automatically base on -- @e@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_powmod_fmpz_sliding_preinv" fq_nmod_poly_powmod_fmpz_sliding_preinv :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFmpz -> CULong -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_powmod_x_fmpz_preinv/ /res/ /e/ /f/ /lenf/ /finv/ /lenfinv/ /ctx/ -- -- Sets @res@ to @x@ raised to the power @e@ modulo @f@, using sliding -- window exponentiation. We require @e > 0@. We require @finv@ to be the -- inverse of the reverse of @f@. -- -- We require @lenf > 2@. The output @res@ must have room for @lenf - 1@ -- coefficients. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_powmod_x_fmpz_preinv" _fq_nmod_poly_powmod_x_fmpz_preinv :: Ptr (Ptr CFqNMod) -> Ptr CFmpz -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_powmod_x_fmpz_preinv/ /res/ /e/ /f/ /finv/ /ctx/ -- -- Sets @res@ to @x@ raised to the power @e@ modulo @f@, using sliding -- window exponentiation. We require @e >= 0@. We require @finv@ to be the -- inverse of the reverse of @f@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_powmod_x_fmpz_preinv" fq_nmod_poly_powmod_x_fmpz_preinv :: Ptr CFqNModPoly -> Ptr CFmpz -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_pow_trunc_binexp/ /res/ /poly/ /e/ /trunc/ /ctx/ -- -- Sets @res@ to the low @trunc@ coefficients of @poly@ (assumed to be zero -- padded if necessary to length @trunc@) to the power @e@. This is -- equivalent to doing a powering followed by a truncation. We require that -- @res@ has enough space for @trunc@ coefficients, that @trunc > 0@ and -- that @e > 1@. Aliasing is not permitted. Uses the binary exponentiation -- method. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_pow_trunc_binexp" _fq_nmod_poly_pow_trunc_binexp :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CULong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_pow_trunc_binexp/ /res/ /poly/ /e/ /trunc/ /ctx/ -- -- Sets @res@ to the low @trunc@ coefficients of @poly@ to the power @e@. -- This is equivalent to doing a powering followed by a truncation. Uses -- the binary exponentiation method. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_pow_trunc_binexp" fq_nmod_poly_pow_trunc_binexp :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CULong -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_pow_trunc/ /res/ /poly/ /e/ /trunc/ /mod/ -- -- Sets @res@ to the low @trunc@ coefficients of @poly@ (assumed to be zero -- padded if necessary to length @trunc@) to the power @e@. This is -- equivalent to doing a powering followed by a truncation. We require that -- @res@ has enough space for @trunc@ coefficients, that @trunc > 0@ and -- that @e > 1@. Aliasing is not permitted. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_pow_trunc" _fq_nmod_poly_pow_trunc :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CULong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_pow_trunc/ /res/ /poly/ /e/ /trunc/ /ctx/ -- -- Sets @res@ to the low @trunc@ coefficients of @poly@ to the power @e@. -- This is equivalent to doing a powering followed by a truncation. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_pow_trunc" fq_nmod_poly_pow_trunc :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CULong -> CLong -> Ptr CFqNModCtx -> IO () -- Shifting -------------------------------------------------------------------- -- | /_fq_nmod_poly_shift_left/ /rop/ /op/ /len/ /n/ /ctx/ -- -- Sets @(rop, len + n)@ to @(op, len)@ shifted left by \(n\) coefficients. -- -- Inserts zero coefficients at the lower end. Assumes that @len@ and \(n\) -- are positive, and that @rop@ fits @len + n@ elements. Supports aliasing -- between @rop@ and @op@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_shift_left" _fq_nmod_poly_shift_left :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_shift_left/ /rop/ /op/ /n/ /ctx/ -- -- Sets @rop@ to @op@ shifted left by \(n\) coeffs. Zero coefficients are -- inserted. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_shift_left" fq_nmod_poly_shift_left :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_shift_right/ /rop/ /op/ /len/ /n/ /ctx/ -- -- Sets @(rop, len - n)@ to @(op, len)@ shifted right by \(n\) -- coefficients. -- -- Assumes that @len@ and \(n\) are positive, that @len > n@, and that -- @rop@ fits @len - n@ elements. Supports aliasing between @rop@ and @op@, -- although in this case the top coefficients of @op@ are not set to zero. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_shift_right" _fq_nmod_poly_shift_right :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_shift_right/ /rop/ /op/ /n/ /ctx/ -- -- Sets @rop@ to @op@ shifted right by \(n\) coefficients. If \(n\) is -- equal to or greater than the current length of @op@, @rop@ is set to the -- zero polynomial. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_shift_right" fq_nmod_poly_shift_right :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- Norms ----------------------------------------------------------------------- -- | /_fq_nmod_poly_hamming_weight/ /op/ /len/ /ctx/ -- -- Returns the number of non-zero entries in @(op, len)@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_hamming_weight" _fq_nmod_poly_hamming_weight :: Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO CLong -- | /fq_nmod_poly_hamming_weight/ /op/ /ctx/ -- -- Returns the number of non-zero entries in the polynomial @op@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_hamming_weight" fq_nmod_poly_hamming_weight :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CLong -- Euclidean division ---------------------------------------------------------- -- | /_fq_nmod_poly_divrem/ /Q/ /R/ /A/ /lenA/ /B/ /lenB/ /invB/ /ctx/ -- -- Computes @(Q, lenA - lenB + 1)@, @(R, lenA)@ such that \(A = B Q + R\) -- with \(0 \leq \operatorname{len}(R) < \operatorname{len}(B)\). -- -- Assumes that the leading coefficient of \(B\) is invertible and that -- @invB@ is its inverse. -- -- Assumes that \(\operatorname{len}(A), \operatorname{len}(B) > 0\). -- Allows zero-padding in @(A, lenA)@. \(R\) and \(A\) may be aliased, but -- apart from this no aliasing of input and output operands is allowed. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_divrem" _fq_nmod_poly_divrem :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_divrem/ /Q/ /R/ /A/ /B/ /ctx/ -- -- Computes \(Q\), \(R\) such that \(A = B Q + R\) with -- \(0 \leq \operatorname{len}(R) < \operatorname{len}(B)\). -- -- Assumes that the leading coefficient of \(B\) is invertible. This can be -- taken for granted the context is for a finite field, that is, when \(p\) -- is prime and \(f(X)\) is irreducible. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_divrem" fq_nmod_poly_divrem :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_divrem_f/ /f/ /Q/ /R/ /A/ /B/ /ctx/ -- -- Either finds a non-trivial factor \(f\) of the modulus of @ctx@, or -- computes \(Q\), \(R\) such that \(A = B Q + R\) and -- \(0 \leq \operatorname{len}(R) < \operatorname{len}(B)\). -- -- If the leading coefficient of \(B\) is invertible, the division with -- remainder operation is carried out, \(Q\) and \(R\) are computed -- correctly, and \(f\) is set to \(1\). Otherwise, \(f\) is set to a -- non-trivial factor of the modulus and \(Q\) and \(R\) are not touched. -- -- Assumes that \(B\) is non-zero. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_divrem_f" fq_nmod_poly_divrem_f :: Ptr CFqNMod -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_rem/ /R/ /A/ /lenA/ /B/ /lenB/ /invB/ /ctx/ -- -- Sets @R@ to the remainder of the division of @(A,lenA)@ by @(B,lenB)@. -- Assumes that the leading coefficient of @(B,lenB)@ is invertible and -- that @invB@ is its inverse. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_rem" _fq_nmod_poly_rem :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_rem/ /R/ /A/ /B/ /ctx/ -- -- Sets @R@ to the remainder of the division of @A@ by @B@ in the context -- described by @ctx@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_rem" fq_nmod_poly_rem :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_div/ /Q/ /A/ /lenA/ /B/ /lenB/ /invB/ /ctx/ -- -- Notationally, computes \(Q\), \(R\) such that \(A = B Q + R\) with \(0 -- \leq \operatorname{len}(R) < \operatorname{len}(B)\) but only sets -- @(Q, lenA - lenB + 1)@. -- -- Allows zero-padding in \(A\) but not in \(B\). Assumes that the leading -- coefficient of \(B\) is a unit. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_div" _fq_nmod_poly_div :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_div/ /Q/ /A/ /B/ /ctx/ -- -- Notionally finds polynomials \(Q\) and \(R\) such that \(A = B Q + R\) -- with \(\operatorname{len}(R) < \operatorname{len}(B)\), but returns only -- @Q@. If \(\operatorname{len}(B) = 0\) an exception is raised. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_div" fq_nmod_poly_div :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_div_newton_n_preinv/ /Q/ /A/ /lenA/ /B/ /lenB/ /Binv/ /lenBinv/ /ctx_t/ -- -- Notionally computes polynomials \(Q\) and \(R\) such that \(A = BQ + R\) -- with \(\operatorname{len}(R)\) less than @lenB@, where @A@ is of length -- @lenA@ and @B@ is of length @lenB@, but return only \(Q\). -- -- We require that \(Q\) have space for @lenA - lenB + 1@ coefficients and -- assume that the leading coefficient of \(B\) is a unit. Furthermore, we -- assume that \(Binv\) is the inverse of the reverse of \(B\) mod -- \(x^{\operatorname{len}(B)}\). -- -- The algorithm used is to reverse the polynomials and divide the -- resulting power series, then reverse the result. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_div_newton_n_preinv" _fq_nmod_poly_div_newton_n_preinv :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNMod -> IO () -- | /fq_nmod_poly_div_newton_n_preinv/ /Q/ /A/ /B/ /Binv/ /ctx/ -- -- Notionally computes \(Q\) and \(R\) such that \(A = BQ + R\) with -- \(\operatorname{len}(R) < \operatorname{len}(B)\), but returns only -- \(Q\). -- -- We assume that the leading coefficient of \(B\) is a unit and that -- \(Binv\) is the inverse of the reverse of \(B\) mod -- \(x^{\operatorname{len}(B)}\). -- -- It is required that the length of \(A\) is less than or equal to 2*the -- length of \(B\) - 2. -- -- The algorithm used is to reverse the polynomials and divide the -- resulting power series, then reverse the result. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_div_newton_n_preinv" fq_nmod_poly_div_newton_n_preinv :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_divrem_newton_n_preinv/ /Q/ /R/ /A/ /lenA/ /B/ /lenB/ /Binv/ /lenBinv/ /ctx/ -- -- Computes \(Q\) and \(R\) such that \(A = BQ + R\) with -- \(\operatorname{len}(R)\) less than @lenB@, where \(A\) is of length -- @lenA@ and \(B\) is of length @lenB@. We require that \(Q\) have space -- for @lenA - lenB + 1@ coefficients. Furthermore, we assume that \(Binv\) -- is the inverse of the reverse of \(B\) mod -- \(x^{\operatorname{len}(B)}\). The algorithm used is to call -- @div_newton_preinv@ and then multiply out and compute the remainder. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_divrem_newton_n_preinv" _fq_nmod_poly_divrem_newton_n_preinv :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_divrem_newton_n_preinv/ /Q/ /R/ /A/ /B/ /Binv/ /ctx/ -- -- Computes \(Q\) and \(R\) such that \(A = BQ + R\) with -- \(\operatorname{len}(R) < -- \operatorname{len}(B)\). We assume \(Binv\) is the inverse of the -- reverse of \(B\) mod \(x^{\operatorname{len}(B)}\). -- -- It is required that the length of \(A\) is less than or equal to 2*the -- length of \(B\) - 2. -- -- The algorithm used is to call @div_newton@ and then multiply out and -- compute the remainder. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_divrem_newton_n_preinv" fq_nmod_poly_divrem_newton_n_preinv :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_inv_series_newton/ /Qinv/ /Q/ /n/ /ctx/ -- -- Given @Q@ of length @n@ whose constant coefficient is invertible modulo -- the given modulus, find a polynomial @Qinv@ of length @n@ such that -- @Q * Qinv@ is @1@ modulo \(x^n\). Requires @n > 0@. This function can be -- viewed as inverting a power series via Newton iteration. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_inv_series_newton" _fq_nmod_poly_inv_series_newton :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_inv_series_newton/ /Qinv/ /Q/ /n/ /ctx/ -- -- Given @Q@ find @Qinv@ such that @Q * Qinv@ is @1@ modulo \(x^n\). The -- constant coefficient of @Q@ must be invertible modulo the modulus of -- @Q@. An exception is raised if this is not the case or if @n = 0@. This -- function can be viewed as inverting a power series via Newton iteration. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_inv_series_newton" fq_nmod_poly_inv_series_newton :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_inv_series/ /Qinv/ /Q/ /n/ /ctx/ -- -- Given @Q@ of length @n@ whose constant coefficient is invertible modulo -- the given modulus, find a polynomial @Qinv@ of length @n@ such that -- @Q * Qinv@ is @1@ modulo \(x^n\). Requires @n > 0@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_inv_series" _fq_nmod_poly_inv_series :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_inv_series/ /Qinv/ /Q/ /n/ /ctx/ -- -- Given @Q@ find @Qinv@ such that @Q * Qinv@ is @1@ modulo \(x^n\). The -- constant coefficient of @Q@ must be invertible modulo the modulus of -- @Q@. An exception is raised if this is not the case or if @n = 0@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_inv_series" fq_nmod_poly_inv_series :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_div_series/ /Q/ /A/ /Alen/ /B/ /Blen/ /n/ /ctx/ -- -- Set @(Q, n)@ to the quotient of the series @(A, Alen@) and @(B, Blen)@ -- assuming @Alen, Blen \<= n@. We assume the bottom coefficient of @B@ is -- invertible. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_div_series" _fq_nmod_poly_div_series :: Ptr CFmpz -> Ptr CFmpz -> CLong -> Ptr CFmpz -> CLong -> CLong -> Ptr CFqCtx -> IO () -- | /fq_nmod_poly_div_series/ /Q/ /A/ /B/ /n/ /ctx/ -- -- Set \(Q\) to the quotient of the series \(A\) by \(B\), thinking of the -- series as though they were of length \(n\). We assume that the bottom -- coefficient of \(B\) is invertible. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_div_series" fq_nmod_poly_div_series :: Ptr CFmpzModPoly -> Ptr CFmpzModPoly -> Ptr CFmpzModPoly -> CLong -> Ptr CFqCtx -> IO () -- Greatest common divisor ----------------------------------------------------- -- | /fq_nmod_poly_gcd/ /rop/ /op1/ /op2/ /ctx/ -- -- Sets @rop@ to the greatest common divisor of @op1@ and @op2@, using the -- either the Euclidean or HGCD algorithm. The GCD of zero polynomials is -- defined to be zero, whereas the GCD of the zero polynomial and some -- other polynomial \(P\) is defined to be \(P\). Except in the case where -- the GCD is zero, the GCD \(G\) is made monic. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_gcd" fq_nmod_poly_gcd :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_gcd/ /G/ /A/ /lenA/ /B/ /lenB/ /ctx/ -- -- Computes the GCD of \(A\) of length @lenA@ and \(B\) of length @lenB@, -- where @lenA >= lenB > 0@ and sets \(G\) to it. The length of the GCD -- \(G\) is returned by the function. No attempt is made to make the GCD -- monic. It is required that \(G\) have space for @lenB@ coefficients. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_gcd" _fq_nmod_poly_gcd :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO CLong -- | /_fq_nmod_poly_gcd_euclidean_f/ /f/ /G/ /A/ /lenA/ /B/ /lenB/ /ctx/ -- -- Either sets \(f = 1\) and \(G\) to the greatest common divisor of -- \((A,\operatorname{len}(A))\) and \((B, \operatorname{len}(B))\) and -- returns its length, or sets \(f\) to a non-trivial factor of the modulus -- of @ctx@ and leaves the contents of the vector \((G, lenB)\) undefined. -- -- Assumes that \(\operatorname{len}(A) \geq \operatorname{len}(B) > 0\) -- and that the vector \(G\) has space for sufficiently many coefficients. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_gcd_euclidean_f" _fq_nmod_poly_gcd_euclidean_f :: Ptr CFqNMod -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO CLong -- | /fq_nmod_poly_gcd_euclidean_f/ /f/ /G/ /A/ /B/ /ctx/ -- -- Either sets \(f = 1\) and \(G\) to the greatest common divisor of \(A\) -- and \(B\) or sets \(f\) to a factor of the modulus of @ctx@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_gcd_euclidean_f" fq_nmod_poly_gcd_euclidean_f :: Ptr CFqNMod -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_xgcd/ /G/ /S/ /T/ /A/ /lenA/ /B/ /lenB/ /ctx/ -- -- Computes the GCD of \(A\) and \(B\) together with cofactors \(S\) and -- \(T\) such that \(S A + T B = G\). Returns the length of \(G\). -- -- Assumes that \(\operatorname{len}(A) \geq \operatorname{len}(B) \geq 1\) -- and \((\operatorname{len}(A),\operatorname{len}(B)) \neq (1,1)\). -- -- No attempt is made to make the GCD monic. -- -- Requires that \(G\) have space for \(\operatorname{len}(B)\) -- coefficients. Writes \(\operatorname{len}(B)-1\) and -- \(\operatorname{len}(A)-1\) coefficients to \(S\) and \(T\), -- respectively. Note that, in fact, -- \(\operatorname{len}(S) \leq \max(\operatorname{len}(B) - \operatorname{len}(G), 1)\) -- and -- \(\operatorname{len}(T) \leq \max(\operatorname{len}(A) - \operatorname{len}(G), 1)\). -- -- No aliasing of input and output operands is permitted. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_xgcd" _fq_nmod_poly_xgcd :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO CLong -- | /fq_nmod_poly_xgcd/ /G/ /S/ /T/ /A/ /B/ /ctx/ -- -- Computes the GCD of \(A\) and \(B\). The GCD of zero polynomials is -- defined to be zero, whereas the GCD of the zero polynomial and some -- other polynomial \(P\) is defined to be \(P\). Except in the case where -- the GCD is zero, the GCD \(G\) is made monic. -- -- Polynomials @S@ and @T@ are computed such that @S*A + T*B = G@. The -- length of @S@ will be at most @lenB@ and the length of @T@ will be at -- most @lenA@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_xgcd" fq_nmod_poly_xgcd :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_xgcd_euclidean_f/ /f/ /G/ /S/ /T/ /A/ /lenA/ /B/ /lenB/ /invB/ /ctx/ -- -- Either sets \(f = 1\) and computes the GCD of \(A\) and \(B\) together -- with cofactors \(S\) and \(T\) such that \(S A + T B = G\); otherwise, -- sets \(f\) to a non-trivial factor of the modulus of @ctx@ and leaves -- \(G\), \(S\), and \(T\) undefined. Returns the length of \(G\). -- -- Assumes that \(\operatorname{len}(A) \geq \operatorname{len}(B) \geq 1\) -- and \((\operatorname{len}(A),\operatorname{len}(B)) \neq (1,1)\). -- -- No attempt is made to make the GCD monic. -- -- Requires that \(G\) have space for \(\operatorname{len}(B)\) -- coefficients. Writes \(\operatorname{len}(B)-1\) and -- \(\operatorname{len}(A)-1\) coefficients to \(S\) and \(T\), -- respectively. Note that, in fact, -- \(\operatorname{len}(S) \leq \max(\operatorname{len}(B) - \operatorname{len}(G), 1)\) -- and -- \(\operatorname{len}(T) \leq \max(\operatorname{len}(A) - \operatorname{len}(G), 1)\). -- -- No aliasing of input and output operands is permitted. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_xgcd_euclidean_f" _fq_nmod_poly_xgcd_euclidean_f :: Ptr CFqNMod -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFmpz -> Ptr CFqNModCtx -> IO CLong -- | /fq_nmod_poly_xgcd_euclidean_f/ /f/ /G/ /S/ /T/ /A/ /B/ /ctx/ -- -- Either sets \(f = 1\) and computes the GCD of \(A\) and \(B\) or sets -- \(f\) to a non-trivial factor of the modulus of @ctx@. -- -- If the GCD is computed, polynomials @S@ and @T@ are computed such that -- @S*A + T*B = G@; otherwise, they are undefined. The length of @S@ will -- be at most @lenB@ and the length of @T@ will be at most @lenA@. -- -- The GCD of zero polynomials is defined to be zero, whereas the GCD of -- the zero polynomial and some other polynomial \(P\) is defined to be -- \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made -- monic. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_xgcd_euclidean_f" fq_nmod_poly_xgcd_euclidean_f :: Ptr CFqNMod -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- Divisibility testing -------------------------------------------------------- -- | /_fq_nmod_poly_divides/ /Q/ /A/ /lenA/ /B/ /lenB/ /invB/ /ctx/ -- -- Returns \(1\) if @(B, lenB)@ divides @(A, lenA)@ exactly and sets \(Q\) -- to the quotient, otherwise returns \(0\). -- -- It is assumed that -- \(\operatorname{len}(A) \geq \operatorname{len}(B) > 0\) and that \(Q\) -- has space for \(\operatorname{len}(A) - \operatorname{len}(B) + 1\) -- coefficients. -- -- Aliasing of \(Q\) with either of the inputs is not permitted. -- -- This function is currently unoptimised and provided for convenience -- only. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_divides" _fq_nmod_poly_divides :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO CInt -- | /fq_nmod_poly_divides/ /Q/ /A/ /B/ /ctx/ -- -- Returns \(1\) if \(B\) divides \(A\) exactly and sets \(Q\) to the -- quotient, otherwise returns \(0\). -- -- This function is currently unoptimised and provided for convenience -- only. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_divides" fq_nmod_poly_divides :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CInt -- Derivative ------------------------------------------------------------------ -- | /_fq_nmod_poly_derivative/ /rop/ /op/ /len/ /ctx/ -- -- Sets @(rop, len - 1)@ to the derivative of @(op, len)@. Also handles the -- cases where @len@ is \(0\) or \(1\) correctly. Supports aliasing of -- @rop@ and @op@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_derivative" _fq_nmod_poly_derivative :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_derivative/ /rop/ /op/ /ctx/ -- -- Sets @rop@ to the derivative of @op@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_derivative" fq_nmod_poly_derivative :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- Square root ----------------------------------------------------------------- -- | /_fq_nmod_poly_invsqrt_series/ /g/ /h/ /n/ /mod/ -- -- Set the first \(n\) terms of \(g\) to the series expansion of -- \(1/\sqrt{h}\). It is assumed that \(n > 0\), that \(h\) has constant -- term 1 and that \(h\) is zero-padded as necessary to length \(n\). -- Aliasing is not permitted. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_invsqrt_series" _fq_nmod_poly_invsqrt_series :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_invsqrt_series/ /g/ /h/ /n/ /ctx/ -- -- Set \(g\) to the series expansion of \(1/\sqrt{h}\) to order \(O(x^n)\). -- It is assumed that \(h\) has constant term 1. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_invsqrt_series" fq_nmod_poly_invsqrt_series :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_sqrt_series/ /g/ /h/ /n/ /ctx/ -- -- Set the first \(n\) terms of \(g\) to the series expansion of -- \(\sqrt{h}\). It is assumed that \(n > 0\), that \(h\) has constant term -- 1 and that \(h\) is zero-padded as necessary to length \(n\). Aliasing -- is not permitted. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_sqrt_series" _fq_nmod_poly_sqrt_series :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_sqrt_series/ /g/ /h/ /n/ /ctx/ -- -- Set \(g\) to the series expansion of \(\sqrt{h}\) to order \(O(x^n)\). -- It is assumed that \(h\) has constant term 1. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_sqrt_series" fq_nmod_poly_sqrt_series :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CLong -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_sqrt/ /s/ /p/ /n/ /mod/ -- -- If @(p, n)@ is a perfect square, sets @(s, n \/ 2 + 1)@ to a square root -- of \(p\) and returns 1. Otherwise returns 0. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_sqrt" _fq_nmod_poly_sqrt :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO CInt -- | /fq_nmod_poly_sqrt/ /s/ /p/ /mod/ -- -- If \(p\) is a perfect square, sets \(s\) to a square root of \(p\) and -- returns 1. Otherwise returns 0. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_sqrt" fq_nmod_poly_sqrt :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CInt -- Evaluation ------------------------------------------------------------------ -- | /_fq_nmod_poly_evaluate_fq_nmod/ /rop/ /op/ /len/ /a/ /ctx/ -- -- Sets @rop@ to @(op, len)@ evaluated at \(a\). -- -- Supports zero padding. There are no restrictions on @len@, that is, -- @len@ is allowed to be zero, too. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_evaluate_fq_nmod" _fq_nmod_poly_evaluate_fq_nmod :: Ptr CFqNMod -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_evaluate_fq_nmod/ /rop/ /f/ /a/ /ctx/ -- -- Sets @rop@ to the value of \(f(a)\). -- -- As the coefficient ring \(\mathbf{F}_q\) is finite, Horner\'s method is -- sufficient. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_evaluate_fq_nmod" fq_nmod_poly_evaluate_fq_nmod :: Ptr CFqNMod -> Ptr CFqNModPoly -> Ptr CFqNMod -> Ptr CFqNModCtx -> IO () -- Composition ----------------------------------------------------------------- -- | /_fq_nmod_poly_compose/ /rop/ /op1/ /len1/ /op2/ /len2/ /ctx/ -- -- Sets @rop@ to the composition of @(op1, len1)@ and @(op2, len2)@. -- -- Assumes that @rop@ has space for @(len1-1)*(len2-1) + 1@ coefficients. -- Assumes that @op1@ and @op2@ are non-zero polynomials. Does not support -- aliasing between any of the inputs and the output. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_compose" _fq_nmod_poly_compose :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_compose/ /rop/ /op1/ /op2/ /ctx/ -- -- Sets @rop@ to the composition of @op1@ and @op2@. To be precise about -- the order of composition, denoting @rop@, @op1@, and @op2@ by \(f\), -- \(g\), and \(h\), respectively, sets \(f(t) = g(h(t))\). foreign import ccall "fq_nmod_poly.h fq_nmod_poly_compose" fq_nmod_poly_compose :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_compose_mod_horner/ /res/ /f/ /lenf/ /g/ /h/ /lenh/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero and that the length of \(g\) is one less than the -- length of \(h\) (possibly with zero padding). The output is not allowed -- to be aliased with any of the inputs. -- -- The algorithm used is Horner\'s rule. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_compose_mod_horner" _fq_nmod_poly_compose_mod_horner :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_compose_mod_horner/ /res/ /f/ /g/ /h/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero. The algorithm used is Horner\'s rule. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_compose_mod_horner" fq_nmod_poly_compose_mod_horner :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_compose_mod_horner_preinv/ /res/ /f/ /lenf/ /g/ /h/ /lenh/ /hinv/ /lenhiv/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero and that the length of \(g\) is one less than the -- length of \(h\) (possibly with zero padding). We also require that the -- length of \(f\) is less than the length of \(h\). Furthermore, we -- require @hinv@ to be the inverse of the reverse of @h@. The output is -- not allowed to be aliased with any of the inputs. -- -- The algorithm used is Horner\'s rule. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_compose_mod_horner_preinv" _fq_nmod_poly_compose_mod_horner_preinv :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_compose_mod_horner_preinv/ /res/ /f/ /g/ /h/ /hinv/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero and that \(f\) has smaller degree than \(h\). -- Furthermore, we require @hinv@ to be the inverse of the reverse of @h@. -- The algorithm used is Horner\'s rule. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_compose_mod_horner_preinv" fq_nmod_poly_compose_mod_horner_preinv :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_compose_mod_brent_kung/ /res/ /f/ /lenf/ /g/ /h/ /lenh/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero and that the length of \(g\) is one less than the -- length of \(h\) (possibly with zero padding). We also require that the -- length of \(f\) is less than the length of \(h\). The output is not -- allowed to be aliased with any of the inputs. -- -- The algorithm used is the Brent-Kung matrix algorithm. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_compose_mod_brent_kung" _fq_nmod_poly_compose_mod_brent_kung :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_compose_mod_brent_kung/ /res/ /f/ /g/ /h/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero and that \(f\) has smaller degree than \(h\). The -- algorithm used is the Brent-Kung matrix algorithm. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_compose_mod_brent_kung" fq_nmod_poly_compose_mod_brent_kung :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_compose_mod_brent_kung_preinv/ /res/ /f/ /lenf/ /g/ /h/ /lenh/ /hinv/ /lenhiv/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero and that the length of \(g\) is one less than the -- length of \(h\) (possibly with zero padding). We also require that the -- length of \(f\) is less than the length of \(h\). Furthermore, we -- require @hinv@ to be the inverse of the reverse of @h@. The output is -- not allowed to be aliased with any of the inputs. -- -- The algorithm used is the Brent-Kung matrix algorithm. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_compose_mod_brent_kung_preinv" _fq_nmod_poly_compose_mod_brent_kung_preinv :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_compose_mod_brent_kung_preinv/ /res/ /f/ /g/ /h/ /hinv/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero and that \(f\) has smaller degree than \(h\). -- Furthermore, we require @hinv@ to be the inverse of the reverse of @h@. -- The algorithm used is the Brent-Kung matrix algorithm. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_compose_mod_brent_kung_preinv" fq_nmod_poly_compose_mod_brent_kung_preinv :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_compose_mod/ /res/ /f/ /lenf/ /g/ /h/ /lenh/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero and that the length of \(g\) is one less than the -- length of \(h\) (possibly with zero padding). The output is not allowed -- to be aliased with any of the inputs. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_compose_mod" _fq_nmod_poly_compose_mod :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_compose_mod/ /res/ /f/ /g/ /h/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_compose_mod" fq_nmod_poly_compose_mod :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_compose_mod_preinv/ /res/ /f/ /lenf/ /g/ /h/ /lenh/ /hinv/ /lenhiv/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero and that the length of \(g\) is one less than the -- length of \(h\) (possibly with zero padding). We also require that the -- length of \(f\) is less than the length of \(h\). Furthermore, we -- require @hinv@ to be the inverse of the reverse of @h@. The output is -- not allowed to be aliased with any of the inputs. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_compose_mod_preinv" _fq_nmod_poly_compose_mod_preinv :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_compose_mod_preinv/ /res/ /f/ /g/ /h/ /hinv/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero and that \(f\) has smaller degree than \(h\). -- Furthermore, we require @hinv@ to be the inverse of the reverse of @h@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_compose_mod_preinv" fq_nmod_poly_compose_mod_preinv :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_reduce_matrix_mod_poly/ /A/ /B/ /f/ /ctx/ -- -- Sets the ith row of @A@ to the reduction of the ith row of \(B\) modulo -- \(f\) for \(i=1,\ldots,\sqrt{\deg(f)}\). We require \(B\) to be at least -- a \(\sqrt{\deg(f)}\times \deg(f)\) matrix and \(f\) to be nonzero. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_reduce_matrix_mod_poly" _fq_nmod_poly_reduce_matrix_mod_poly :: Ptr CFqNModMat -> Ptr CFqNModMat -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_precompute_matrix/ /A/ /f/ /g/ /leng/ /ginv/ /lenginv/ /ctx/ -- -- Sets the ith row of @A@ to \(f^i\) modulo \(g\) for -- \(i=1,\ldots,\sqrt{\deg(g)}\). We require \(A\) to be a -- \(\sqrt{\deg(g)}\times \deg(g)\) matrix. We require @ginv@ to be the -- inverse of the reverse of @g@ and \(g\) to be nonzero. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_precompute_matrix" _fq_nmod_poly_precompute_matrix :: Ptr CFqNModMat -> Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_precompute_matrix/ /A/ /f/ /g/ /ginv/ /ctx/ -- -- Sets the ith row of @A@ to \(f^i\) modulo \(g\) for -- \(i=1,\ldots,\sqrt{\deg(g)}\). We require \(A\) to be a -- \(\sqrt{\deg(g)}\times \deg(g)\) matrix. We require @ginv@ to be the -- inverse of the reverse of @g@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_precompute_matrix" fq_nmod_poly_precompute_matrix :: Ptr CFqNModMat -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- | /_fq_nmod_poly_compose_mod_brent_kung_precomp_preinv/ /res/ /f/ /lenf/ /A/ /h/ /lenh/ /hinv/ /lenhinv/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that -- \(h\) is nonzero. We require that the ith row of \(A\) contains \(g^i\) -- for \(i=1,\ldots,\sqrt{\deg(h)}\), i.e. \(A\) is a -- \(\sqrt{\deg(h)}\times \deg(h)\) matrix. We also require that the length -- of \(f\) is less than the length of \(h\). Furthermore, we require -- @hinv@ to be the inverse of the reverse of @h@. The output is not -- allowed to be aliased with any of the inputs. -- -- The algorithm used is the Brent-Kung matrix algorithm. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_compose_mod_brent_kung_precomp_preinv" _fq_nmod_poly_compose_mod_brent_kung_precomp_preinv :: Ptr (Ptr CFqNMod) -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModMat -> Ptr (Ptr CFqNMod) -> CLong -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_compose_mod_brent_kung_precomp_preinv/ /res/ /f/ /A/ /h/ /hinv/ /ctx/ -- -- Sets @res@ to the composition \(f(g)\) modulo \(h\). We require that the -- ith row of \(A\) contains \(g^i\) for \(i=1,\ldots,\sqrt{\deg(h)}\), -- i.e. \(A\) is a \(\sqrt{\deg(h)}\times -- \deg(h)\) matrix. We require that \(h\) is nonzero and that \(f\) has -- smaller degree than \(h\). Furthermore, we require @hinv@ to be the -- inverse of the reverse of @h@. This version of Brent-Kung modular -- composition is particularly useful if one has to perform several modular -- composition of the form \(f(g)\) modulo \(h\) for fixed \(g\) and \(h\). foreign import ccall "fq_nmod_poly.h fq_nmod_poly_compose_mod_brent_kung_precomp_preinv" fq_nmod_poly_compose_mod_brent_kung_precomp_preinv :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModMat -> Ptr CFqNModPoly -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO () -- Output ---------------------------------------------------------------------- -- | /_fq_nmod_poly_fprint_pretty/ /file/ /poly/ /len/ /x/ /ctx/ -- -- Prints the pretty representation of @(poly, len)@ to the stream @file@, -- using the string @x@ to represent the indeterminate. -- -- In case of success, returns a positive value. In case of failure, -- returns a non-positive value. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_fprint_pretty" _fq_nmod_poly_fprint_pretty :: Ptr CFile -> Ptr (Ptr CFqNMod) -> CLong -> CString -> Ptr CFqNModCtx -> IO CInt -- | /fq_nmod_poly_fprint_pretty/ /file/ /poly/ /x/ /ctx/ -- -- Prints the pretty representation of @poly@ to the stream @file@, using -- the string @x@ to represent the indeterminate. -- -- In case of success, returns a positive value. In case of failure, -- returns a non-positive value. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_fprint_pretty" fq_nmod_poly_fprint_pretty :: Ptr CFile -> Ptr CFqNModPoly -> CString -> Ptr CFqNModCtx -> IO CInt -- | /_fq_nmod_poly_print_pretty/ /poly/ /len/ /x/ /ctx/ -- -- Prints the pretty representation of @(poly, len)@ to @stdout@, using the -- string @x@ to represent the indeterminate. -- -- In case of success, returns a positive value. In case of failure, -- returns a non-positive value. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_print_pretty" _fq_nmod_poly_print_pretty :: Ptr (Ptr CFqNMod) -> CLong -> CString -> Ptr CFqNModCtx -> IO CInt -- | /fq_nmod_poly_print_pretty/ /poly/ /x/ /ctx/ -- -- Prints the pretty representation of @poly@ to @stdout@, using the string -- @x@ to represent the indeterminate. -- -- In case of success, returns a positive value. In case of failure, -- returns a non-positive value. fq_nmod_poly_print_pretty :: Ptr CFqNModPoly -> CString -> Ptr CFqNModCtx -> IO CInt fq_nmod_poly_print_pretty :: Ptr CFqNModPoly -> CString -> Ptr CFqNModCtx -> IO CInt fq_nmod_poly_print_pretty Ptr CFqNModPoly poly CString x Ptr CFqNModCtx ctx = (Ptr CFqNModPoly -> IO CString) -> Ptr CFqNModPoly -> IO CInt forall a. (Ptr a -> IO CString) -> Ptr a -> IO CInt printCStr (\Ptr CFqNModPoly poly -> Ptr CFqNModPoly -> CString -> Ptr CFqNModCtx -> IO CString fq_nmod_poly_get_str_pretty Ptr CFqNModPoly poly CString x Ptr CFqNModCtx ctx) Ptr CFqNModPoly poly -- | /_fq_nmod_poly_fprint/ /file/ /poly/ /len/ /ctx/ -- -- Prints the pretty representation of @(poly, len)@ to the stream @file@. -- -- In case of success, returns a positive value. In case of failure, -- returns a non-positive value. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_fprint" _fq_nmod_poly_fprint :: Ptr CFile -> Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO CInt -- | /fq_nmod_poly_fprint/ /file/ /poly/ /ctx/ -- -- Prints the pretty representation of @poly@ to the stream @file@. -- -- In case of success, returns a positive value. In case of failure, -- returns a non-positive value. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_fprint" fq_nmod_poly_fprint :: Ptr CFile -> Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CInt -- | /_fq_nmod_poly_print/ /poly/ /len/ /ctx/ -- -- Prints the pretty representation of @(poly, len)@ to @stdout@. -- -- In case of success, returns a positive value. In case of failure, -- returns a non-positive value. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_print" _fq_nmod_poly_print :: Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO CInt -- | /fq_nmod_poly_print/ /poly/ /ctx/ -- -- Prints the representation of @poly@ to @stdout@. -- -- In case of success, returns a positive value. In case of failure, -- returns a non-positive value. fq_nmod_poly_print :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CInt fq_nmod_poly_print :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CInt fq_nmod_poly_print Ptr CFqNModPoly poly Ptr CFqNModCtx ctx = (Ptr CFqNModPoly -> IO CString) -> Ptr CFqNModPoly -> IO CInt forall a. (Ptr a -> IO CString) -> Ptr a -> IO CInt printCStr (Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CString `fq_nmod_poly_get_str` Ptr CFqNModCtx ctx) Ptr CFqNModPoly poly -- | /_fq_nmod_poly_get_str/ /poly/ /len/ /ctx/ -- -- Returns the plain FLINT string representation of the polynomial -- @(poly, len)@. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_get_str" _fq_nmod_poly_get_str :: Ptr (Ptr CFqNMod) -> CLong -> Ptr CFqNModCtx -> IO CString -- | /fq_nmod_poly_get_str/ /poly/ /ctx/ -- -- Returns the plain FLINT string representation of the polynomial @poly@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_get_str" fq_nmod_poly_get_str :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CString -- | /_fq_nmod_poly_get_str_pretty/ /poly/ /len/ /x/ /ctx/ -- -- Returns a pretty representation of the polynomial @(poly, len)@ using -- the null-terminated string @x@ as the variable name. foreign import ccall "fq_nmod_poly.h _fq_nmod_poly_get_str_pretty" _fq_nmod_poly_get_str_pretty :: Ptr (Ptr CFqNMod) -> CLong -> CString -> Ptr CFqNModCtx -> IO CString -- | /fq_nmod_poly_get_str_pretty/ /poly/ /x/ /ctx/ -- -- Returns a pretty representation of the polynomial @poly@ using the -- null-terminated string @x@ as the variable name foreign import ccall "fq_nmod_poly.h fq_nmod_poly_get_str_pretty" fq_nmod_poly_get_str_pretty :: Ptr CFqNModPoly -> CString -> Ptr CFqNModCtx -> IO CString -- Inflation and deflation ----------------------------------------------------- -- | /fq_nmod_poly_inflate/ /result/ /input/ /inflation/ /ctx/ -- -- Sets @result@ to the inflated polynomial \(p(x^n)\) where \(p\) is given -- by @input@ and \(n\) is given by @inflation@. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_inflate" fq_nmod_poly_inflate :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CULong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_deflate/ /result/ /input/ /deflation/ /ctx/ -- -- Sets @result@ to the deflated polynomial \(p(x^{1/n})\) where \(p\) is -- given by @input@ and \(n\) is given by @deflation@. Requires \(n > 0\). foreign import ccall "fq_nmod_poly.h fq_nmod_poly_deflate" fq_nmod_poly_deflate :: Ptr CFqNModPoly -> Ptr CFqNModPoly -> CULong -> Ptr CFqNModCtx -> IO () -- | /fq_nmod_poly_deflation/ /input/ /ctx/ -- -- Returns the largest integer by which @input@ can be deflated. As special -- cases, returns 0 if @input@ is the zero polynomial and 1 of @input@ is a -- constant polynomial. foreign import ccall "fq_nmod_poly.h fq_nmod_poly_deflation" fq_nmod_poly_deflation :: Ptr CFqNModPoly -> Ptr CFqNModCtx -> IO CULong