Safe Haskell | None |
---|---|
Language | Haskell2010 |
The HList library
See CommonMain#Variant for the public (safe) interface.
The implementation here follows Data.Dynamic, though Typeable is not needed.
See broken/VariantP.hs
and broken/VariantOld.hs
for different approaches
to open sums.
- data Variant (vs :: [*]) = Variant !Int Any
- unsafeMkVariant :: Int -> v -> Variant vs
- unsafeCastVariant :: Variant v -> Variant v'
- castVariant :: (RecordValuesR v ~ RecordValuesR v', SameLength v v') => Variant v -> Variant v'
- unsafeUnVariant :: Variant v -> e
- unsafeEmptyVariant :: Variant '[]
- class HasField x (Variant vs) (Maybe v) => MkVariant x v vs | x vs -> v where
- mkVariant1 :: Label k l -> e -> Variant ((:) * (Tagged k l e) ([] *))
- splitVariant1 :: Variant (Tagged s x ': xs) -> Either x (Variant xs)
- splitVariant1' :: Variant (x ': xs) -> Either x (Variant xs)
- extendVariant :: Variant l -> Variant (e ': l)
- class (SameLength s t, SameLabels s t) => HPrism x s t a b | x s -> a, x t -> b, x s b -> t, x t a -> s where
- class ShowVariant vs where
- class ReadVariant vs where
- class VariantConstrs (xs :: [*]) where
- class GunfoldVariant (es :: [*]) v where
- class GfoldlVariant xs xs' where
- newtype HMapV f = HMapV f
- hMapV :: (SameLength' * * y x, SameLength' * * x y, HMapAux Variant (HFmap f) x y) => f -> Variant x -> Variant y
- hMapOutV :: forall x y z f. (SameLength x y, HMapAux Variant (HFmap f) x y, Unvariant y z, HMapOutV_gety x z ~ y) => f -> Variant x -> z
- type family HMapOutV_gety (x :: [*]) (z :: *) :: [*]
- type HUpdateVariantAtLabelCxt l e v v' n _e = (HFindLabel l v n, HFindLabel l v' n, HUpdateAtHNatR n (Tagged l e) v ~ v', HasField l (Variant v) (Maybe _e), HasField l (Record v') e, MkVariant l e v')
- type family UnMaybe le
- class HAllEqVal (x :: [*]) (b :: Bool) | x -> b
- class HAllEqVal' (x :: [*])
- class Unvariant' v e | v -> e where
- class Unvariant v e | v -> e where
- class Unvariant1 b v e | b v -> e where
- data UnvariantTypeMismatch (vs :: [*])
- unvarianted :: (Unvariant' s a, Unvariant' t b, SameLabels s t, SameLength s t, Functor f) => (a -> f b) -> Variant s -> f (Variant t)
- unvarianted' :: (Functor f, SameLength' * * t t, SameLabels [*] [*] t t, HAllEqVal ((:) * (Tagged * () a) t) b, HAllEqVal t b, HAllEqVal' ((:) * (Tagged * () a) t), Unvariant1 Bool b t a) => (a -> f a) -> Variant t -> f (Variant t)
- class ZipVariant x y xy | x y -> xy, xy -> x y where
- class (SameLength v v', SameLabels v v') => ZipVR fs v v' | fs v -> v' where
- zipVR :: (SameLabels fs v, SameLength fs v, ZipVR fs v v', ZipVRCxt fs v v') => Record fs -> Variant v -> Variant v'
- type family ZipVRCxt (fs :: [*]) (xs :: [*]) (ys :: [*]) :: Constraint
- eqVariant :: (ZipVariant x2 y x1, HAllEqVal ((:) * (Tagged * () Bool) (HMapOutV_gety x1 Bool)) b, HAllEqVal (HMapOutV_gety x1 Bool) b, Unvariant1 Bool b (HMapOutV_gety x1 Bool) Bool, HMapAux Variant (HFmap UncurryEq) x1 (HMapOutV_gety x1 Bool), SameLength' * * (HMapOutV_gety x1 Bool) x1, SameLength' * * x1 (HMapOutV_gety x1 Bool)) => Variant x2 -> Variant y -> Bool
- data UncurryEq = UncurryEq
- class ProjectVariant x y where
- class HAllTaggedLV y => ProjectExtendVariant x y where
- class ProjectExtendVariant' (inY :: Maybe [*]) lv (y :: [*]) where
- class (ProjectVariant x yin, ProjectVariant x yout) => SplitVariant x yin yout where
- class (HAllTaggedLV y, HAllTaggedLV x) => ExtendsVariant x y where
- rearrangeVariant :: (SameLength v v', ExtendsVariant v v') => Variant v -> Variant v'
- hMaybied :: (Applicative f, Choice p, SameLength' * * x r, SameLength' * * r x, HMapAux HList (HFmap HCastF) x r, VariantToHMaybied v1 x, VariantToHMaybied v2 r, HFoldr HMaybiedToVariantFs [Variant ([] *)] x [Variant v1]) => p (Variant v1) (f (Variant v2)) -> p (Record x) (f (Record r))
- data HCastF = HCastF
- hMaybied' :: (HFoldr HMaybiedToVariantFs [Variant ([] *)] x [Variant v], VariantToHMaybied v x, HMapAux HList (HFmap HCastF) x x, SameLength' * * x x, Choice p, Applicative f) => p (Variant v) (f (Variant v)) -> p (Record x) (f (Record x))
- class VariantToHMaybied v r | v -> r, r -> v where
- data ConstTaggedNothing = ConstTaggedNothing
- hMaybiedToVariants :: (HFoldr HMaybiedToVariantFs [Variant '[]] r [Variant v], VariantToHMaybied v r) => Record r -> [Variant v]
- data HMaybiedToVariantFs = HMaybiedToVariantFs
Labels for doctests
>>>
import Data.HList.RecordPuns
>>>
let x = Label :: Label "x"
>>>
let y = Label :: Label "y"
>>>
let z = Label :: Label "z"
>>>
let _left = Label :: Label "left"
>>>
let _right = Label :: Label "right"
>>>
:set -XQuasiQuotes -XViewPatterns -XDataKinds
- - * Creating Variants
It is necessary to specify the order in which the fields occur, using a data type like
>>>
let p = Proxy :: Proxy '[Tagged "left" Char, Tagged "right" Int]
Then this argument can be passed into mkVariant
>>>
let v = mkVariant _left 'x' p
>>>
let w = mkVariant _right 5 p
>>>
:t v
v :: Variant '[Tagged "left" Char, Tagged "right" Int]
>>>
:t w
w :: Variant '[Tagged "left" Char, Tagged "right" Int]
>>>
[v,w]
[V{left='x'},V{right=5}]
Alternative: a Record
as the Proxy
The type of mkVariant also allows using a Record
as the proxy. For example:
>>>
:{
let p2 = [pun| left right |] where left = 'a' right = (4::Int) :}
>>>
let v2 = mkVariant _left 'x' p2
>>>
let w2 = mkVariant _right 5 p2
>>>
:t v2
v2 :: Variant '[Tagged "left" Char, Tagged "right" Int]
>>>
:t w2
w2 :: Variant '[Tagged "left" Char, Tagged "right" Int]
>>>
(v2,w2)
(V{left='x'},V{right=5})
A polymorphic Proxy
It is also possible to leave the Char
and Int
as type variables,
and have them inferred.
>>>
let p3 = Proxy :: Proxy '[Tagged "left" a, Tagged "right" b]
Using p3
takes some care. The following attempt shows the problem:
>>>
:{
let v3' = mkVariant _left 'x' p3 w3' = mkVariant _right (5::Int) p3 :}
>>>
:t v3'
v3' :: Variant '[Tagged "left" Char, Tagged "right" b]
>>>
:t w3'
w3' :: Variant '[Tagged "left" a, Tagged "right" Int]
Here each use of p3
does not constrain the type of the other use.
In some cases those type variables will be inferred from other constraints,
such as when putting the variants into a list
>>>
[v3', w3']
[V{left='x'},V{right=5}]
In other cases the other tags will be defaulted to (), at least if ExtendedDefaultRules
is enabled:
>>>
v3'
V{left='x'}
>>>
:set -XNoExtendedDefaultRules
>>>
v3'
... ...No instance for (Show ...) arising from a use of ‘print’ ...
Another way around this issue is to make sure that the proxy is bound in a monomorphic pattern. These are patterns that allow name shadowing.
p -> ...
case e of p -> ...
do p <- e; ...
- implicit parameters
let ?p = e in ...
- other patterns involved in mutually recursive bindings
An example of the case:
>>>
:{
let (v3,w3) = case p3 of p -> (mkVariant _left 'x' p, mkVariant _right (5 :: Int) p) :}
>>>
:t v3
v3 :: Variant '[Tagged "left" Char, Tagged "right" Int]
>>>
:t w3
w3 :: Variant '[Tagged "left" Char, Tagged "right" Int]
data Variant (vs :: [*]) Source #
Variant vs
has an implementation similar to Dynamic
, except the
contained value is one of the elements of the vs
list, rather than
being one particular instance of Typeable
.
>>>
v .!. _right
Nothing
>>>
v .!. _left
Just 'x'
In some cases the pun
quasiquote works with variants,
>>>
let f [pun| left right |] = (left,right)
>>>
f v
(Just 'x',Nothing)
>>>
f w
(Nothing,Just 5)
>>>
let add1 v = hMapV (Fun succ :: Fun '[Enum] '()) v
>>>
f (add1 v)
(Just 'y',Nothing)
>>>
f (add1 w)
(Nothing,Just 6)
Relabeled Variant Source # | |
TypeIndexed Variant TIC Source # | |
(ExtendsVariant b t, ProjectVariant s a, ProjectExtendVariant s t, HLeftUnion b s bs, HRLabelSet bs, HRearrange (LabelsOf t) bs t) => Projected Variant s t a b Source # | Prism (Variant s) (Variant t) (Variant a) (Variant b) |
HUpdateVariantAtLabelCxt k l e v v' n _e => HUpdateAtLabel k Variant l e v v' Source # | hUpdateAtLabel x e' (mkVariant x e proxy) == mkVariant x e' proxy hUpdateAtLabel y e' (mkVariant x e proxy) == mkVariant x e proxy |
(HPrism k x s t a b, (~) (* -> * -> *) to ((->) LiftedRep LiftedRep)) => Labelable k x Variant s t a b Source # | make a |
(HasField k x (Record vs) a, HFindLabel k x vs n, HNat2Integral n) => HasField k x (Variant vs) (Maybe a) Source # | |
(ApplyAB f te te', HMapCxt Variant f ((:) * l ls) ((:) * l' ls')) => HMapAux Variant f ((:) * te ((:) * l ls)) ((:) * te' ((:) * l' ls')) Source # | |
ApplyAB f te te' => HMapAux Variant f ((:) * te ([] *)) ((:) * te' ([] *)) Source # | |
((~) * le (Tagged k l (Maybe e)), HOccursNot * (Label k l) (LabelsOf v)) => HExtend le (Variant v) Source # | Extension for Variants prefers the first value (l .=. Nothing) .*. v = v (l .=. Just e) .*. _ = mkVariant l e Proxy |
(HasField k l (Variant r) (Maybe u), HasFieldPath True ls u (Maybe v)) => HasFieldPath needJust ((:) * (Label k l) ls) (Variant r) (Maybe v) Source # | |
(Unvariant ((:) * txy ([] *)) txy, (~) * tx (Tagged k t x), (~) * ty (Tagged k t y), (~) * txy (Tagged k t (x, y))) => HUnzip Variant ((:) * tx ([] *)) ((:) * ty ([] *)) ((:) * txy ([] *)) Source # | |
(HUnzip Variant ((:) * x2 xs) ((:) * y2 ys) ((:) * xy2 xys), SameLength * * xs ys, SameLength * * ys xys, (~) * tx (Tagged k t x), (~) * ty (Tagged k t y), (~) * txy (Tagged k t (x, y))) => HUnzip Variant ((:) * tx ((:) * x2 xs)) ((:) * ty ((:) * y2 ys)) ((:) * txy ((:) * xy2 xys)) Source # | |
(Bounded x, Bounded z, (~) [*] (HRevAppR * ((:) * (Tagged k2 s x) xs) ([] *)) ((:) * (Tagged k1 t z) sx), MkVariant k1 t z ((:) * (Tagged k2 s x) xs)) => Bounded (Variant ((:) * (Tagged k2 s x) xs)) Source # | |
Enum x => Enum (Variant ((:) * (Tagged k s x) ([] *))) Source # | While the instances could be written Enum (Variant '[])
Eq/Ord which cannot produce values, so they have instances for
empty variants ( |
(Enum x, Bounded x, Enum (Variant ((:) * y z))) => Enum (Variant ((:) * (Tagged k s x) ((:) * y z))) Source # |
The last type in the Variant does not need to be Bounded. This
means that
This is a "feature" because it allows an Another difficult choice is that the lower bound is
|
(Eq (Variant xs), Eq x) => Eq (Variant ((:) * x xs)) Source # | |
Eq (Variant ([] *)) Source # | |
(Typeable * (Variant v), GfoldlVariant v v, GunfoldVariant v v, VariantConstrs v) => Data (Variant v) Source # | |
(Ord x, Ord (Variant xs)) => Ord (Variant ((:) * x xs)) Source # | |
Ord (Variant ([] *)) Source # | |
ReadVariant v => Read (Variant v) Source # | A corresponding read instance |
ShowVariant vs => Show (Variant vs) Source # | Variants are not opaque |
(Semigroup x, Semigroup (Variant ((:) * a b))) => Semigroup (Variant ((:) * (Tagged k t x) ((:) * a b))) Source # | |
(Unvariant ((:) * (Tagged k t x) ([] *)) x, Semigroup x) => Semigroup (Variant ((:) * (Tagged k t x) ([] *))) Source # | |
(Monoid x, Monoid (Variant ((:) * a b))) => Monoid (Variant ((:) * (Tagged k t x) ((:) * a b))) Source # | |
(Unvariant ((:) * (Tagged k t x) ([] *)) x, Monoid x) => Monoid (Variant ((:) * (Tagged k t x) ([] *))) Source # | |
(SameLength * * s a, ExtendsVariant s a, SameLength * * b t, ExtendsVariant b t) => Rearranged [*] Variant s t a b Source # | |
type LabelableTy Variant Source # | |
type HExtendR le (Variant v) Source # | |
Unsafe operations
This is only safe if the n'th element of vs has type Tagged t v
unsafeCastVariant :: Variant v -> Variant v' Source #
Safe when (e ~ e') given that
Tagged t e ~ HLookupByHNatR n v Tagged t' e' ~ HLookupByHNatR n v'
hUpdateAtLabel
is the safe version
castVariant :: (RecordValuesR v ~ RecordValuesR v', SameLength v v') => Variant v -> Variant v' Source #
in ghc>=7.8, coerce
is probably a better choice
unsafeUnVariant :: Variant v -> e Source #
private destructor. This is safe only if the value
contained actually has type e
unsafeEmptyVariant :: Variant '[] Source #
This function is unsafe because it can lead to a runtime error
when used together with the HExtend
instance (.*.)
>>>
print $ (Label :: Label "x") .=. (Nothing :: Maybe ()) .*. unsafeEmptyVariant
V{*** Exception: invalid variant
use mkVariant1
instead
Public constructor
class HasField x (Variant vs) (Maybe v) => MkVariant x v vs | x vs -> v where Source #
(HFindLabel k x vs n, HNat2Integral n, HasField k x (Variant vs) (Maybe v)) => MkVariant k x v vs Source # | |
Public destructor
hLookupByLabel
(synonym .!.
)
(.!.) :: Variant v -> Label x -> Maybe e hLookupByLabel :: Label x -> Variant v -> Maybe e
extendVariant :: Variant l -> Variant (e ': l) Source #
Prism
class (SameLength s t, SameLabels s t) => HPrism x s t a b | x s -> a, x t -> b, x s b -> t, x t a -> s where Source #
Make a Prism (Variant s) (Variant t) a b
out of a Label.
See Data.HList.Labelable.hLens'
is a more overloaded version.
Few type annotations are necessary because of the restriction
that s
and t
have the same labels in the same order, and to
get "t" the "a" in "s" is replaced with "b".
hPrism :: (Choice p, Applicative f) => Label x -> p a (f b) -> p (Variant s) (f (Variant t)) Source #
(MkVariant k x b t, HasField k x (Variant s) (Maybe a), SameLength * * s t, SameLabels [*] [*] s t, H2ProjectByLabels ((:) * (Label k x) ([] *)) s si so, H2ProjectByLabels ((:) * (Label k x) ([] *)) t ti to, (~) [*] so to, HUpdateAtLabel k Variant x b s t, HUpdateAtLabel k Variant x a t s) => HPrism k x s t a b Source # | |
Read
class ShowVariant vs where Source #
helper class for defining the Show instance
showVariant :: Variant vs -> ShowS Source #
Show
class ReadVariant vs where Source #
readVariant :: ReadP (Variant vs) Source #
ReadVariant ([] *) Source # | |
(ShowLabel k l, Read v, ReadVariant vs, HOccursNot * (Label k l) (LabelsOf vs)) => ReadVariant ((:) * (Tagged k l v) vs) Source # | |
Data
class VariantConstrs (xs :: [*]) where Source #
variantConstrs :: DataType -> proxy xs -> [Constr] Source #
VariantConstrs ([] *) Source # | |
(ShowLabel k l, VariantConstrs xs) => VariantConstrs ((:) * (Tagged k l e) xs) Source # | |
class GunfoldVariant (es :: [*]) v where Source #
implementation of gunfold for Variant
In ghci
:set -ddump-deriv -XDeriveDataTypeable data X a b c = A a | B b | C c deriving (Data,Typeable)
shows that gunfold is defined something like
gunfold k z c = case constrIndex c of 1 -> k (z Ghci1.A) 2 -> k (z Ghci1.B) _ -> k (z Ghci1.C)
If we instead had
type X a b c = Variant [Tagged "A" a, Tagged "B" b, Tagged "C" c]
Then we could write:
gunfold1 :: (forall b r. Data b => (b -> r) -> c r) -> Variant [Tagged "A" a, Tagged "B" b, Tagged "C" c] gunfold1 f c = case constrIndex c of 1 -> f mkA 2 -> f mkB _ -> f mkC where mkA a = mkVariant (Label :: Label "A") (a :: a) v mkB b = mkVariant (Label :: Label "B") (b :: b) v mkC c = mkVariant (Label :: Label "C") (c :: c) v v = Proxy :: Proxy [Tagged "A" a, Tagged "B" b, Tagged "C" c]
where f = k.z
class GfoldlVariant xs xs' where Source #
Map
Apply a function to all possible elements of the variant
HMapV f |
hMapV :: (SameLength' * * y x, SameLength' * * x y, HMapAux Variant (HFmap f) x y) => f -> Variant x -> Variant y Source #
shortcut for applyAB . HMapV
. hMap
is more general
hMapOutV :: forall x y z f. (SameLength x y, HMapAux Variant (HFmap f) x y, Unvariant y z, HMapOutV_gety x z ~ y) => f -> Variant x -> z Source #
hMapOutV f = unvariant . hMapV f
, except an ambiguous type
variable is resolved by HMapOutV_gety
type family HMapOutV_gety (x :: [*]) (z :: *) :: [*] Source #
resolves an ambiguous type in hMapOutV
type HMapOutV_gety ([] *) z Source # | |
type HMapOutV_gety ((:) * (Tagged k s x) xs) z Source # | |
HUpdateAtLabel instance
type HUpdateVariantAtLabelCxt l e v v' n _e = (HFindLabel l v n, HFindLabel l v' n, HUpdateAtHNatR n (Tagged l e) v ~ v', HasField l (Variant v) (Maybe _e), HasField l (Record v') e, MkVariant l e v') Source #
HExtend instance
Conversion to an untagged value
class HAllEqVal' (x :: [*]) Source #
class Unvariant' v e | v -> e where Source #
Similar to unvariant
, except type variables in v
will be made equal to e
if possible. That allows the type
of Nothing
to be inferred as Maybe Char
.
>>>
unvariant' $ x .=. Nothing .*. mkVariant1 y 'y'
'y'
However, this difference leads to more local error messages
(Couldn't match type ‘()’ with ‘Char’
), rather than the following
with unvariant
:
Fail '("Variant", '[Tagged "left" Char, Tagged "right" ()], "must have all values equal to ", e))
unvariant' :: Variant v -> e Source #
(HAllEqVal' ((:) * (Tagged * () e) v), Unvariant v e) => Unvariant' v e Source # | |
class Unvariant v e | v -> e where Source #
Convert a Variant which has all possibilities having the same type
into a value of that type. Analogous to either id id
.
See also unvariant'
class Unvariant1 b v e | b v -> e where Source #
unvariant1 :: Proxy b -> Variant v -> e Source #
Fail Symbol "Unvariant applied to empty variant" => Unvariant1 k b ([] *) (Proxy Symbol "Unvariant applied to empty variant") Source # | |
(~) * v (Tagged k t1 e) => Unvariant1 Bool True ((:) * v vs) e Source # | |
Fail * (UnvariantTypeMismatch ((:) * v vs)) => Unvariant1 Bool False ((:) * v vs) (UnvariantTypeMismatch ((:) * v vs)) Source # | |
data UnvariantTypeMismatch (vs :: [*]) Source #
Fail * (UnvariantTypeMismatch ((:) * v vs)) => Unvariant1 Bool False ((:) * v vs) (UnvariantTypeMismatch ((:) * v vs)) Source # | |
unvarianted :: (Unvariant' s a, Unvariant' t b, SameLabels s t, SameLength s t, Functor f) => (a -> f b) -> Variant s -> f (Variant t) Source #
Lens (Variant s) (Variant t) a b
Analogue of Control.Lens.chosen :: Lens (Either a a) (Either b b) a b
unvarianted' :: (Functor f, SameLength' * * t t, SameLabels [*] [*] t t, HAllEqVal ((:) * (Tagged * () a) t) b, HAllEqVal t b, HAllEqVal' ((:) * (Tagged * () a) t), Unvariant1 Bool b t a) => (a -> f a) -> Variant t -> f (Variant t) Source #
Lens' (Variant s) a
where we might have s ~ '[Tagged t1 a, Tagged t2 a]
Zip
class ZipVariant x y xy | x y -> xy, xy -> x y where Source #
Applies to variants that have the same labels in the same order. A generalization of
zipEither :: Either a b -> Either a b -> Maybe (Either (a,a) (b,b)) zipEither (Left a) (Left a') = Just (Left (a,a')) zipEither (Right a) (Right a') = Just (Right (a,a')) zipEither _ _ = Nothing
see HZip
for zipping other collections
with a record
class (SameLength v v', SameLabels v v') => ZipVR fs v v' | fs v -> v' where Source #
Apply a record of functions to a variant of values. The functions are selected based on those having the same label as the value.
zipVR :: (SameLabels fs v, SameLength fs v, ZipVR fs v v', ZipVRCxt fs v v') => Record fs -> Variant v -> Variant v' Source #
>>>
let xy = x .*. y .*. emptyProxy
>>>
let p = Proxy `asLabelsOf` xy
>>>
let vs = [ mkVariant x 1.0 p, mkVariant y () p ]
>>>
zipVR (hBuild (+1) id) `map` vs
[V{x=2.0},V{y=()}]
type family ZipVRCxt (fs :: [*]) (xs :: [*]) (ys :: [*]) :: Constraint Source #
Eq
Alternative Eq
eqVariant :: (ZipVariant x2 y x1, HAllEqVal ((:) * (Tagged * () Bool) (HMapOutV_gety x1 Bool)) b, HAllEqVal (HMapOutV_gety x1 Bool) b, Unvariant1 Bool b (HMapOutV_gety x1 Bool) Bool, HMapAux Variant (HFmap UncurryEq) x1 (HMapOutV_gety x1 Bool), SameLength' * * (HMapOutV_gety x1 Bool) x1, SameLength' * * x1 (HMapOutV_gety x1 Bool)) => Variant x2 -> Variant y -> Bool Source #
implemented like and (zipWith (==) xs ys)
. Behaves the same as the Eq instances for Variant
Ord
Bounded
Enum
Ix (TODO)
Semigroup
Monoid
Projection
class ProjectVariant x y where Source #
convert a variant with more fields into one with fewer (or the same) fields.
>>>
let ty = Proxy :: Proxy [Tagged "left" Int, Tagged "right" Int]
>>>
let l = mkVariant _left 1 ty
>>>
let r = mkVariant _right 2 ty
>>>
map projectVariant [l, r] :: [Maybe (Variant '[Tagged "left" Int])]
[Just V{left=1},Nothing]
is one implementation
of rearrangeVariant
= fromJust
. projectVariant
rearrangeVariant
, since the result can have the same fields with
a different order:
>>>
let yt = Proxy :: Proxy [Tagged "right" Int, Tagged "left" Int]
>>>
map projectVariant [l, r] `asTypeOf` [Just (mkVariant _left 0 yt)]
[Just V{left=1},Just V{right=2}]
ProjectVariant x ([] *) Source # | |
(ProjectVariant x ys, HasField k t (Variant x) (Maybe y), HOccursNot * (Label k t) (LabelsOf ys), (~) * ty (Tagged k t y)) => ProjectVariant x ((:) * ty ys) Source # | |
class HAllTaggedLV y => ProjectExtendVariant x y where Source #
projectExtendVariant = fmapextendVariant
.projectVariant
where intermediate variant is as large as possible. Used to implement
Data.HList.Labelable.projected
Note that:
>>>
let r = projectExtendVariant (mkVariant1 Label 1 :: Variant '[Tagged "x" Int])
>>>
r :: Maybe (Variant '[Tagged "x" Integer])
Nothing
HAllTaggedLV y => ProjectExtendVariant ([] *) y Source # | |
((~) * lv (Tagged k l v), HMemberM * lv y inY, ProjectExtendVariant' inY lv y, ProjectExtendVariant xs y) => ProjectExtendVariant ((:) * lv xs) y Source # | |
class (ProjectVariant x yin, ProjectVariant x yout) => SplitVariant x yin yout where Source #
(ProjectVariant x yin, ProjectVariant x yout, H2ProjectByLabels (LabelsOf yin) x xi xo, HRearrange (LabelsOf yin) xi yin, HRearrange (LabelsOf yout) xo yout, HLeftUnion xi xo xixo, HRearrange (LabelsOf x) xixo x, HAllTaggedLV x, HAllTaggedLV yin, HAllTaggedLV yout) => SplitVariant x yin yout Source # | |
class (HAllTaggedLV y, HAllTaggedLV x) => ExtendsVariant x y where Source #
projectVariant . extendsVariant = Just
(when the types match up)
extendVariant
is a special case
extendsVariant :: Variant x -> Variant y Source #
rearrangeVariant :: (SameLength v v', ExtendsVariant v v') => Variant v -> Variant v' Source #
rearrangeVariant
is a specialization of extendsVariant
whose
result is always . see also rearranged
hMaybied :: (Applicative f, Choice p, SameLength' * * x r, SameLength' * * r x, HMapAux HList (HFmap HCastF) x r, VariantToHMaybied v1 x, VariantToHMaybied v2 r, HFoldr HMaybiedToVariantFs [Variant ([] *)] x [Variant v1]) => p (Variant v1) (f (Variant v2)) -> p (Record x) (f (Record r)) Source #
Prism (Record tma) (Record tmb) (Variant ta) (Variant tb)
see hMaybied'
hMaybied' :: (HFoldr HMaybiedToVariantFs [Variant ([] *)] x [Variant v], VariantToHMaybied v x, HMapAux HList (HFmap HCastF) x x, SameLength' * * x x, Choice p, Applicative f) => p (Variant v) (f (Variant v)) -> p (Record x) (f (Record x)) Source #
Prism' (Record tma) (Variant ta)
where tma
and tmb
are lists like
tma ~ '[Tagged x (Maybe a), Tagged y (Maybe b)] ta ~ '[Tagged x a , Tagged y b ]
If one element of the record is Just, the Variant will contain that element. Otherwise, the prism fails.
Note
The types work out to define a prism:
l =prism'
variantToHMaybied
(listToMaybe
.hMaybiedToVariants
)
but the law: s^?l ≡ Just a ==> l # a ≡ s
is not followed,
because we could have:
s, s2 :: Record '[Tagged "x" (Maybe Int), Tagged "y" (Maybe Char)] s = hBuild (Just 1) (Just '2') s2 = hBuild (Just 1) Nothing v :: Variant '[Tagged "x" Int, Tagged "y" Char] v = mkVariant (Label :: Label "x") 1 Proxy
So that s^?l == Just v
. But l#v == s2 /= s
, while the law
requires l#v == s
. hMaybied avoids this problem by only
producing a value when there is only one present.
class VariantToHMaybied v r | v -> r, r -> v where Source #
variantToHMaybied :: Variant v -> Record r Source #
VariantToHMaybied ([] *) ([] *) Source # | |
(VariantToHMaybied v r, HReplicateF nr ConstTaggedNothing () r, (~) * tx (Tagged k t x), (~) * tmx (Tagged k t (Maybe x))) => VariantToHMaybied ((:) * tx v) ((:) * tmx r) Source # | |
data ConstTaggedNothing Source #
hMaybiedToVariants :: (HFoldr HMaybiedToVariantFs [Variant '[]] r [Variant v], VariantToHMaybied v r) => Record r -> [Variant v] Source #
Every element of the record that is Just becomes one element
in the resulting list. See hMaybied'
example types that r
and v
can take.