MIP-0.1.2.0: Library for using Mixed Integer Programming (MIP)
Copyright(c) Masahiro Sakai 20122017
LicenseBSD-style
Maintainermasahiro.sakai@gmail.com
Stabilityprovisional
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageHaskell2010
Extensions
  • Cpp
  • OverloadedStrings

Numeric.Optimization.MIP.Solution.Gurobi

Description

 
Synopsis

Documentation

data Solution r Source #

Type for representing a solution of MIP problem.

Constructors

Solution 

Instances

Instances details
Functor Solution Source # 
Instance details

Defined in Numeric.Optimization.MIP.Base

Methods

fmap :: (a -> b) -> Solution a -> Solution b #

(<$) :: a -> Solution b -> Solution a #

Show r => Show (Solution r) Source # 
Instance details

Defined in Numeric.Optimization.MIP.Base

Methods

showsPrec :: Int -> Solution r -> ShowS #

show :: Solution r -> String #

showList :: [Solution r] -> ShowS #

Default (Solution r) Source # 
Instance details

Defined in Numeric.Optimization.MIP.Base

Methods

def :: Solution r #

Eq r => Eq (Solution r) Source # 
Instance details

Defined in Numeric.Optimization.MIP.Base

Methods

(==) :: Solution r -> Solution r -> Bool #

(/=) :: Solution r -> Solution r -> Bool #

Ord r => Ord (Solution r) Source # 
Instance details

Defined in Numeric.Optimization.MIP.Base

Methods

compare :: Solution r -> Solution r -> Ordering #

(<) :: Solution r -> Solution r -> Bool #

(<=) :: Solution r -> Solution r -> Bool #

(>) :: Solution r -> Solution r -> Bool #

(>=) :: Solution r -> Solution r -> Bool #

max :: Solution r -> Solution r -> Solution r #

min :: Solution r -> Solution r -> Solution r #