| Copyright | (c) Conal Elliott 2007 |
|---|---|
| License | BSD3 |
| Maintainer | conal@conal.net |
| Stability | experimental |
| Portability | GHC |
| Safe Haskell | None |
| Language | Haskell98 |
Data.Pair
Description
Pair-related type constructor classes.
This module is similar to Control.Functor.Pair in the
category-extras package, but it does not require a Functor
superclass.
Temporarily, there is also Data.Zip, which contains the same functionality with different naming. I'm unsure which I prefer.
- type PairTy f = forall a b. f a -> f b -> f (a, b)
- class Pair f where
- apPair :: (Applicative h, Pair f) => PairTy (h :. f)
- ppPair :: (Functor g, Pair g, Pair f) => PairTy (g :. f)
- arPair :: (Arrow j, Unpair f, Pair g) => PairTy (Arrw j f g)
- type UnpairTy f = forall a b. f (a, b) -> (f a, f b)
- class Unpair f where
- class Copair f where
- copair :: (Copair f, Monoid_f f) => PairTy f
- pairEdit :: (Functor m, Monoid (m ((c, d) -> (c, d)))) => (m c, m d) -> m ((c, d) -> (c, d))
- pairEditM :: MonadPlus m => (m c, m d) -> m ((c, d) -> (c, d))
Pairpings
Type constructor class for pair-like things.
Here are some standard instance templates you can fill in. They're not
defined in the general forms below, because they would lead to a lot of
overlap.
instance Applicative f => Pair f where
pair = liftA2 (,)
instance (Applicative h, Pair f) => Pair (h :. f) where
pair = apPair
instance (Functor g, Pair g, Pair f) => Pair (g :. f)
where pair = ppPair
instance (Arrow (~>), Unpair f, Pair g) => Pair (Arrw (~>) f g) where
pair = arPair
instance (Monoid_f h, Copair h) => Pair h where
pair = copairAlso, if you have a type constructor that's a Functor and a Pair,
here is a way to define '(*)' for Applicative:
(<*>) = pairWith ($)
Minimum definitions for instances.
Instances
| Pair [] Source | |
| Pair IO Source | |
| Pair Endo Source | |
| Pair Id Source | |
| Pair ((->) u) Source | |
| Monoid u => Pair ((,) u) Source | |
| Monoid o => Pair (Const o) Source | |
| (Pair f, Pair g) => Pair ((:*:) f g) Source | |
| (Arrow j, Monoid_f (Flip j o)) => Pair (Flip j o) Source | |
| (Arrow j, Unpair f, Pair g) => Pair (Arrw j f g) Source |
Unpairings
Unpairpable. Minimal instance definition: either (a) unpair or (b)
both of fsts and snds. A standard template to substitute any
Functor f. But watch out for effects!
instance Functor f => Unpair f where {fsts = fmap fst; snds = fmap snd}Minimal complete definition
Nothing
Methods
Arguments
| :: UnpairTy f | generalized unpair |
Arguments
| :: f (a, b) | |
| -> f a | First part of pair-like value |
Arguments
| :: f (a, b) | |
| -> f b | Second part of pair-like value |
Dual unpairings
Dual to Unpair.
Especially handy for contravariant functors (ContraFunctor) . Use this
template (filling in f) :
instance ContraFunctor f => Copair f where
{ cofsts = cofmap fst ; cosnds = cofmap snd }Methods
Arguments
| :: f a | |
| -> f (a, b) | Pair-like value from first part |
Arguments
| :: f b | |
| -> f (a, b) | Pair-like value from second part |
copair :: (Copair f, Monoid_f f) => PairTy f Source
Pairing of Copair values. Combines contribution of each.
Misc
pairEdit :: (Functor m, Monoid (m ((c, d) -> (c, d)))) => (m c, m d) -> m ((c, d) -> (c, d)) Source
Turn a pair of sources into a source of pair-editors. See
http://conal.net/blog/posts/pairs-sums-and-reactivity/.
'Functor'\/'Monoid' version. See also pairEditM.
pairEditM :: MonadPlus m => (m c, m d) -> m ((c, d) -> (c, d)) Source
Turn a pair of sources into a source of pair-editors. See
http://conal.net/blog/posts/pairs-sums-and-reactivity/.
Monad version. See also pairEdit.