module FRP.Yampa.Hybrid
(
hold
, dHold
, trackAndHold
, dTrackAndHold
, accum
, accumHold
, dAccumHold
, accumBy
, accumHoldBy
, dAccumHoldBy
, accumFilter
)
where
import Control.Arrow
import FRP.Yampa.Delays
import FRP.Yampa.Event
import FRP.Yampa.InternalCore (SF, epPrim)
hold :: a -> SF (Event a) a
hold :: forall a. a -> SF (Event a) a
hold a
a_init = forall c a b. (c -> a -> (c, b, b)) -> c -> b -> SF (Event a) b
epPrim forall {p} {c}. p -> c -> ((), c, c)
f () a
a_init
where
f :: p -> c -> ((), c, c)
f p
_ c
a = ((), c
a, c
a)
dHold :: a -> SF (Event a) a
dHold :: forall a. a -> SF (Event a) a
dHold a
a0 = forall a. a -> SF (Event a) a
hold a
a0 forall {k} (cat :: k -> k -> *) (a :: k) (b :: k) (c :: k).
Category cat =>
cat a b -> cat b c -> cat a c
>>> forall a. a -> SF a a
iPre a
a0
trackAndHold :: a -> SF (Maybe a) a
trackAndHold :: forall a. a -> SF (Maybe a) a
trackAndHold a
a_init = forall (a :: * -> * -> *) b c. Arrow a => (b -> c) -> a b c
arr (forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall a. Event a
NoEvent forall a. a -> Event a
Event) forall {k} (cat :: k -> k -> *) (a :: k) (b :: k) (c :: k).
Category cat =>
cat a b -> cat b c -> cat a c
>>> forall a. a -> SF (Event a) a
hold a
a_init
dTrackAndHold :: a -> SF (Maybe a) a
dTrackAndHold :: forall a. a -> SF (Maybe a) a
dTrackAndHold a
a_init = forall a. a -> SF (Maybe a) a
trackAndHold a
a_init forall {k} (cat :: k -> k -> *) (a :: k) (b :: k) (c :: k).
Category cat =>
cat a b -> cat b c -> cat a c
>>> forall a. a -> SF a a
iPre a
a_init
accum :: a -> SF (Event (a -> a)) (Event a)
accum :: forall a. a -> SF (Event (a -> a)) (Event a)
accum a
a_init = forall c a b. (c -> a -> (c, b, b)) -> c -> b -> SF (Event a) b
epPrim forall {p} {a} {a}. p -> (p -> a) -> (a, Event a, Event a)
f a
a_init forall a. Event a
NoEvent
where
f :: p -> (p -> a) -> (a, Event a, Event a)
f p
a p -> a
g = (a
a', forall a. a -> Event a
Event a
a', forall a. Event a
NoEvent)
where
a' :: a
a' = p -> a
g p
a
accumHold :: a -> SF (Event (a -> a)) a
accumHold :: forall a. a -> SF (Event (a -> a)) a
accumHold a
a_init = forall c a b. (c -> a -> (c, b, b)) -> c -> b -> SF (Event a) b
epPrim forall {p} {c}. p -> (p -> c) -> (c, c, c)
f a
a_init a
a_init
where
f :: p -> (p -> c) -> (c, c, c)
f p
a p -> c
g = (c
a', c
a', c
a')
where
a' :: c
a' = p -> c
g p
a
dAccumHold :: a -> SF (Event (a -> a)) a
dAccumHold :: forall a. a -> SF (Event (a -> a)) a
dAccumHold a
a_init = forall a. a -> SF (Event (a -> a)) a
accumHold a
a_init forall {k} (cat :: k -> k -> *) (a :: k) (b :: k) (c :: k).
Category cat =>
cat a b -> cat b c -> cat a c
>>> forall a. a -> SF a a
iPre a
a_init
accumBy :: (b -> a -> b) -> b -> SF (Event a) (Event b)
accumBy :: forall b a. (b -> a -> b) -> b -> SF (Event a) (Event b)
accumBy b -> a -> b
g b
b_init = forall c a b. (c -> a -> (c, b, b)) -> c -> b -> SF (Event a) b
epPrim forall {a}. b -> a -> (b, Event b, Event a)
f b
b_init forall a. Event a
NoEvent
where
f :: b -> a -> (b, Event b, Event a)
f b
b a
a = (b
b', forall a. a -> Event a
Event b
b', forall a. Event a
NoEvent)
where
b' :: b
b' = b -> a -> b
g b
b a
a
accumHoldBy :: (b -> a -> b) -> b -> SF (Event a) b
accumHoldBy :: forall b a. (b -> a -> b) -> b -> SF (Event a) b
accumHoldBy b -> a -> b
g b
b_init = forall c a b. (c -> a -> (c, b, b)) -> c -> b -> SF (Event a) b
epPrim b -> a -> (b, b, b)
f b
b_init b
b_init
where
f :: b -> a -> (b, b, b)
f b
b a
a = (b
b', b
b', b
b')
where
b' :: b
b' = b -> a -> b
g b
b a
a
dAccumHoldBy :: (b -> a -> b) -> b -> SF (Event a) b
dAccumHoldBy :: forall b a. (b -> a -> b) -> b -> SF (Event a) b
dAccumHoldBy b -> a -> b
f b
a_init = forall b a. (b -> a -> b) -> b -> SF (Event a) b
accumHoldBy b -> a -> b
f b
a_init forall {k} (cat :: k -> k -> *) (a :: k) (b :: k) (c :: k).
Category cat =>
cat a b -> cat b c -> cat a c
>>> forall a. a -> SF a a
iPre b
a_init
accumFilter :: (c -> a -> (c, Maybe b)) -> c -> SF (Event a) (Event b)
accumFilter :: forall c a b.
(c -> a -> (c, Maybe b)) -> c -> SF (Event a) (Event b)
accumFilter c -> a -> (c, Maybe b)
g c
c_init = forall c a b. (c -> a -> (c, b, b)) -> c -> b -> SF (Event a) b
epPrim forall {a}. c -> a -> (c, Event b, Event a)
f c
c_init forall a. Event a
NoEvent
where
f :: c -> a -> (c, Event b, Event a)
f c
c a
a = case c -> a -> (c, Maybe b)
g c
c a
a of
(c
c', Maybe b
Nothing) -> (c
c', forall a. Event a
NoEvent, forall a. Event a
NoEvent)
(c
c', Just b
b) -> (c
c', forall a. a -> Event a
Event b
b, forall a. Event a
NoEvent)