| Safe Haskell | Safe-Inferred |
|---|---|
| Language | GHC2021 |
AtCoder.Extra.Monoid
Description
Extra module of pre-defined SegAct instances.
Be warned that they're not 100% guaranteed to be correct.
Since: 1.0.0.0
Synopsis
- class Monoid f => SegAct f a where
- segAct :: f -> a -> a
- segActWithLength :: Int -> f -> a -> a
- newtype Affine1 a = Affine1 (Affine1Repr a)
- type Affine1Repr a = (a, a)
- newtype RangeAdd a = RangeAdd a
- newtype RangeAddId a = RangeAddId a
- newtype RangeSet a = RangeSet (RangeSetRepr a)
- newtype RangeSetId a = RangeSetId (RangeSetIdRepr a)
SegAct (re-export)
class Monoid f => SegAct f a where Source #
Typeclass reprentation of the LazySegTree properties. User can implement either segAct or
segActWithLength.
Instances should satisfy the follwing:
- Left monoid action
segAct(f2<>f1) x =segActf2 (segActf1 x)- Identity map
segActmemptyx = x- Endomorphism
segActf (x1<>x2) = (segActf x1)<>(segActf x2)
If you implement segActWithLength, satisfy one more propety:
- Linear left monoid action
.segActWithLengthlen f a =stimeslen (segActf a) a
Note that in SegAct instances, new semigroup values are always given from the left: new .<> old
Example instance
Take Affine1 as an example of type \(F\).
{-# LANGUAGE TypeFamilies #-}
import AtCoder.LazySegTree qualified as LST
import AtCoder.LazySegTree (SegAct (..))
import Data.Monoid
import Data.Vector.Generic qualified as VG
import Data.Vector.Generic.Mutable qualified as VGM
import Data.Vector.Unboxed qualified as VU
import Data.Vector.Unboxed.Mutable qualified as VUM
-- | f x = a * x + b. It's implemented as a newtype of `(a, a)` for easy Unbox deriving.
newtype Affine1 a = Affine1 (Affine1 a)
deriving newtype (Eq, Ord, Show)
-- | This type alias makes the Unbox deriving easier, described velow.
type Affine1Repr a = (a, a)
instance (Num a) => Semigroup (Affine1 a) where
{-# INLINE (<>) #-}
(Affine1 (!a1, !b1)) <> (Affine1 (!a2, !b2)) = Affine1 (a1 * a2, a1 * b2 + b1)
instance (Num a) => Monoid (Affine1 a) where
{-# INLINE mempty #-}
mempty = Affine1 (1, 0)
instance (Num a) => SegAct (Affine1 a) (Sum a) where
{-# INLINE segActWithLength #-}
segActWithLength len (Affine1 (!a, !b)) !x = a * x + b * fromIntegral len
Deriving Unbox is very easy for such a newtype (though the efficiency is
not the maximum):
newtype instance VU.MVector s (Affine1a) = MV_Affine1 (VU.MVector s (Affine1a)) newtype instance VU.Vector (Affine1a) = V_Affine1 (VU.Vector (Affine1a)) deriving instance (VU.Unbox a) => VGM.MVector VUM.MVector (Affine1a) deriving instance (VU.Unbox a) => VG.Vector VU.Vector (Affine1a) instance (VU.Unbox a) => VU.Unbox (Affine1a)
Example contest template
Define your monoid action F and your acted monoid X:
{-# LANGUAGE TypeFamilies #-}
import AtCoder.LazySegTree qualified as LST
import AtCoder.LazySegTree (SegAct (..))
import Data.Vector.Generic qualified as VG
import Data.Vector.Generic.Mutable qualified as VGM
import Data.Vector.Unboxed qualified as VU
import Data.Vector.Unboxed.Mutable qualified as VUM
{- ORMOLU_DISABLE -}
-- | F is a custom monoid action, defined as a newtype of FRepr.
newtype F = F FRepr deriving newtype (Eq, Ord, Show) ; unF :: F -> FRepr ; unF (F x) = x ; newtype instance VU.MVector s F = MV_F (VU.MVector s FRepr) ; newtype instance VU.Vector F = V_F (VU.Vector FRepr) ; deriving instance VGM.MVector VUM.MVector F ; deriving instance VG.Vector VU.Vector F ; instance VU.Unbox F ;
{- ORMOLU_ENABLE -}
-- | Affine: f x = a * x + b
type FRepr = (Int, Int)
instance Semigroup F where
-- new <> old
{-# INLINE (<>) #-}
(F (!a1, !b1)) <> (F (!a2, !b2)) = F (a1 * a2, a1 * b2 + b1)
instance Monoid F where
{-# INLINE mempty #-}
mempty = F (1, 0)
{- ORMOLU_DISABLE -}
-- | X is a custom acted monoid, defined as a newtype of XRepr.
newtype X = X XRepr deriving newtype (Eq, Ord, Show) ; unX :: X -> XRepr ; unX (X x) = x; newtype instance VU.MVector s X = MV_X (VU.MVector s XRepr) ; newtype instance VU.Vector X = V_X (VU.Vector XRepr) ; deriving instance VGM.MVector VUM.MVector X ; deriving instance VG.Vector VU.Vector X ; instance VU.Unbox X ;
{- ORMOLU_ENABLE -}
-- | Acted Int (same as `Sum Int`).
type XRepr = Int
deriving instance Num X; -- in our case X is a Num.
instance Semigroup X where
{-# INLINE (<>) #-}
(X x1) <> (X x2) = X $! x1 + x2
instance Monoid X where
{-# INLINE mempty #-}
mempty = X 0
instance SegAct F X where
-- {-# INLINE segAct #-}
-- segAct len (F (!a, !b)) (X x) = X $! a * x + b
{-# INLINE segActWithLength #-}
segActWithLength len (F (!a, !b)) (X x) = X $! a * x + len * b
It's tested as below:
expect :: (Eq a, Show a) => String -> a -> a -> ()
expect msg a b
| a == b = ()
| otherwise = error $ msg ++ ": expected " ++ show a ++ ", found " ++ show b
main :: IO ()
main = do
seg <- LST.build _ F @X $ VU.map X $ VU.fromList [1, 2, 3, 4]
LST.applyIn seg 1 3 $ F (2, 1) -- [1, 5, 7, 4]
LST.write seg 3 $ X 10 -- [1, 5, 7, 10]
LST.modify seg (+ (X 1)) 0 -- [2, 5, 7, 10]
!_ <- (expect "test 1" (X 5)) <$> LST.read seg 1
!_ <- (expect "test 2" (X 14)) <$> LST.prod seg 0 3 -- reads an interval [0, 3)
!_ <- (expect "test 3" (X 24)) <$> LST.allProd seg
!_ <- (expect "test 4" 2) <$> LST.maxRight seg 0 (<= (X 10)) -- sum [0, 2) = 7 <= 10
!_ <- (expect "test 5" 3) <$> LST.minLeft seg 4 (<= (X 10)) -- sum [3, 4) = 10 <= 10
putStrLn "=> test passed!"
Since: 1.0.0.0
Minimal complete definition
Nothing
Methods
segAct :: f -> a -> a Source #
Lazy segment tree action \(f(x)\).
Since: 1.0.0.0
segActWithLength :: Int -> f -> a -> a Source #
Lazy segment tree action \(f(x)\) with the target monoid's length.
If you implement SegAct with this function, you don't have to store the monoid's length,
since it's given externally.
Since: 1.0.0.0
Instances
Affine1
Range add monoid action for \([l, r)\) intervals: \(f: x \rightarrow ax + b\).
Composition and dual
Semigroup for Affine1 is implemented like function composition, and rightmost affine
transformation is applied first: \((f_1 \circ f_2) v := f_1 (f_2(v))\). If you need foldr
of \([f_l, f_{l+1}, .., f_r)\) on a segment tree, be sure to wrap Affine1 in
Dual.
Example
>>>import AtCoder.Extra.Monoid (SegAct(..), Affine1(..))>>>import AtCoder.LazySegTree qualified as LST>>>seg <- LST.build @_ @(Affine1 Int) @(Sum Int) $ VU.generate 3 Sum -- [0, 1, 2]>>>LST.applyIn seg 0 3 $ Affine1 (2, 1) -- [1, 3, 5]>>>getSum <$> LST.allProd seg9
Since: 1.0.0.0
Constructors
| Affine1 (Affine1Repr a) |
Instances
type Affine1Repr a = (a, a) Source #
Range add
Range add monoid action.
Example
>>>import AtCoder.Extra.Monoid (SegAct(..), RangeAdd(..))>>>import AtCoder.LazySegTree qualified as LST>>>import Data.Semigroup (Max(..))>>>seg <- LST.build @_ @(RangeAdd Int) @(Sum Int) $ VU.generate 3 Sum -- [0, 1, 2]>>>LST.applyIn seg 0 3 $ RangeAdd 5 -- [5, 6, 7]>>>getSum <$> LST.prod seg 0 318
Since: 1.0.0.0
Constructors
| RangeAdd a |
Instances
newtype RangeAddId a Source #
Range add monoid action.
Example
>>>import AtCoder.Extra.Monoid (SegAct(..), RangeAddId(..))>>>import AtCoder.LazySegTree qualified as LST>>>import Data.Semigroup (Max(..))>>>seg <- LST.build @_ @(RangeAddId Int) @(Max Int) $ VU.generate 3 Max -- [0, 1, 2]>>>LST.applyIn seg 0 3 $ RangeAddId 5 -- [5, 6, 7]>>>getMax <$> LST.prod seg 0 37
Since: 1.0.0.0
Constructors
| RangeAddId a |
Instances
Range set
Range set monoid action.
Example
>>>import AtCoder.Extra.Monoid (SegAct(..), RangeSet(..))>>>import AtCoder.LazySegTree qualified as LST>>>import Data.Bit (Bit (..))>>>import Data.Semigroup (Product(..))>>>seg <- LST.build @_ @(RangeSet (Product Int)) @(Product Int) $ VU.generate 4 Product -- [0, 1, 2, 3]>>>LST.applyIn seg 0 3 $ RangeSet (Bit True, Product 5) -- [5, 5, 5, 3]>>>getProduct <$> LST.prod seg 0 4375
Since: 1.0.0.0
Constructors
| RangeSet (RangeSetRepr a) |
Instances
newtype RangeSetId a Source #
Range set monoid action.
Example
>>>import AtCoder.Extra.Monoid (SegAct(..), RangeSetId(..))>>>import AtCoder.LazySegTree qualified as LST>>>import Data.Bit (Bit (..))>>>import Data.Semigroup (Max(..))>>>seg <- LST.build @_ @(RangeSetId (Max Int)) @(Max Int) $ VU.generate 3 (Max . (+ 10)) -- [10, 11, 12]>>>LST.applyIn seg 0 2 $ RangeSetId (Bit True, Max 5) -- [5, 5, 12]>>>getMax <$> LST.prod seg 0 312
Since: 1.0.0.0
Constructors
| RangeSetId (RangeSetIdRepr a) |