| Copyright | [2017..2020] Trevor L. McDonell |
|---|---|
| License | BSD3 |
| Maintainer | Trevor L. McDonell <trevor.mcdonell@gmail.com> |
| Stability | experimental |
| Portability | non-portable (GHC extensions) |
| Safe Haskell | None |
| Language | Haskell2010 |
Data.Array.Accelerate.Numeric.LinearAlgebra.BLAS.Level3
Description
Level 3 (matrix-matrix) BLAS operations.
Documentation
class Num a => Numeric a Source #
Minimal complete definition
numericR
Many operations allow you to implicitly transpose the arguments. For
a given input matrix mat with dimensions Z :. m :. n (that is; m rows
and n columns):
Constructors
| N | Leave the matrix as is. |
| T | Treat the matrix as implicitly transposed, with dimensions |
| H | Implicitly transpose and conjugate the input matrix. For complex-valued
matrices a given element |
Arguments
| :: forall e. Numeric e | |
| => Exp e | \( \alpha \) |
| -> Transpose | operation to apply to A |
| -> Acc (Matrix e) | A |
| -> Transpose | operation to apply to B |
| -> Acc (Matrix e) | B |
| -> Acc (Matrix e) | C |
General matrix-matrix multiply
\[ C = \alpha * \mathrm{op}(A) * \mathrm{op}(B) \]
where:
shape\(\mathrm{op}(A)\)= Z :. m :. kshape\(\mathrm{op}(B)\)= Z :. k :. nshape\(C\)= Z :. m :. n
https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm