algebra-2.1.1: Constructive abstract algebra

Safe HaskellSafe-Infered

Numeric.Algebra.Complex

Synopsis

Documentation

data Complex a Source

Constructors

Complex a a 

Instances

Monad Complex 
Functor Complex 
Typeable1 Complex 
Applicative Complex 
Foldable Complex 
Traversable Complex 
Distributive Complex 
Keyed Complex 
Zip Complex 
ZipWithKey Complex 
Indexable Complex 
Lookup Complex 
Adjustable Complex 
FoldableWithKey Complex 
FoldableWithKey1 Complex 
TraversableWithKey Complex 
TraversableWithKey1 Complex 
Representable Complex 
Traversable1 Complex 
Foldable1 Complex 
Apply Complex 
Bind Complex 
MonadReader ComplexBasis Complex 
RightModule r s => RightModule r (Complex s) 
LeftModule r s => LeftModule r (Complex s) 
(Commutative r, Rng r, InvolutiveSemiring r) => Quadrance r (Complex r) 
Eq a => Eq (Complex a) 
Data a => Data (Complex a) 
Read a => Read (Complex a) 
Show a => Show (Complex a) 
Idempotent r => Idempotent (Complex r) 
Abelian r => Abelian (Complex r) 
Partitionable r => Partitionable (Complex r) 
Additive r => Additive (Complex r) 
Monoidal r => Monoidal (Complex r) 
(Commutative r, Rng r) => Semiring (Complex r) 
(Commutative r, Rng r) => Multiplicative (Complex r) 
Group r => Group (Complex r) 
(Commutative r, Ring r) => Unital (Complex r) 
(Commutative r, InvolutiveSemiring r, DivisionRing r) => Division (Complex r) 
(Commutative r, Ring r) => Rig (Complex r) 
(Commutative r, Ring r) => Ring (Complex r) 
(TriviallyInvolutive r, Rng r) => Commutative (Complex r) 
(Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveSemiring (Complex r) 
(Commutative r, Rng r, InvolutiveMultiplication r) => InvolutiveMultiplication (Complex r) 
Rig r => Distinguished (Complex r) 
Rig r => Complicated (Complex r) 
(Commutative r, Rng r) => RightModule (Complex r) (Complex r) 
(Commutative r, Rng r) => LeftModule (Complex r) (Complex r) 

uncomplicate :: Hamiltonian q => ComplexBasis -> ComplexBasis -> qSource

half of the Cayley-Dickson quaternion isomorphism