Safe Haskell | Safe-Infered |
---|
- class Multiplicative r => Band r
- pow1pBand :: Whole n => r -> n -> r
- powBand :: (Unital r, Whole n) => r -> n -> r
- class Algebra r a => IdempotentAlgebra r a
- class Coalgebra r c => IdempotentCoalgebra r c
- class (Bialgebra r h, IdempotentAlgebra r h, IdempotentCoalgebra r h) => IdempotentBialgebra r h
Documentation
class Multiplicative r => Band r Source
An multiplicative semigroup with idempotent multiplication.
a * a = a
Band Bool | |
Band () | |
Idempotent r => Band (Exp r) | |
Band r => Band (Opposite r) | |
(Band a, Band b) => Band (a, b) | |
Band (Rect i j) | |
(Idempotent r, IdempotentCoalgebra r a) => Band (Covector r a) | |
(Band a, Band b, Band c) => Band (a, b, c) | |
(Band a, Band b, Band c, Band d) => Band (a, b, c, d) | |
(Band a, Band b, Band c, Band d, Band e) => Band (a, b, c, d, e) |
Idempotent algebras
class Algebra r a => IdempotentAlgebra r a Source
(Semiring r, Band r) => IdempotentAlgebra r () | |
(Semiring r, Band r) => IdempotentAlgebra r IntSet | |
(Semiring r, Band r, Ord a) => IdempotentAlgebra r (Set a) | |
(IdempotentAlgebra r a, IdempotentAlgebra r b) => IdempotentAlgebra r (a, b) | |
(IdempotentAlgebra r a, IdempotentAlgebra r b, IdempotentAlgebra r c) => IdempotentAlgebra r (a, b, c) | |
(IdempotentAlgebra r a, IdempotentAlgebra r b, IdempotentAlgebra r c, IdempotentAlgebra r d) => IdempotentAlgebra r (a, b, c, d) | |
(IdempotentAlgebra r a, IdempotentAlgebra r b, IdempotentAlgebra r c, IdempotentAlgebra r d, IdempotentAlgebra r e) => IdempotentAlgebra r (a, b, c, d, e) |
class Coalgebra r c => IdempotentCoalgebra r c Source
(Semiring r, Band r) => IdempotentCoalgebra r () | |
(Semiring r, Band r) => IdempotentCoalgebra r IntSet | |
(Semiring r, Band r, Ord c) => IdempotentCoalgebra r (Set c) | |
(IdempotentCoalgebra r a, IdempotentCoalgebra r b) => IdempotentCoalgebra r (a, b) | |
(IdempotentCoalgebra r a, IdempotentCoalgebra r b, IdempotentCoalgebra r c) => IdempotentCoalgebra r (a, b, c) | |
(IdempotentCoalgebra r a, IdempotentCoalgebra r b, IdempotentCoalgebra r c, IdempotentCoalgebra r d) => IdempotentCoalgebra r (a, b, c, d) | |
(IdempotentCoalgebra r a, IdempotentCoalgebra r b, IdempotentCoalgebra r c, IdempotentCoalgebra r d, IdempotentCoalgebra r e) => IdempotentCoalgebra r (a, b, c, d, e) |
class (Bialgebra r h, IdempotentAlgebra r h, IdempotentCoalgebra r h) => IdempotentBialgebra r h Source
(Bialgebra r h, IdempotentAlgebra r h, IdempotentCoalgebra r h) => IdempotentBialgebra r h |