| Monad Trig | |
| Functor Trig | |
| Typeable1 Trig | |
| Applicative Trig | |
| Foldable Trig | |
| Traversable Trig | |
| Distributive Trig | |
| Keyed Trig | |
| Zip Trig | |
| ZipWithKey Trig | |
| Indexable Trig | |
| Lookup Trig | |
| Adjustable Trig | |
| FoldableWithKey Trig | |
| FoldableWithKey1 Trig | |
| TraversableWithKey Trig | |
| TraversableWithKey1 Trig | |
| Representable Trig | |
| Traversable1 Trig | |
| Foldable1 Trig | |
| Apply Trig | |
| Bind Trig | |
| MonadReader TrigBasis Trig | |
| (Semiring r, Additive (Trig s), RightModule r s) => RightModule r (Trig s) | |
| (Semiring r, Additive (Trig s), LeftModule r s) => LeftModule r (Trig s) | |
| Eq a => Eq (Trig a) | |
| (Typeable (Trig a), Data a) => Data (Trig a) | |
| Read a => Read (Trig a) | |
| Show a => Show (Trig a) | |
| (Additive (Trig r), Idempotent r) => Idempotent (Trig r) | |
| (Additive (Trig r), Abelian r) => Abelian (Trig r) | |
| (Additive (Trig r), Partitionable r) => Partitionable (Trig r) | |
| Additive r => Additive (Trig r) | |
| (LeftModule Natural (Trig r), RightModule Natural (Trig r), Monoidal r) => Monoidal (Trig r) | |
| (Additive (Trig k), Abelian (Trig k), Multiplicative (Trig k), Commutative k, Rng k) => Semiring (Trig k) | |
| (Commutative k, Rng k) => Multiplicative (Trig k) | |
| (LeftModule Integer (Trig r), RightModule Integer (Trig r), Monoidal (Trig r), Group r) => Group (Trig r) | |
| (Multiplicative (Trig k), Commutative k, Ring k) => Unital (Trig k) | |
| (Semiring (Trig r), Unital (Trig r), Monoidal (Trig r), Commutative r, Ring r) => Rig (Trig r) | |
| (Rig (Trig r), Rng (Trig r), Commutative r, Ring r) => Ring (Trig r) | |
| (Multiplicative (Trig k), Commutative k, Rng k) => Commutative (Trig k) | |
| (Semiring (Trig r), InvolutiveMultiplication (Trig r), Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveSemiring (Trig r) | |
| (Multiplicative (Trig r), Commutative r, Rng r, InvolutiveMultiplication r) => InvolutiveMultiplication (Trig r) | |
| Rig r => Distinguished (Trig r) | |
| (Distinguished (Trig r), Rig r) => Complicated (Trig r) | |
| Rig r => Trigonometric (Trig r) | |
| (Semiring (Trig r), Additive (Trig r), Commutative r, Rng r) => RightModule (Trig r) (Trig r) | |
| (Semiring (Trig r), Additive (Trig r), Commutative r, Rng r) => LeftModule (Trig r) (Trig r) | |