algebra-4.2: Constructive abstract algebra

Numeric.Module.Representable

Synopsis

addRep :: (Applicative m, Additive r) => m r -> m r -> m r Source

sinnum1pRep :: (Functor m, Additive r) => Natural -> m r -> m r Source

`sinnum1p` default definition

# Representable Monoidal

zeroRep :: (Applicative m, Monoidal r) => m r Source

`zero` default definition

sinnumRep :: (Functor m, Monoidal r) => Natural -> m r -> m r Source

`sinnum` default definition

# Representable Group

negateRep :: (Functor m, Group r) => m r -> m r Source

`negate` default definition

minusRep :: (Applicative m, Group r) => m r -> m r -> m r Source

`Group.(-)` default definition

subtractRep :: (Applicative m, Group r) => m r -> m r -> m r Source

`subtract` default definition

timesRep :: (Integral n, Functor m, Group r) => n -> m r -> m r Source

`times` default definition

# Representable Multiplicative (via Algebra)

mulRep :: (Representable m, Algebra r (Rep m)) => m r -> m r -> m r Source

`Multiplicative.(*)` default definition

# Representable Unital (via UnitalAlgebra)

oneRep :: (Representable m, Unital r, UnitalAlgebra r (Rep m)) => m r Source

`one` default definition

# Representable Rig (via Algebra)

fromNaturalRep :: (UnitalAlgebra r (Rep m), Representable m, Rig r) => Natural -> m r Source

`fromNatural` default definition

# Representable Ring (via Algebra)

fromIntegerRep :: (UnitalAlgebra r (Rep m), Representable m, Ring r) => Integer -> m r Source

`fromInteger` default definition