algebra-4.2: Constructive abstract algebra

Numeric.Ring.Class

# Documentation

class (Rig r, Rng r) => Ring r where Source

Minimal complete definition

Nothing

Methods

fromInteger :: Integer -> r Source

Instances

 Ring Int Ring Int8 Ring Int16 Ring Int32 Ring Int64 Ring Integer Ring Word Ring Word8 Ring Word16 Ring Word32 Ring Word64 Ring () Ring Euclidean (Commutative r, Ring r) => Ring (Complex r) (TriviallyInvolutive r, Ring r) => Ring (Quaternion r) (Commutative r, Ring r) => Ring (Dual r) (Commutative r, Ring r) => Ring (Hyper' r) (Commutative r, Ring r) => Ring (Hyper r) (Commutative r, Ring r) => Ring (Dual' r) (TriviallyInvolutive r, Ring r) => Ring (Quaternion' r) (Commutative r, Ring r) => Ring (Trig r) (Abelian r, Group r) => Ring (End r) Ring r => Ring (Opposite r) Rng r => Ring (RngRing r) Euclidean d => Ring (Fraction d) (Ring a, Ring b) => Ring (a, b) (Ring r, CounitalCoalgebra r m) => Ring (Covector r m) (Ring a, Ring b, Ring c) => Ring (a, b, c) (Ring r, CounitalCoalgebra r m) => Ring (Map r a m) (Ring a, Ring b, Ring c, Ring d) => Ring (a, b, c, d) (Ring a, Ring b, Ring c, Ring d, Ring e) => Ring (a, b, c, d, e)

fromIntegral :: (Integral n, Ring r) => n -> r Source