algebra-4.3: Constructive abstract algebra

Safe HaskellNone
LanguageHaskell98

Numeric.Coalgebra.Hyperbolic

Documentation

data HyperBasis Source #

Constructors

Cosh 
Sinh 

Instances

Bounded HyperBasis Source # 
Enum HyperBasis Source # 
Eq HyperBasis Source # 
Data HyperBasis Source # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HyperBasis -> c HyperBasis #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c HyperBasis #

toConstr :: HyperBasis -> Constr #

dataTypeOf :: HyperBasis -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c HyperBasis) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HyperBasis) #

gmapT :: (forall b. Data b => b -> b) -> HyperBasis -> HyperBasis #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HyperBasis -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HyperBasis -> r #

gmapQ :: (forall d. Data d => d -> u) -> HyperBasis -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> HyperBasis -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> HyperBasis -> m HyperBasis #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HyperBasis -> m HyperBasis #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HyperBasis -> m HyperBasis #

Ord HyperBasis Source # 
Read HyperBasis Source # 
Show HyperBasis Source # 
Ix HyperBasis Source # 
Hyperbolic HyperBasis Source # 
MonadReader HyperBasis Hyper Source # 

Methods

ask :: Hyper HyperBasis #

local :: (HyperBasis -> HyperBasis) -> Hyper a -> Hyper a #

reader :: (HyperBasis -> a) -> Hyper a #

(Commutative k, Semiring k) => Coalgebra k HyperBasis Source #

the hyperbolic trigonometric coalgebra

Methods

comult :: (HyperBasis -> k) -> HyperBasis -> HyperBasis -> k Source #

Semiring k => Algebra k HyperBasis Source #

the trivial diagonal algebra

Methods

mult :: (HyperBasis -> HyperBasis -> k) -> HyperBasis -> k Source #

(Commutative k, Semiring k) => Bialgebra k HyperBasis Source # 
(Commutative k, Semiring k) => CounitalCoalgebra k HyperBasis Source # 

Methods

counit :: (HyperBasis -> k) -> k Source #

Semiring k => UnitalAlgebra k HyperBasis Source # 

Methods

unit :: k -> HyperBasis -> k Source #

(Commutative k, Group k, InvolutiveSemiring k) => HopfAlgebra k HyperBasis Source # 

Methods

antipode :: (HyperBasis -> k) -> HyperBasis -> k Source #

(Commutative k, Group k, InvolutiveSemiring k) => InvolutiveCoalgebra k HyperBasis Source # 

Methods

coinv :: (HyperBasis -> k) -> HyperBasis -> k Source #

(Commutative k, Group k, InvolutiveSemiring k) => InvolutiveAlgebra k HyperBasis Source # 

Methods

inv :: (HyperBasis -> k) -> HyperBasis -> k Source #

Rig r => Hyperbolic (HyperBasis -> r) Source # 

Methods

cosh :: HyperBasis -> r Source #

sinh :: HyperBasis -> r Source #

data Hyper a Source #

Constructors

Hyper a a 

Instances

Monad Hyper Source # 

Methods

(>>=) :: Hyper a -> (a -> Hyper b) -> Hyper b #

(>>) :: Hyper a -> Hyper b -> Hyper b #

return :: a -> Hyper a #

fail :: String -> Hyper a #

Functor Hyper Source # 

Methods

fmap :: (a -> b) -> Hyper a -> Hyper b #

(<$) :: a -> Hyper b -> Hyper a #

Applicative Hyper Source # 

Methods

pure :: a -> Hyper a #

(<*>) :: Hyper (a -> b) -> Hyper a -> Hyper b #

(*>) :: Hyper a -> Hyper b -> Hyper b #

(<*) :: Hyper a -> Hyper b -> Hyper a #

Foldable Hyper Source # 

Methods

fold :: Monoid m => Hyper m -> m #

foldMap :: Monoid m => (a -> m) -> Hyper a -> m #

foldr :: (a -> b -> b) -> b -> Hyper a -> b #

foldr' :: (a -> b -> b) -> b -> Hyper a -> b #

foldl :: (b -> a -> b) -> b -> Hyper a -> b #

foldl' :: (b -> a -> b) -> b -> Hyper a -> b #

foldr1 :: (a -> a -> a) -> Hyper a -> a #

foldl1 :: (a -> a -> a) -> Hyper a -> a #

toList :: Hyper a -> [a] #

null :: Hyper a -> Bool #

length :: Hyper a -> Int #

elem :: Eq a => a -> Hyper a -> Bool #

maximum :: Ord a => Hyper a -> a #

minimum :: Ord a => Hyper a -> a #

sum :: Num a => Hyper a -> a #

product :: Num a => Hyper a -> a #

Traversable Hyper Source # 

Methods

traverse :: Applicative f => (a -> f b) -> Hyper a -> f (Hyper b) #

sequenceA :: Applicative f => Hyper (f a) -> f (Hyper a) #

mapM :: Monad m => (a -> m b) -> Hyper a -> m (Hyper b) #

sequence :: Monad m => Hyper (m a) -> m (Hyper a) #

Distributive Hyper Source # 

Methods

distribute :: Functor f => f (Hyper a) -> Hyper (f a) #

collect :: Functor f => (a -> Hyper b) -> f a -> Hyper (f b) #

distributeM :: Monad m => m (Hyper a) -> Hyper (m a) #

collectM :: Monad m => (a -> Hyper b) -> m a -> Hyper (m b) #

Representable Hyper Source # 

Associated Types

type Rep (Hyper :: * -> *) :: * #

Methods

tabulate :: (Rep Hyper -> a) -> Hyper a #

index :: Hyper a -> Rep Hyper -> a #

Traversable1 Hyper Source # 

Methods

traverse1 :: Apply f => (a -> f b) -> Hyper a -> f (Hyper b) #

sequence1 :: Apply f => Hyper (f b) -> f (Hyper b) #

Apply Hyper Source # 

Methods

(<.>) :: Hyper (a -> b) -> Hyper a -> Hyper b #

(.>) :: Hyper a -> Hyper b -> Hyper b #

(<.) :: Hyper a -> Hyper b -> Hyper a #

Bind Hyper Source # 

Methods

(>>-) :: Hyper a -> (a -> Hyper b) -> Hyper b #

join :: Hyper (Hyper a) -> Hyper a #

Foldable1 Hyper Source # 

Methods

fold1 :: Semigroup m => Hyper m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Hyper a -> m #

MonadReader HyperBasis Hyper Source # 

Methods

ask :: Hyper HyperBasis #

local :: (HyperBasis -> HyperBasis) -> Hyper a -> Hyper a #

reader :: (HyperBasis -> a) -> Hyper a #

RightModule r s => RightModule r (Hyper s) Source # 

Methods

(*.) :: Hyper s -> r -> Hyper s Source #

LeftModule r s => LeftModule r (Hyper s) Source # 

Methods

(.*) :: r -> Hyper s -> Hyper s Source #

Eq a => Eq (Hyper a) Source # 

Methods

(==) :: Hyper a -> Hyper a -> Bool #

(/=) :: Hyper a -> Hyper a -> Bool #

Data a => Data (Hyper a) Source # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Hyper a -> c (Hyper a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Hyper a) #

toConstr :: Hyper a -> Constr #

dataTypeOf :: Hyper a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Hyper a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Hyper a)) #

gmapT :: (forall b. Data b => b -> b) -> Hyper a -> Hyper a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Hyper a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Hyper a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Hyper a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Hyper a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Hyper a -> m (Hyper a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Hyper a -> m (Hyper a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Hyper a -> m (Hyper a) #

Read a => Read (Hyper a) Source # 
Show a => Show (Hyper a) Source # 

Methods

showsPrec :: Int -> Hyper a -> ShowS #

show :: Hyper a -> String #

showList :: [Hyper a] -> ShowS #

Idempotent r => Idempotent (Hyper r) Source # 
Abelian r => Abelian (Hyper r) Source # 
Partitionable r => Partitionable (Hyper r) Source # 

Methods

partitionWith :: (Hyper r -> Hyper r -> r) -> Hyper r -> NonEmpty r Source #

Additive r => Additive (Hyper r) Source # 

Methods

(+) :: Hyper r -> Hyper r -> Hyper r Source #

sinnum1p :: Natural -> Hyper r -> Hyper r Source #

sumWith1 :: Foldable1 f => (a -> Hyper r) -> f a -> Hyper r Source #

Monoidal r => Monoidal (Hyper r) Source # 

Methods

zero :: Hyper r Source #

sinnum :: Natural -> Hyper r -> Hyper r Source #

sumWith :: Foldable f => (a -> Hyper r) -> f a -> Hyper r Source #

(Commutative k, Semiring k) => Semiring (Hyper k) Source # 
(Commutative k, Semiring k) => Multiplicative (Hyper k) Source # 

Methods

(*) :: Hyper k -> Hyper k -> Hyper k Source #

pow1p :: Hyper k -> Natural -> Hyper k Source #

productWith1 :: Foldable1 f => (a -> Hyper k) -> f a -> Hyper k Source #

Group r => Group (Hyper r) Source # 

Methods

(-) :: Hyper r -> Hyper r -> Hyper r Source #

negate :: Hyper r -> Hyper r Source #

subtract :: Hyper r -> Hyper r -> Hyper r Source #

times :: Integral n => n -> Hyper r -> Hyper r Source #

(Commutative k, Rig k) => Unital (Hyper k) Source # 

Methods

one :: Hyper k Source #

pow :: Hyper k -> Natural -> Hyper k Source #

productWith :: Foldable f => (a -> Hyper k) -> f a -> Hyper k Source #

(Commutative r, Rig r) => Rig (Hyper r) Source # 
(Commutative r, Ring r) => Ring (Hyper r) Source # 
(Commutative k, Semiring k) => Commutative (Hyper k) Source # 
(Commutative r, Group r, InvolutiveSemiring r) => InvolutiveSemiring (Hyper r) Source # 
(Commutative r, Group r, InvolutiveSemiring r) => InvolutiveMultiplication (Hyper r) Source # 

Methods

adjoint :: Hyper r -> Hyper r Source #

Rig r => Hyperbolic (Hyper r) Source # 

Methods

cosh :: Hyper r Source #

sinh :: Hyper r Source #

(Commutative r, Semiring r) => RightModule (Hyper r) (Hyper r) Source # 

Methods

(*.) :: Hyper r -> Hyper r -> Hyper r Source #

(Commutative r, Semiring r) => LeftModule (Hyper r) (Hyper r) Source # 

Methods

(.*) :: Hyper r -> Hyper r -> Hyper r Source #

type Rep Hyper Source #