amazonka-comprehend-2.0: Amazon Comprehend SDK.
Copyright(c) 2013-2023 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellSafe-Inferred
LanguageHaskell2010

Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig

Description

 
Synopsis

Documentation

data DocumentClassifierInputDataConfig Source #

The input properties for training a document classifier.

For more information on how the input file is formatted, see Preparing training data in the Comprehend Developer Guide.

See: newDocumentClassifierInputDataConfig smart constructor.

Constructors

DocumentClassifierInputDataConfig' 

Fields

  • augmentedManifests :: Maybe [AugmentedManifestsListItem]

    A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

    This parameter is required if you set DataFormat to AUGMENTED_MANIFEST.

  • dataFormat :: Maybe DocumentClassifierDataFormat

    The format of your training data:

    • COMPREHEND_CSV: A two-column CSV file, where labels are provided in the first column, and documents are provided in the second. If you use this value, you must provide the S3Uri parameter in your request.
    • AUGMENTED_MANIFEST: A labeled dataset that is produced by Amazon SageMaker Ground Truth. This file is in JSON lines format. Each line is a complete JSON object that contains a training document and its associated labels.

      If you use this value, you must provide the AugmentedManifests parameter in your request.

    If you don't specify a value, Amazon Comprehend uses COMPREHEND_CSV as the default.

  • labelDelimiter :: Maybe Text

    Indicates the delimiter used to separate each label for training a multi-label classifier. The default delimiter between labels is a pipe (|). You can use a different character as a delimiter (if it's an allowed character) by specifying it under Delimiter for labels. If the training documents use a delimiter other than the default or the delimiter you specify, the labels on that line will be combined to make a single unique label, such as LABELLABELLABEL.

  • s3Uri :: Maybe Text

    The Amazon S3 URI for the input data. The S3 bucket must be in the same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of input files.

    For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

    This parameter is required if you set DataFormat to COMPREHEND_CSV.

  • testS3Uri :: Maybe Text

    This specifies the Amazon S3 location where the test annotations for an entity recognizer are located. The URI must be in the same AWS Region as the API endpoint that you are calling.

Instances

Instances details
FromJSON DocumentClassifierInputDataConfig Source # 
Instance details

Defined in Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig

ToJSON DocumentClassifierInputDataConfig Source # 
Instance details

Defined in Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig

Generic DocumentClassifierInputDataConfig Source # 
Instance details

Defined in Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig

Associated Types

type Rep DocumentClassifierInputDataConfig :: Type -> Type #

Read DocumentClassifierInputDataConfig Source # 
Instance details

Defined in Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig

Show DocumentClassifierInputDataConfig Source # 
Instance details

Defined in Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig

NFData DocumentClassifierInputDataConfig Source # 
Instance details

Defined in Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig

Eq DocumentClassifierInputDataConfig Source # 
Instance details

Defined in Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig

Hashable DocumentClassifierInputDataConfig Source # 
Instance details

Defined in Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig

type Rep DocumentClassifierInputDataConfig Source # 
Instance details

Defined in Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig

type Rep DocumentClassifierInputDataConfig = D1 ('MetaData "DocumentClassifierInputDataConfig" "Amazonka.Comprehend.Types.DocumentClassifierInputDataConfig" "amazonka-comprehend-2.0-Ko6GCjAQF2RARapSdPn69F" 'False) (C1 ('MetaCons "DocumentClassifierInputDataConfig'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "augmentedManifests") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [AugmentedManifestsListItem])) :*: S1 ('MetaSel ('Just "dataFormat") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe DocumentClassifierDataFormat))) :*: (S1 ('MetaSel ('Just "labelDelimiter") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "s3Uri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "testS3Uri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))))

newDocumentClassifierInputDataConfig :: DocumentClassifierInputDataConfig Source #

Create a value of DocumentClassifierInputDataConfig with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:augmentedManifests:DocumentClassifierInputDataConfig', documentClassifierInputDataConfig_augmentedManifests - A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

This parameter is required if you set DataFormat to AUGMENTED_MANIFEST.

$sel:dataFormat:DocumentClassifierInputDataConfig', documentClassifierInputDataConfig_dataFormat - The format of your training data:

  • COMPREHEND_CSV: A two-column CSV file, where labels are provided in the first column, and documents are provided in the second. If you use this value, you must provide the S3Uri parameter in your request.
  • AUGMENTED_MANIFEST: A labeled dataset that is produced by Amazon SageMaker Ground Truth. This file is in JSON lines format. Each line is a complete JSON object that contains a training document and its associated labels.

    If you use this value, you must provide the AugmentedManifests parameter in your request.

If you don't specify a value, Amazon Comprehend uses COMPREHEND_CSV as the default.

$sel:labelDelimiter:DocumentClassifierInputDataConfig', documentClassifierInputDataConfig_labelDelimiter - Indicates the delimiter used to separate each label for training a multi-label classifier. The default delimiter between labels is a pipe (|). You can use a different character as a delimiter (if it's an allowed character) by specifying it under Delimiter for labels. If the training documents use a delimiter other than the default or the delimiter you specify, the labels on that line will be combined to make a single unique label, such as LABELLABELLABEL.

DocumentClassifierInputDataConfig, documentClassifierInputDataConfig_s3Uri - The Amazon S3 URI for the input data. The S3 bucket must be in the same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of input files.

For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

This parameter is required if you set DataFormat to COMPREHEND_CSV.

$sel:testS3Uri:DocumentClassifierInputDataConfig', documentClassifierInputDataConfig_testS3Uri - This specifies the Amazon S3 location where the test annotations for an entity recognizer are located. The URI must be in the same AWS Region as the API endpoint that you are calling.

documentClassifierInputDataConfig_augmentedManifests :: Lens' DocumentClassifierInputDataConfig (Maybe [AugmentedManifestsListItem]) Source #

A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

This parameter is required if you set DataFormat to AUGMENTED_MANIFEST.

documentClassifierInputDataConfig_dataFormat :: Lens' DocumentClassifierInputDataConfig (Maybe DocumentClassifierDataFormat) Source #

The format of your training data:

  • COMPREHEND_CSV: A two-column CSV file, where labels are provided in the first column, and documents are provided in the second. If you use this value, you must provide the S3Uri parameter in your request.
  • AUGMENTED_MANIFEST: A labeled dataset that is produced by Amazon SageMaker Ground Truth. This file is in JSON lines format. Each line is a complete JSON object that contains a training document and its associated labels.

    If you use this value, you must provide the AugmentedManifests parameter in your request.

If you don't specify a value, Amazon Comprehend uses COMPREHEND_CSV as the default.

documentClassifierInputDataConfig_labelDelimiter :: Lens' DocumentClassifierInputDataConfig (Maybe Text) Source #

Indicates the delimiter used to separate each label for training a multi-label classifier. The default delimiter between labels is a pipe (|). You can use a different character as a delimiter (if it's an allowed character) by specifying it under Delimiter for labels. If the training documents use a delimiter other than the default or the delimiter you specify, the labels on that line will be combined to make a single unique label, such as LABELLABELLABEL.

documentClassifierInputDataConfig_s3Uri :: Lens' DocumentClassifierInputDataConfig (Maybe Text) Source #

The Amazon S3 URI for the input data. The S3 bucket must be in the same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of input files.

For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

This parameter is required if you set DataFormat to COMPREHEND_CSV.

documentClassifierInputDataConfig_testS3Uri :: Lens' DocumentClassifierInputDataConfig (Maybe Text) Source #

This specifies the Amazon S3 location where the test annotations for an entity recognizer are located. The URI must be in the same AWS Region as the API endpoint that you are calling.