{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TypeFamilies #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} {-# OPTIONS_GHC -fno-warn-unused-binds #-} {-# OPTIONS_GHC -fno-warn-unused-matches #-} -- Derived from AWS service descriptions, licensed under Apache 2.0. -- | -- Module : Network.AWS.MachineLearning.CreateDataSourceFromRedshift -- Copyright : (c) 2013-2016 Brendan Hay -- License : Mozilla Public License, v. 2.0. -- Maintainer : Brendan Hay <brendan.g.hay@gmail.com> -- Stability : auto-generated -- Portability : non-portable (GHC extensions) -- -- Creates a 'DataSource' from a database hosted on an Amazon Redshift cluster. A 'DataSource' references data that can be used to perform either 'CreateMLModel', 'CreateEvaluation', or 'CreateBatchPrediction' operations. -- -- 'CreateDataSourceFromRedshift' is an asynchronous operation. In response to 'CreateDataSourceFromRedshift', Amazon Machine Learning (Amazon ML) immediately returns and sets the 'DataSource' status to 'PENDING'. After the 'DataSource' is created and ready for use, Amazon ML sets the 'Status' parameter to 'COMPLETED'. 'DataSource' in 'COMPLETED' or 'PENDING' states can be used to perform only 'CreateMLModel', 'CreateEvaluation', or 'CreateBatchPrediction' operations. -- -- If Amazon ML can\'t accept the input source, it sets the 'Status' parameter to 'FAILED' and includes an error message in the 'Message' attribute of the 'GetDataSource' operation response. -- -- The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a 'SelectSqlQuery' query. Amazon ML executes an 'Unload' command in Amazon Redshift to transfer the result set of the 'SelectSqlQuery' query to 'S3StagingLocation'. -- -- After the 'DataSource' has been created, it\'s ready for use in evaluations and batch predictions. If you plan to use the 'DataSource' to train an 'MLModel', the 'DataSource' also requires a recipe. A recipe describes how each input variable will be used in training an 'MLModel'. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions. -- -- You can\'t change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call 'GetDataSource' for an existing datasource and copy the values to a 'CreateDataSource' call. Change the settings that you want to change and make sure that all required fields have the appropriate values. module Network.AWS.MachineLearning.CreateDataSourceFromRedshift ( -- * Creating a Request createDataSourceFromRedshift , CreateDataSourceFromRedshift -- * Request Lenses , cdsfrDataSourceName , cdsfrComputeStatistics , cdsfrDataSourceId , cdsfrDataSpec , cdsfrRoleARN -- * Destructuring the Response , createDataSourceFromRedshiftResponse , CreateDataSourceFromRedshiftResponse -- * Response Lenses , cdsfrrsDataSourceId , cdsfrrsResponseStatus ) where import Network.AWS.Lens import Network.AWS.MachineLearning.Types import Network.AWS.MachineLearning.Types.Product import Network.AWS.Prelude import Network.AWS.Request import Network.AWS.Response -- | /See:/ 'createDataSourceFromRedshift' smart constructor. data CreateDataSourceFromRedshift = CreateDataSourceFromRedshift' { _cdsfrDataSourceName :: !(Maybe Text) , _cdsfrComputeStatistics :: !(Maybe Bool) , _cdsfrDataSourceId :: !Text , _cdsfrDataSpec :: !RedshiftDataSpec , _cdsfrRoleARN :: !Text } deriving (Eq,Read,Show,Data,Typeable,Generic) -- | Creates a value of 'CreateDataSourceFromRedshift' with the minimum fields required to make a request. -- -- Use one of the following lenses to modify other fields as desired: -- -- * 'cdsfrDataSourceName' -- -- * 'cdsfrComputeStatistics' -- -- * 'cdsfrDataSourceId' -- -- * 'cdsfrDataSpec' -- -- * 'cdsfrRoleARN' createDataSourceFromRedshift :: Text -- ^ 'cdsfrDataSourceId' -> RedshiftDataSpec -- ^ 'cdsfrDataSpec' -> Text -- ^ 'cdsfrRoleARN' -> CreateDataSourceFromRedshift createDataSourceFromRedshift pDataSourceId_ pDataSpec_ pRoleARN_ = CreateDataSourceFromRedshift' { _cdsfrDataSourceName = Nothing , _cdsfrComputeStatistics = Nothing , _cdsfrDataSourceId = pDataSourceId_ , _cdsfrDataSpec = pDataSpec_ , _cdsfrRoleARN = pRoleARN_ } -- | A user-supplied name or description of the 'DataSource'. cdsfrDataSourceName :: Lens' CreateDataSourceFromRedshift (Maybe Text) cdsfrDataSourceName = lens _cdsfrDataSourceName (\ s a -> s{_cdsfrDataSourceName = a}); -- | The compute statistics for a 'DataSource'. The statistics are generated from the observation data referenced by a 'DataSource'. Amazon ML uses the statistics internally during 'MLModel' training. This parameter must be set to 'true' if the 'DataSource' needs to be used for 'MLModel' training. cdsfrComputeStatistics :: Lens' CreateDataSourceFromRedshift (Maybe Bool) cdsfrComputeStatistics = lens _cdsfrComputeStatistics (\ s a -> s{_cdsfrComputeStatistics = a}); -- | A user-supplied ID that uniquely identifies the 'DataSource'. cdsfrDataSourceId :: Lens' CreateDataSourceFromRedshift Text cdsfrDataSourceId = lens _cdsfrDataSourceId (\ s a -> s{_cdsfrDataSourceId = a}); -- | The data specification of an Amazon Redshift 'DataSource': -- -- - DatabaseInformation - -- -- - 'DatabaseName' - The name of the Amazon Redshift database. -- - ' ClusterIdentifier' - The unique ID for the Amazon Redshift cluster. -- - DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database. -- -- - SelectSqlQuery - The query that is used to retrieve the observation data for the 'Datasource'. -- -- - S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the 'SelectSqlQuery' query is stored in this location. -- -- - DataSchemaUri - The Amazon S3 location of the 'DataSchema'. -- -- - DataSchema - A JSON string representing the schema. This is not required if 'DataSchemaUri' is specified. -- -- - DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the 'DataSource'. -- -- Sample - ' \"{\\\"splitting\\\":{\\\"percentBegin\\\":10,\\\"percentEnd\\\":60}}\"' -- cdsfrDataSpec :: Lens' CreateDataSourceFromRedshift RedshiftDataSpec cdsfrDataSpec = lens _cdsfrDataSpec (\ s a -> s{_cdsfrDataSpec = a}); -- | A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following: -- -- - A security group to allow Amazon ML to execute the 'SelectSqlQuery' query on an Amazon Redshift cluster -- -- - An Amazon S3 bucket policy to grant Amazon ML read\/write permissions on the 'S3StagingLocation' -- cdsfrRoleARN :: Lens' CreateDataSourceFromRedshift Text cdsfrRoleARN = lens _cdsfrRoleARN (\ s a -> s{_cdsfrRoleARN = a}); instance AWSRequest CreateDataSourceFromRedshift where type Rs CreateDataSourceFromRedshift = CreateDataSourceFromRedshiftResponse request = postJSON machineLearning response = receiveJSON (\ s h x -> CreateDataSourceFromRedshiftResponse' <$> (x .?> "DataSourceId") <*> (pure (fromEnum s))) instance Hashable CreateDataSourceFromRedshift instance NFData CreateDataSourceFromRedshift instance ToHeaders CreateDataSourceFromRedshift where toHeaders = const (mconcat ["X-Amz-Target" =# ("AmazonML_20141212.CreateDataSourceFromRedshift" :: ByteString), "Content-Type" =# ("application/x-amz-json-1.1" :: ByteString)]) instance ToJSON CreateDataSourceFromRedshift where toJSON CreateDataSourceFromRedshift'{..} = object (catMaybes [("DataSourceName" .=) <$> _cdsfrDataSourceName, ("ComputeStatistics" .=) <$> _cdsfrComputeStatistics, Just ("DataSourceId" .= _cdsfrDataSourceId), Just ("DataSpec" .= _cdsfrDataSpec), Just ("RoleARN" .= _cdsfrRoleARN)]) instance ToPath CreateDataSourceFromRedshift where toPath = const "/" instance ToQuery CreateDataSourceFromRedshift where toQuery = const mempty -- | Represents the output of a 'CreateDataSourceFromRedshift' operation, and is an acknowledgement that Amazon ML received the request. -- -- The 'CreateDataSourceFromRedshift' operation is asynchronous. You can poll for updates by using the 'GetBatchPrediction' operation and checking the 'Status' parameter. -- -- /See:/ 'createDataSourceFromRedshiftResponse' smart constructor. data CreateDataSourceFromRedshiftResponse = CreateDataSourceFromRedshiftResponse' { _cdsfrrsDataSourceId :: !(Maybe Text) , _cdsfrrsResponseStatus :: !Int } deriving (Eq,Read,Show,Data,Typeable,Generic) -- | Creates a value of 'CreateDataSourceFromRedshiftResponse' with the minimum fields required to make a request. -- -- Use one of the following lenses to modify other fields as desired: -- -- * 'cdsfrrsDataSourceId' -- -- * 'cdsfrrsResponseStatus' createDataSourceFromRedshiftResponse :: Int -- ^ 'cdsfrrsResponseStatus' -> CreateDataSourceFromRedshiftResponse createDataSourceFromRedshiftResponse pResponseStatus_ = CreateDataSourceFromRedshiftResponse' { _cdsfrrsDataSourceId = Nothing , _cdsfrrsResponseStatus = pResponseStatus_ } -- | A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the 'DataSourceID' in the request. cdsfrrsDataSourceId :: Lens' CreateDataSourceFromRedshiftResponse (Maybe Text) cdsfrrsDataSourceId = lens _cdsfrrsDataSourceId (\ s a -> s{_cdsfrrsDataSourceId = a}); -- | The response status code. cdsfrrsResponseStatus :: Lens' CreateDataSourceFromRedshiftResponse Int cdsfrrsResponseStatus = lens _cdsfrrsResponseStatus (\ s a -> s{_cdsfrrsResponseStatus = a}); instance NFData CreateDataSourceFromRedshiftResponse