Copyright | (c) 2013-2023 Brendan Hay |
---|---|
License | Mozilla Public License, v. 2.0. |
Maintainer | Brendan Hay |
Stability | auto-generated |
Portability | non-portable (GHC extensions) |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Creates a new MLModel
using the DataSource
and the recipe as
information sources.
An MLModel
is nearly immutable. Users can update only the
MLModelName
and the ScoreThreshold
in an MLModel
without creating
a new MLModel
.
CreateMLModel
is an asynchronous operation. In response to
CreateMLModel
, Amazon Machine Learning (Amazon ML) immediately returns
and sets the MLModel
status to PENDING
. After the MLModel
has been
created and ready is for use, Amazon ML sets the status to COMPLETED
.
You can use the GetMLModel
operation to check the progress of the
MLModel
during the creation operation.
CreateMLModel
requires a DataSource
with computed statistics, which
can be created by setting ComputeStatistics
to true
in
CreateDataSourceFromRDS
, CreateDataSourceFromS3
, or
CreateDataSourceFromRedshift
operations.
Synopsis
- data CreateMLModel = CreateMLModel' {
- mLModelName :: Maybe Text
- parameters :: Maybe (HashMap Text Text)
- recipe :: Maybe Text
- recipeUri :: Maybe Text
- mLModelId :: Text
- mLModelType :: MLModelType
- trainingDataSourceId :: Text
- newCreateMLModel :: Text -> MLModelType -> Text -> CreateMLModel
- createMLModel_mLModelName :: Lens' CreateMLModel (Maybe Text)
- createMLModel_parameters :: Lens' CreateMLModel (Maybe (HashMap Text Text))
- createMLModel_recipe :: Lens' CreateMLModel (Maybe Text)
- createMLModel_recipeUri :: Lens' CreateMLModel (Maybe Text)
- createMLModel_mLModelId :: Lens' CreateMLModel Text
- createMLModel_mLModelType :: Lens' CreateMLModel MLModelType
- createMLModel_trainingDataSourceId :: Lens' CreateMLModel Text
- data CreateMLModelResponse = CreateMLModelResponse' {
- mLModelId :: Maybe Text
- httpStatus :: Int
- newCreateMLModelResponse :: Int -> CreateMLModelResponse
- createMLModelResponse_mLModelId :: Lens' CreateMLModelResponse (Maybe Text)
- createMLModelResponse_httpStatus :: Lens' CreateMLModelResponse Int
Creating a Request
data CreateMLModel Source #
See: newCreateMLModel
smart constructor.
CreateMLModel' | |
|
Instances
Create a value of CreateMLModel
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:mLModelName:CreateMLModel'
, createMLModel_mLModelName
- A user-supplied name or description of the MLModel
.
$sel:parameters:CreateMLModel'
, createMLModel_parameters
- A list of the training parameters in the MLModel
. The list is
implemented as a map of key-value pairs.
The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
.sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
.sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
. We strongly recommend that you shuffle your data.sgd.l1RegularizationAmount
- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly.sgd.l2RegularizationAmount
- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
$sel:recipe:CreateMLModel'
, createMLModel_recipe
- The data recipe for creating the MLModel
. You must specify either the
recipe or its URI. If you don't specify a recipe or its URI, Amazon ML
creates a default.
$sel:recipeUri:CreateMLModel'
, createMLModel_recipeUri
- The Amazon Simple Storage Service (Amazon S3) location and file name
that contains the MLModel
recipe. You must specify either the recipe
or its URI. If you don't specify a recipe or its URI, Amazon ML creates
a default.
CreateMLModel
, createMLModel_mLModelId
- A user-supplied ID that uniquely identifies the MLModel
.
CreateMLModel
, createMLModel_mLModelType
- The category of supervised learning that this MLModel
will address.
Choose from the following types:
- Choose
REGRESSION
if theMLModel
will be used to predict a numeric value. - Choose
BINARY
if theMLModel
result has two possible values. - Choose
MULTICLASS
if theMLModel
result has a limited number of values.
For more information, see the Amazon Machine Learning Developer Guide.
CreateMLModel
, createMLModel_trainingDataSourceId
- The DataSource
that points to the training data.
Request Lenses
createMLModel_mLModelName :: Lens' CreateMLModel (Maybe Text) Source #
A user-supplied name or description of the MLModel
.
createMLModel_parameters :: Lens' CreateMLModel (Maybe (HashMap Text Text)) Source #
A list of the training parameters in the MLModel
. The list is
implemented as a map of key-value pairs.
The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
.sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
.sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
. We strongly recommend that you shuffle your data.sgd.l1RegularizationAmount
- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly.sgd.l2RegularizationAmount
- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
createMLModel_recipe :: Lens' CreateMLModel (Maybe Text) Source #
The data recipe for creating the MLModel
. You must specify either the
recipe or its URI. If you don't specify a recipe or its URI, Amazon ML
creates a default.
createMLModel_recipeUri :: Lens' CreateMLModel (Maybe Text) Source #
The Amazon Simple Storage Service (Amazon S3) location and file name
that contains the MLModel
recipe. You must specify either the recipe
or its URI. If you don't specify a recipe or its URI, Amazon ML creates
a default.
createMLModel_mLModelId :: Lens' CreateMLModel Text Source #
A user-supplied ID that uniquely identifies the MLModel
.
createMLModel_mLModelType :: Lens' CreateMLModel MLModelType Source #
The category of supervised learning that this MLModel
will address.
Choose from the following types:
- Choose
REGRESSION
if theMLModel
will be used to predict a numeric value. - Choose
BINARY
if theMLModel
result has two possible values. - Choose
MULTICLASS
if theMLModel
result has a limited number of values.
For more information, see the Amazon Machine Learning Developer Guide.
createMLModel_trainingDataSourceId :: Lens' CreateMLModel Text Source #
The DataSource
that points to the training data.
Destructuring the Response
data CreateMLModelResponse Source #
Represents the output of a CreateMLModel
operation, and is an
acknowledgement that Amazon ML received the request.
The CreateMLModel
operation is asynchronous. You can poll for status
updates by using the GetMLModel
operation and checking the Status
parameter.
See: newCreateMLModelResponse
smart constructor.
CreateMLModelResponse' | |
|
Instances
newCreateMLModelResponse Source #
Create a value of CreateMLModelResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
CreateMLModel
, createMLModelResponse_mLModelId
- A user-supplied ID that uniquely identifies the MLModel
. This value
should be identical to the value of the MLModelId
in the request.
$sel:httpStatus:CreateMLModelResponse'
, createMLModelResponse_httpStatus
- The response's http status code.
Response Lenses
createMLModelResponse_mLModelId :: Lens' CreateMLModelResponse (Maybe Text) Source #
A user-supplied ID that uniquely identifies the MLModel
. This value
should be identical to the value of the MLModelId
in the request.
createMLModelResponse_httpStatus :: Lens' CreateMLModelResponse Int Source #
The response's http status code.