| Copyright | (c) 2013-2023 Brendan Hay |
|---|---|
| License | Mozilla Public License, v. 2.0. |
| Maintainer | Brendan Hay |
| Stability | auto-generated |
| Portability | non-portable (GHC extensions) |
| Safe Haskell | Safe-Inferred |
| Language | Haskell2010 |
Amazonka.MachineLearning.CreateMLModel
Description
Creates a new MLModel using the DataSource and the recipe as
information sources.
An MLModel is nearly immutable. Users can update only the
MLModelName and the ScoreThreshold in an MLModel without creating
a new MLModel.
CreateMLModel is an asynchronous operation. In response to
CreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns
and sets the MLModel status to PENDING. After the MLModel has been
created and ready is for use, Amazon ML sets the status to COMPLETED.
You can use the GetMLModel operation to check the progress of the
MLModel during the creation operation.
CreateMLModel requires a DataSource with computed statistics, which
can be created by setting ComputeStatistics to true in
CreateDataSourceFromRDS, CreateDataSourceFromS3, or
CreateDataSourceFromRedshift operations.
Synopsis
- data CreateMLModel = CreateMLModel' {
- mLModelName :: Maybe Text
- parameters :: Maybe (HashMap Text Text)
- recipe :: Maybe Text
- recipeUri :: Maybe Text
- mLModelId :: Text
- mLModelType :: MLModelType
- trainingDataSourceId :: Text
- newCreateMLModel :: Text -> MLModelType -> Text -> CreateMLModel
- createMLModel_mLModelName :: Lens' CreateMLModel (Maybe Text)
- createMLModel_parameters :: Lens' CreateMLModel (Maybe (HashMap Text Text))
- createMLModel_recipe :: Lens' CreateMLModel (Maybe Text)
- createMLModel_recipeUri :: Lens' CreateMLModel (Maybe Text)
- createMLModel_mLModelId :: Lens' CreateMLModel Text
- createMLModel_mLModelType :: Lens' CreateMLModel MLModelType
- createMLModel_trainingDataSourceId :: Lens' CreateMLModel Text
- data CreateMLModelResponse = CreateMLModelResponse' {
- mLModelId :: Maybe Text
- httpStatus :: Int
- newCreateMLModelResponse :: Int -> CreateMLModelResponse
- createMLModelResponse_mLModelId :: Lens' CreateMLModelResponse (Maybe Text)
- createMLModelResponse_httpStatus :: Lens' CreateMLModelResponse Int
Creating a Request
data CreateMLModel Source #
See: newCreateMLModel smart constructor.
Constructors
| CreateMLModel' | |
Fields
| |
Instances
Arguments
| :: Text | |
| -> MLModelType | |
| -> Text | |
| -> CreateMLModel |
Create a value of CreateMLModel with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:mLModelName:CreateMLModel', createMLModel_mLModelName - A user-supplied name or description of the MLModel.
$sel:parameters:CreateMLModel', createMLModel_parameters - A list of the training parameters in the MLModel. The list is
implemented as a map of key-value pairs.
The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000to2147483648. The default value is33554432.sgd.maxPasses- The number of times that the training process traverses the observations to build theMLModel. The value is an integer that ranges from1to10000. The default value is10.sgd.shuffleType- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areautoandnone. The default value isnone. We strongly recommend that you shuffle your data.sgd.l1RegularizationAmount- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08.The value is a double that ranges from
0toMAX_DOUBLE. The default is to not use L1 normalization. This parameter can't be used whenL2is specified. Use this parameter sparingly.sgd.l2RegularizationAmount- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08.The value is a double that ranges from
0toMAX_DOUBLE. The default is to not use L2 normalization. This parameter can't be used whenL1is specified. Use this parameter sparingly.
$sel:recipe:CreateMLModel', createMLModel_recipe - The data recipe for creating the MLModel. You must specify either the
recipe or its URI. If you don't specify a recipe or its URI, Amazon ML
creates a default.
$sel:recipeUri:CreateMLModel', createMLModel_recipeUri - The Amazon Simple Storage Service (Amazon S3) location and file name
that contains the MLModel recipe. You must specify either the recipe
or its URI. If you don't specify a recipe or its URI, Amazon ML creates
a default.
CreateMLModel, createMLModel_mLModelId - A user-supplied ID that uniquely identifies the MLModel.
CreateMLModel, createMLModel_mLModelType - The category of supervised learning that this MLModel will address.
Choose from the following types:
- Choose
REGRESSIONif theMLModelwill be used to predict a numeric value. - Choose
BINARYif theMLModelresult has two possible values. - Choose
MULTICLASSif theMLModelresult has a limited number of values.
For more information, see the Amazon Machine Learning Developer Guide.
CreateMLModel, createMLModel_trainingDataSourceId - The DataSource that points to the training data.
Request Lenses
createMLModel_mLModelName :: Lens' CreateMLModel (Maybe Text) Source #
A user-supplied name or description of the MLModel.
createMLModel_parameters :: Lens' CreateMLModel (Maybe (HashMap Text Text)) Source #
A list of the training parameters in the MLModel. The list is
implemented as a map of key-value pairs.
The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000to2147483648. The default value is33554432.sgd.maxPasses- The number of times that the training process traverses the observations to build theMLModel. The value is an integer that ranges from1to10000. The default value is10.sgd.shuffleType- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areautoandnone. The default value isnone. We strongly recommend that you shuffle your data.sgd.l1RegularizationAmount- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08.The value is a double that ranges from
0toMAX_DOUBLE. The default is to not use L1 normalization. This parameter can't be used whenL2is specified. Use this parameter sparingly.sgd.l2RegularizationAmount- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08.The value is a double that ranges from
0toMAX_DOUBLE. The default is to not use L2 normalization. This parameter can't be used whenL1is specified. Use this parameter sparingly.
createMLModel_recipe :: Lens' CreateMLModel (Maybe Text) Source #
The data recipe for creating the MLModel. You must specify either the
recipe or its URI. If you don't specify a recipe or its URI, Amazon ML
creates a default.
createMLModel_recipeUri :: Lens' CreateMLModel (Maybe Text) Source #
The Amazon Simple Storage Service (Amazon S3) location and file name
that contains the MLModel recipe. You must specify either the recipe
or its URI. If you don't specify a recipe or its URI, Amazon ML creates
a default.
createMLModel_mLModelId :: Lens' CreateMLModel Text Source #
A user-supplied ID that uniquely identifies the MLModel.
createMLModel_mLModelType :: Lens' CreateMLModel MLModelType Source #
The category of supervised learning that this MLModel will address.
Choose from the following types:
- Choose
REGRESSIONif theMLModelwill be used to predict a numeric value. - Choose
BINARYif theMLModelresult has two possible values. - Choose
MULTICLASSif theMLModelresult has a limited number of values.
For more information, see the Amazon Machine Learning Developer Guide.
createMLModel_trainingDataSourceId :: Lens' CreateMLModel Text Source #
The DataSource that points to the training data.
Destructuring the Response
data CreateMLModelResponse Source #
Represents the output of a CreateMLModel operation, and is an
acknowledgement that Amazon ML received the request.
The CreateMLModel operation is asynchronous. You can poll for status
updates by using the GetMLModel operation and checking the Status
parameter.
See: newCreateMLModelResponse smart constructor.
Constructors
| CreateMLModelResponse' | |
Fields
| |
Instances
newCreateMLModelResponse Source #
Create a value of CreateMLModelResponse with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
CreateMLModel, createMLModelResponse_mLModelId - A user-supplied ID that uniquely identifies the MLModel. This value
should be identical to the value of the MLModelId in the request.
$sel:httpStatus:CreateMLModelResponse', createMLModelResponse_httpStatus - The response's http status code.
Response Lenses
createMLModelResponse_mLModelId :: Lens' CreateMLModelResponse (Maybe Text) Source #
A user-supplied ID that uniquely identifies the MLModel. This value
should be identical to the value of the MLModelId in the request.
createMLModelResponse_httpStatus :: Lens' CreateMLModelResponse Int Source #
The response's http status code.