amazonka-ml-2.0: Amazon Machine Learning SDK.
Copyright(c) 2013-2023 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellSafe-Inferred
LanguageHaskell2010

Amazonka.MachineLearning.DescribeMLModels

Description

Returns a list of MLModel that match the search criteria in the request.

This operation returns paginated results.

Synopsis

Creating a Request

data DescribeMLModels Source #

See: newDescribeMLModels smart constructor.

Constructors

DescribeMLModels' 

Fields

  • eq :: Maybe Text

    The equal to operator. The MLModel results will have FilterVariable values that exactly match the value specified with EQ.

  • filterVariable :: Maybe MLModelFilterVariable

    Use one of the following variables to filter a list of MLModel:

    • CreatedAt - Sets the search criteria to MLModel creation date.
    • Status - Sets the search criteria to MLModel status.
    • Name - Sets the search criteria to the contents of MLModel ____ Name.
    • IAMUser - Sets the search criteria to the user account that invoked the MLModel creation.
    • TrainingDataSourceId - Sets the search criteria to the DataSource used to train one or more MLModel.
    • RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time endpoint status.
    • MLModelType - Sets the search criteria to MLModel type: binary, regression, or multi-class.
    • Algorithm - Sets the search criteria to the algorithm that the MLModel uses.
    • TrainingDataURI - Sets the search criteria to the data file(s) used in training a MLModel. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
  • ge :: Maybe Text

    The greater than or equal to operator. The MLModel results will have FilterVariable values that are greater than or equal to the value specified with GE.

  • gt :: Maybe Text

    The greater than operator. The MLModel results will have FilterVariable values that are greater than the value specified with GT.

  • le :: Maybe Text

    The less than or equal to operator. The MLModel results will have FilterVariable values that are less than or equal to the value specified with LE.

  • lt :: Maybe Text

    The less than operator. The MLModel results will have FilterVariable values that are less than the value specified with LT.

  • limit :: Maybe Natural

    The number of pages of information to include in the result. The range of acceptable values is 1 through 100. The default value is 100.

  • ne :: Maybe Text

    The not equal to operator. The MLModel results will have FilterVariable values not equal to the value specified with NE.

  • nextToken :: Maybe Text

    The ID of the page in the paginated results.

  • prefix :: Maybe Text

    A string that is found at the beginning of a variable, such as Name or Id.

    For example, an MLModel could have the Name 2014-09-09-HolidayGiftMailer. To search for this MLModel, select Name for the FilterVariable and any of the following strings for the Prefix:

    • 2014-09
    • 2014-09-09
    • 2014-09-09-Holiday
  • sortOrder :: Maybe SortOrder

    A two-value parameter that determines the sequence of the resulting list of MLModel.

    • asc - Arranges the list in ascending order (A-Z, 0-9).
    • dsc - Arranges the list in descending order (Z-A, 9-0).

    Results are sorted by FilterVariable.

Instances

Instances details
ToJSON DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

ToHeaders DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

ToPath DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

ToQuery DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

AWSPager DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

AWSRequest DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Associated Types

type AWSResponse DescribeMLModels #

Generic DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Associated Types

type Rep DescribeMLModels :: Type -> Type #

Read DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Show DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

NFData DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Methods

rnf :: DescribeMLModels -> () #

Eq DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Hashable DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

type AWSResponse DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

type Rep DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

newDescribeMLModels :: DescribeMLModels Source #

Create a value of DescribeMLModels with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:eq:DescribeMLModels', describeMLModels_eq - The equal to operator. The MLModel results will have FilterVariable values that exactly match the value specified with EQ.

$sel:filterVariable:DescribeMLModels', describeMLModels_filterVariable - Use one of the following variables to filter a list of MLModel:

  • CreatedAt - Sets the search criteria to MLModel creation date.
  • Status - Sets the search criteria to MLModel status.
  • Name - Sets the search criteria to the contents of MLModel ____ Name.
  • IAMUser - Sets the search criteria to the user account that invoked the MLModel creation.
  • TrainingDataSourceId - Sets the search criteria to the DataSource used to train one or more MLModel.
  • RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time endpoint status.
  • MLModelType - Sets the search criteria to MLModel type: binary, regression, or multi-class.
  • Algorithm - Sets the search criteria to the algorithm that the MLModel uses.
  • TrainingDataURI - Sets the search criteria to the data file(s) used in training a MLModel. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.

$sel:ge:DescribeMLModels', describeMLModels_ge - The greater than or equal to operator. The MLModel results will have FilterVariable values that are greater than or equal to the value specified with GE.

$sel:gt:DescribeMLModels', describeMLModels_gt - The greater than operator. The MLModel results will have FilterVariable values that are greater than the value specified with GT.

$sel:le:DescribeMLModels', describeMLModels_le - The less than or equal to operator. The MLModel results will have FilterVariable values that are less than or equal to the value specified with LE.

$sel:lt:DescribeMLModels', describeMLModels_lt - The less than operator. The MLModel results will have FilterVariable values that are less than the value specified with LT.

$sel:limit:DescribeMLModels', describeMLModels_limit - The number of pages of information to include in the result. The range of acceptable values is 1 through 100. The default value is 100.

$sel:ne:DescribeMLModels', describeMLModels_ne - The not equal to operator. The MLModel results will have FilterVariable values not equal to the value specified with NE.

DescribeMLModels, describeMLModels_nextToken - The ID of the page in the paginated results.

$sel:prefix:DescribeMLModels', describeMLModels_prefix - A string that is found at the beginning of a variable, such as Name or Id.

For example, an MLModel could have the Name 2014-09-09-HolidayGiftMailer. To search for this MLModel, select Name for the FilterVariable and any of the following strings for the Prefix:

  • 2014-09
  • 2014-09-09
  • 2014-09-09-Holiday

$sel:sortOrder:DescribeMLModels', describeMLModels_sortOrder - A two-value parameter that determines the sequence of the resulting list of MLModel.

  • asc - Arranges the list in ascending order (A-Z, 0-9).
  • dsc - Arranges the list in descending order (Z-A, 9-0).

Results are sorted by FilterVariable.

Request Lenses

describeMLModels_eq :: Lens' DescribeMLModels (Maybe Text) Source #

The equal to operator. The MLModel results will have FilterVariable values that exactly match the value specified with EQ.

describeMLModels_filterVariable :: Lens' DescribeMLModels (Maybe MLModelFilterVariable) Source #

Use one of the following variables to filter a list of MLModel:

  • CreatedAt - Sets the search criteria to MLModel creation date.
  • Status - Sets the search criteria to MLModel status.
  • Name - Sets the search criteria to the contents of MLModel ____ Name.
  • IAMUser - Sets the search criteria to the user account that invoked the MLModel creation.
  • TrainingDataSourceId - Sets the search criteria to the DataSource used to train one or more MLModel.
  • RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time endpoint status.
  • MLModelType - Sets the search criteria to MLModel type: binary, regression, or multi-class.
  • Algorithm - Sets the search criteria to the algorithm that the MLModel uses.
  • TrainingDataURI - Sets the search criteria to the data file(s) used in training a MLModel. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.

describeMLModels_ge :: Lens' DescribeMLModels (Maybe Text) Source #

The greater than or equal to operator. The MLModel results will have FilterVariable values that are greater than or equal to the value specified with GE.

describeMLModels_gt :: Lens' DescribeMLModels (Maybe Text) Source #

The greater than operator. The MLModel results will have FilterVariable values that are greater than the value specified with GT.

describeMLModels_le :: Lens' DescribeMLModels (Maybe Text) Source #

The less than or equal to operator. The MLModel results will have FilterVariable values that are less than or equal to the value specified with LE.

describeMLModels_lt :: Lens' DescribeMLModels (Maybe Text) Source #

The less than operator. The MLModel results will have FilterVariable values that are less than the value specified with LT.

describeMLModels_limit :: Lens' DescribeMLModels (Maybe Natural) Source #

The number of pages of information to include in the result. The range of acceptable values is 1 through 100. The default value is 100.

describeMLModels_ne :: Lens' DescribeMLModels (Maybe Text) Source #

The not equal to operator. The MLModel results will have FilterVariable values not equal to the value specified with NE.

describeMLModels_nextToken :: Lens' DescribeMLModels (Maybe Text) Source #

The ID of the page in the paginated results.

describeMLModels_prefix :: Lens' DescribeMLModels (Maybe Text) Source #

A string that is found at the beginning of a variable, such as Name or Id.

For example, an MLModel could have the Name 2014-09-09-HolidayGiftMailer. To search for this MLModel, select Name for the FilterVariable and any of the following strings for the Prefix:

  • 2014-09
  • 2014-09-09
  • 2014-09-09-Holiday

describeMLModels_sortOrder :: Lens' DescribeMLModels (Maybe SortOrder) Source #

A two-value parameter that determines the sequence of the resulting list of MLModel.

  • asc - Arranges the list in ascending order (A-Z, 0-9).
  • dsc - Arranges the list in descending order (Z-A, 9-0).

Results are sorted by FilterVariable.

Destructuring the Response

data DescribeMLModelsResponse Source #

Represents the output of a DescribeMLModels operation. The content is essentially a list of MLModel.

See: newDescribeMLModelsResponse smart constructor.

Constructors

DescribeMLModelsResponse' 

Fields

Instances

Instances details
Generic DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Associated Types

type Rep DescribeMLModelsResponse :: Type -> Type #

Read DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Show DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

NFData DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Eq DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

type Rep DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

type Rep DescribeMLModelsResponse = D1 ('MetaData "DescribeMLModelsResponse" "Amazonka.MachineLearning.DescribeMLModels" "amazonka-ml-2.0-A3JLJ63WvmfHxGBBIqhdRA" 'False) (C1 ('MetaCons "DescribeMLModelsResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "nextToken") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "results") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [MLModel])) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newDescribeMLModelsResponse Source #

Create a value of DescribeMLModelsResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

DescribeMLModels, describeMLModelsResponse_nextToken - The ID of the next page in the paginated results that indicates at least one more page follows.

$sel:results:DescribeMLModelsResponse', describeMLModelsResponse_results - A list of MLModel that meet the search criteria.

$sel:httpStatus:DescribeMLModelsResponse', describeMLModelsResponse_httpStatus - The response's http status code.

Response Lenses

describeMLModelsResponse_nextToken :: Lens' DescribeMLModelsResponse (Maybe Text) Source #

The ID of the next page in the paginated results that indicates at least one more page follows.

describeMLModelsResponse_results :: Lens' DescribeMLModelsResponse (Maybe [MLModel]) Source #

A list of MLModel that meet the search criteria.